Multidimension Technology Co., Ltd.

Chine

Retour au propriétaire

1-99 de 99 pour Multidimension Technology Co., Ltd. Trier par
Recheche Texte
Brevet
International - WIPO
Affiner par Reset Report
Date
2023 10
2022 2
2021 13
2020 7
2019 3
Voir plus
Classe IPC
G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs 41
G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe 8
G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes 6
G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques 5
G01D 5/16 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance 4
Voir plus
Résultats pour  brevets

1.

MAGNETIC SWITCH HAVING FILTERING FUNCTION

      
Numéro d'application CN2022137479
Numéro de publication 2023/216578
Statut Délivré - en vigueur
Date de dépôt 2022-12-08
Date de publication 2023-11-16
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Li, Dongfeng
  • Lin, Xiulong
  • Yao, Gang
  • Yang, Kai

Abrégé

The present application discloses a magnetic switch having a filtering function. The magnetic switch comprises: a magnetic sensing module and a specific integrated circuit; the specific integrated circuit comprises a power supply module, a comparison module, a filtering module, and a logic operation module; an output end of the magnetic sensing module is electrically connected to an input end of the comparison module; the filtering module is electrically connected between an output end of the comparison module and an input end of the logic operation module; or, the filtering module is electrically connected between the output end of the magnetic sensing module and the input end of the comparison module, and the output end of the comparison module is electrically connected to the input end of the logic operation module. The present application provides a high-integration magnetic switch which has high frequency response, not only has the characteristics of a conventional magnetic switch, but also can set a switching frequency threshold by means of the filtering module, such that the high-integration magnetic switch can output high and low level change signals within a set switching frequency range. Therefore, the present application avoids the effect of invalid action of the magnetic switch under the effect of a vibration environment and other environments, and also reduces the power consumption and costs.

Classes IPC  ?

  • H03K 17/90 - Commutation ou ouverture de porte électronique, c. à d. par d'autres moyens que la fermeture et l'ouverture de contacts caractérisée par l'utilisation de composants spécifiés par l'utilisation, comme éléments actifs, de dispositifs galvano-magnétiques, p.ex. des dispositifs à effet Hall

2.

MAGNETORESISTIVE SENSOR LAYER STRUCTURE FOR LASER ANNEALING

      
Numéro d'application CN2022137478
Numéro de publication 2023/142708
Statut Délivré - en vigueur
Date de dépôt 2022-12-08
Date de publication 2023-08-03
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed in the embodiments of the present invention are a magnetoresistive sensor layer structure for laser annealing. The magnetoresistive sensor layer structure comprises a substrate; a magnetoresistive sensing unit, which is located on the substrate, and comprises an antiferromagnetic pinning layer or a permanent magnet bias layer; a top heat absorption layer, which is located above the magnetoresistive sensing unit and/or a bottom heat absorption layer, which is located below the magnetoresistive sensing unit, wherein the product of the volume, specific heat and density of the top heat absorption layer is greater than the product of the volume, specific heat and density of a top electrode layer, the product of the volume, specific heat and density of the bottom heat absorption layer is greater than the product of the volume, specific heat and density of a bottom electrode layer, and when a write temperature of the antiferromagnetic pinning layer or the permanent magnet bias layer is higher than a blocking temperature or Curie temperature respectively corresponding thereto, the temperature of the bottom electrode layer and the temperature of the top electrode layer are lower than melting point temperatures respectively corresponding thereto; and a laser absorption layer and a laser transparent layer. The embodiments of the present invention can solve the problem of an electrode layer being easily ablated.

Classes IPC  ?

3.

CURRENT SENSOR

      
Numéro d'application CN2022132436
Numéro de publication 2023/116279
Statut Délivré - en vigueur
Date de dépôt 2022-11-17
Date de publication 2023-06-29
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Liu, Mingfeng
  • Shi, Ran
  • Xue, Songsheng

Abrégé

Provided is a current sensor, an input module thereof comprising a differential copper bar (1) and a shunt copper bar (2), connected in parallel. A current to be measured flows through the differential copper bar (1) and the shunt copper bar (2), and a magnetic field is generated at positions of high and low current detection modules (3, 4). In the high current detection module (3), a first magnetic induction module is secured on a circuit board (5) and placed in an internal gap of the input module, and the first magnetic induction module at least comprises first and second magnetic induction units (311, 312), the first and second magnetic induction units (311, 312) differentially sensing a magnetic field of the input module and forming an output signal by means of a first signal output module (32). In the low current detection module (4), a second magnetic induction module is secured on a circuit board (5) and placed outside the input module, and the second magnetic induction module at least comprises third and fourth magnetic induction units (411, 412), which differentially sense the magnetic field of the input module and form an output signal by means of a second signal output module (42). The current measurement range can be increased.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe

4.

CURRENT SENSOR

      
Numéro d'application CN2022132433
Numéro de publication 2023/116277
Statut Délivré - en vigueur
Date de dépôt 2022-11-17
Date de publication 2023-06-29
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Liu, Mingfeng
  • Shi, Ran
  • Xue, Songsheng

Abrégé

A current sensor, comprising: a to-be-measured current input assembly, composed of a first current shunting copper bar (11), a second current shunting copper bar (21), and a differential copper bar (31) that are arranged in the same direction, and a signal output assembly, composed of a substrate (51) and a magnetic sensing module (41) fixed on the substrate (51), wherein the signal output assembly is electrically isolated from said current input assembly; current to be measured flows through a cross section perpendicular to the first current shunting copper bar (11), the second current shunting copper bar (21), and the differential copper bar (31), and generates a magnetic field at the position of the magnetic sensing module (41); the magnetic sensing module (41) at least comprises a first magnetic sensing unit (411) and a second magnetic sensing unit (421); the two magnetic sensing units (411, 421) are located between the differential copper bar (31) and the first current shunting copper bar (11), sense, in a differential manner, a differential mode magnetic field generated by said current input assembly, and generate a differential voltage signal to form an output signal of the current sensor. Hence, the advantages of high precision, and an adjustable and large current measurement range of the current sensor are realized.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe
  • G01R 15/20 - Adaptations fournissant une isolation en tension ou en courant, p.ex. adaptations pour les réseaux à haute tension ou à courant fort utilisant des dispositifs galvano-magnétiques, p.ex. des dispositifs à effet Hall

5.

CURRENT SENSOR

      
Numéro d'application CN2022132435
Numéro de publication 2023/116278
Statut Délivré - en vigueur
Date de dépôt 2022-11-17
Date de publication 2023-06-29
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Liu, Mingfeng
  • Shi, Ran
  • Xue, Songsheng

Abrégé

A current sensor. In the current sensor, a primary-side current input copper bar comprises a differential copper bar area (11) and a shunting copper bar area (12) which are connected in parallel, wherein the differential copper bar area (11) comprises a current conduction path of a U-shaped structure; and there are one or more shunting copper bar areas (12), and any shunting copper bar area (12) and the differential copper bar area (11) are located in the same horizontal plane or in different horizontal planes. The primary-side current input copper bar is integrally formed or is formed by connecting more than one independent copper bars. A magnetic induction module is fixed on a circuit board, the magnetic induction module is located above the current conduction path of a U-shaped structure in the differential copper bar area (11), and an output of the magnetic induction module forms an output signal of the current sensor. The structure of the current sensor is simple, the manufacturing costs for the current sensor are low, the current measurement range of the current sensor is large, an input and an output are electrically isolated, and the current sensor can measure alternating currents and direct currents and has an adjustable sensitivity and a strong resistance to external magnetic field interference.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe

6.

STEPPED COPPER-BAR CURRENT MEASUREMENT APPARATUS

      
Numéro d'application CN2022132437
Numéro de publication 2023/116280
Statut Délivré - en vigueur
Date de dépôt 2022-11-17
Date de publication 2023-06-29
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Liu, Mingfeng
  • Shi, Ran
  • Xue, Songsheng

Abrégé

A stepped copper-bar current measurement apparatus. The apparatus comprises: a circuit board (3), a magnetic induction module (2) and a stepped copper bar (1), wherein the magnetic induction module (2) comprises a first magnetic induction unit (211) and a second magnetic induction unit (212); the side of the stepped copper bar (1) facing the magnetic induction module (2) comprises a first step (11) and a second step (12), which are different from each other; the first magnetic induction unit (211) is located above the first step (11), and the second magnetic induction unit (212) is located above the second step (12); a current to be measured flows through the cross section perpendicular to the stepped copper bar (1); the first magnetic induction unit (211) and the second magnetic induction unit (212) induct, in a differential manner, a differential-mode magnetic field which is generated by said current flowing through the stepped copper bar (1), and generate differential voltage signals and output the differential voltage signals. The apparatus has the characteristics of having an adjustable common-mode magnetic field working point, being applicable to various magnetic induction units, having adjustable sensitivity, realizing electrical isolation between an input and an output, having a strong resistance to common-mode interference, being able to measure alternating currents and direct currents, and having a large current.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe

7.

ELECTRIC SHIELDING MAGNETIC TUNNEL JUNCTION SIGNAL ISOLATOR

      
Numéro d'application CN2022132434
Numéro de publication 2023/109418
Statut Délivré - en vigueur
Date de dépôt 2022-11-17
Date de publication 2023-06-22
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed in the embodiments of the present invention is an electric shielding magnetic tunnel junction signal isolator. In the isolator, a coil is located between a magnetic shielding layer and an electric shielding layer, the electric shielding layer is located between the coil and a magnetic resistance sensor, and the magnetic resistance sensor is composed of a plurality of magnetic tunnel junctions that are connected in series and in parallel; a signal sending circuit having a first reference ground is electrically connected to two ends of the coil; a signal receiving circuit having a second reference ground is connected to the magnetic resistance sensor; and the magnetic shielding layer is electrically connected to the first reference ground in a single-point or multi-point mode, or is completely electrically isolated from same, and the electric shielding layer is electrically connected to the second reference ground in a single-point or multi-point mode, or is completely electrically isolated from same; or the electric shielding layer and the magnetic shielding layer are respectively electrically connected to any potential of potentials between the first reference ground and the second reference ground in a single-point or multi-point mode. In the embodiments of the present invention, an electric field is prevented from damaging a magnetic field signal of a magnetic resistance sensor, thereby solving the problem of interference and damage of a coil to a magnetic tunnel junction in the magnetic resistance sensor.

Classes IPC  ?

8.

MAGNETIC SENSOR APPARATUS

      
Numéro d'application CN2022118641
Numéro de publication 2023/065894
Statut Délivré - en vigueur
Date de dépôt 2022-09-14
Date de publication 2023-04-27
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Guo, Haiping
  • Song, Chen
  • Chen, Ye
  • Shen, Weifeng
  • Xue, Songsheng

Abrégé

Disclosed in the embodiments of the present invention is a magnetic sensor apparatus. The apparatus comprises a magnetic field generation portion, a magnetic sensor portion and a signal processing portion, wherein the magnetic sensor portion comprises a first magnetic sensor arranged at a first position, a second magnetic sensor arranged at a second position, and a third magnetic sensor arranged at a third position; the first position, the second position and the third position are on the same horizontal line and are arranged at equal intervals; magnetic fields generated by the magnetic field generation portion at the three different positions are different; the signal processing portion comprises a first differential circuit, a second differential circuit and a third differential circuit; the first differential circuit generates a first difference between a first signal that is sensed and output by the first magnetic sensor and a second signal that is sensed and output by the second magnetic sensor; the second differential circuit generates a second difference between the second signal and a third signal that is sensed and output by the third magnetic sensor; and the third differential circuit generates a differential measurement signal on the basis of the difference between the first difference and the second difference. By means of the present invention, the impact of a magnetic interfering field can be eliminated, thereby improving the current detection precision.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/02 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques

9.

CURRENT MEASUREMENT DEVICE

      
Numéro d'application CN2022118642
Numéro de publication 2023/056827
Statut Délivré - en vigueur
Date de dépôt 2022-09-14
Date de publication 2023-04-13
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Guo, Haiping
  • Song, Chen
  • Chen, Ye
  • Shen, Weifeng
  • Xue, Songsheng

Abrégé

A current measurement device, comprising three or more different positions, wherein each position is provided with at least two magneto-resistors, the two magneto-resistors are two magneto-resistors which respectively have a first sensitive direction and an opposite second sensitive direction, the resistance value of the magneto-resistor has, within a set range, a linear relationship with a magnetic field at the position where the magneto-resistor is located, and the sensitive directions of all magneto-resistors at different positions are the same or opposite, a magnetic field to be measured has a component in the sensitive direction of the magneto-resistor, the component, in the sensitive direction, of said magnetic field on at least one position is different from components, in the sensitive direction, of said magnetic fields at other positions, and all the magneto-resistors are electrically connected to form a resistance network in which an output signal includes the signals of said magnetic fields, and does not include or includes an interference magnetic field signal less than a first preset intensity. The current measurement device eliminates the interference of an interference magnetic field with current measurement.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe
  • G01R 15/20 - Adaptations fournissant une isolation en tension ou en courant, p.ex. adaptations pour les réseaux à haute tension ou à courant fort utilisant des dispositifs galvano-magnétiques, p.ex. des dispositifs à effet Hall

10.

CURRENT SENSOR

      
Numéro d'application CN2022118643
Numéro de publication 2023/056828
Statut Délivré - en vigueur
Date de dépôt 2022-09-14
Date de publication 2023-04-13
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Qu, Pin
  • Xue, Songsheng
  • Zhang, Jiuyuan

Abrégé

Embodiments of the present invention disclose a current sensor. The sensor comprises: a current conductor to be measured, comprising a first conductor section and a second conductor section having identical shapes, an area defined by an extended shape of each of the first conductor section and the second conductor section being distributed in a U shape, and the two conductor sections being symmetrically distributed about a geometric center line of the current conductor to be measured; a first magnetic sensor group arranged at one side or two sides of the first conductor section, and a second magnetic sensor group arranged at one side or two sides of the second conductor section, the first magnetic sensor group and the second magnetic sensor group being symmetrically distributed about the geometric center line of the current conductor to be measured, and sensitive directions of the two magnetic sensor groups being the same; a shielding cover sealed on all sides, the shielding cover being placed in a housing made of insulating material and wrapping the current conductor to be measured, the first magnetic sensor group, the second magnetic sensor group, a signal processor and a circuit board. The current sensor provided by the embodiments of the present invention has the effects of small size, strong anti-interference capability, wide measurement range, low temperature drift, high frequency response and high measurement precision.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe

11.

LOW-MAGNETIC-FIELD MAGNETORESISTIVE ANGLE SENSOR

      
Numéro d'application CN2022081199
Numéro de publication 2022/194205
Statut Délivré - en vigueur
Date de dépôt 2022-03-16
Date de publication 2022-09-22
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed in embodiments of the present invention is a low-magnetic-field magnetoresistive angle sensor. The sensor comprises: a substrate located on an X-Y plane; and a magnetoresistive sensing unit located on the substrate, the magnetoresistive sensing unit comprising a multi-layer thin film structure, the multi-layer thin film structure at least comprising a free layer, a barrier layer, and a reference layer which are stacked. The magnetoresistive sensing unit is in an oval shape; the free layer is in an oval shape having a long axis Ly, a short axis Lx, and a thickness Lz; and the free layer has a saturation magnetic field, a shape anisotropic demagnetizing field, and a magnetocrystalline anisotropic field in the X direction. If an external magnetic field rotates by 0-360° in the X-Y plane, the magnetocrystalline anisotropic field is compensated by the shape anisotropic demagnetizing field to cause the effective anisotropic field of the free layer to be close to 0, such that the external magnetic field has a low working magnetic field value close to that of the saturation magnetic field of the free layer. In the embodiments of the present invention, the accuracy of angle measurement of a magnetoresistive angle sensor can be improved; and since a required magnetic field value of an external magnetic field is low, the price and use cost of a sensor are reduced.

Classes IPC  ?

  • G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes

12.

LASER PROGRAMMING AND WRITINGWRITING APPARATUS AND METHOD FOR MAGNETO-RESISTIVE DEVICE

      
Numéro d'application CN2022078776
Numéro de publication 2022/184090
Statut Délivré - en vigueur
Date de dépôt 2022-03-02
Date de publication 2022-09-09
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed in the embodiments of the present invention are a laser programming and writing apparatus and method for a magneto-resistive device. The apparatus comprises: a substrate, a magneto-resistive sensor and a thermal control layer which are sequentially arranged in a stacked manner, a non-magnetic insulating layer for electrical isolation being provided between the magneto-resistive sensor and the thermal control layer, the magneto-resistive sensor being composed of a magneto-resistive sensing unit which is a multilayer thin-film stacking structure having an anti-ferromagnetic layer; the laser programming and writing apparatus is configured to change, at a laser programming and writing stage, film layer parameters of the thermal control layer and/or the magneto-resistive sensor, so as to adjust a rate of change of the temperature of the magneto-resistive sensor along with the laser power, and to increase or decrease the temperature at which the same laser power is written into the magneto-resistive sensor, and the film layer parameters include at least one of a film layer material and a film layer thickness. By means of the embodiments of the present invention, high-precision laser writing and programming of the magneto-resistive sensor is achieved, the manufacturing defects of the magneto-resistive sensor are overcome, the performance of the magneto-resistive sensor is improved, and the detection precision of the magneto-resistive sensor are further improved.

Classes IPC  ?

  • G01D 5/16 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance

13.

MAGNETORESISTANCE RELAXATION OSCILLATOR TYPE MAGNETOMETER

      
Numéro d'application CN2021096227
Numéro de publication 2021/239031
Statut Délivré - en vigueur
Date de dépôt 2021-05-27
Date de publication 2021-12-02
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A magnetoresistance relaxation oscillator type magnetometer (1), comprising: a capacitor (2), a charging resistor (3), a discharging resistor (4), a charging and discharging change-over switch (5), a high-voltage source terminal (6), a grounding terminal (7), and a signal output terminal (Vout). The charging resistor (3) consists of at least one charging magnetoresistance unit, and the discharging resistor (4) consists of at least one discharging magnetoresistance unit. A first end of the capacitor (2) is connected to the grounding terminal (7), a second end of the capacitor (2) is separately connected to the charging resistor (3), the discharging resistor (4) and the signal output terminal (Vout) by means of the charging and discharging change-over switch (5), and the charging and discharging change-over switch (5) is further connected to the high-voltage source terminal (6). In the charging stage, the charging and discharging change-over switch (5) is switched to the high-voltage source terminal (6), and the high-voltage source terminal (6) charges the capacitor (2) by means of the charging resistor (3); and in the discharging stage, the charging and discharging change-over switch (5) is switched to the grounding terminal (7), and the capacitor (2) discharges to the grounding terminal (7) by means of the discharging resistor (4). Rapid measurement of the magnetic field size of an external magnetic field can be achieved.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • H03K 3/012 - Modifications du générateur pour améliorer le temps de réponse ou pour diminuer la consommation d'énergie

14.

ROTATING DISC TYPE MAGNETIC FIELD INTENSITY PROBE

      
Numéro d'application CN2021092974
Numéro de publication 2021/228065
Statut Délivré - en vigueur
Date de dépôt 2021-05-11
Date de publication 2021-11-18
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James, Geza
  • Zhou, Zhimin

Abrégé

A rotating disc type magnetic field intensity probe (1), comprising: a non-magnetic rotating wheel (2), 4N first soft magnetic sectors (3), M second soft magnetic sectors (4), a reference signal generator, an X-axis reluctance sensor (7, 8), a Y-axis reluctance sensor (5, 6), and a Z-axis reluctance sensor (9). Both the first soft magnetic sectors (3) and the second soft magnetic sectors (4) are located on the non-magnetic rotating wheel (2). During working, the non-magnetic rotating wheel (2) rotates about a z axis at a frequency f. An external magnetic field is modulated by the first soft magnetic sectors (3) into an x-axis sensitive magnetic field component and a y-axis sensitive magnetic field component having a frequency of 4N×f, and is modulated by the second soft magnetic sectors into a z-axis sensitive magnetic field component having a frequency of M×f. The x-axis sensitive magnetic field component, the y-axis sensitive magnetic field component, and the z-axis sensitive magnetic field component respectively output corresponding measurement signals by means of the X-axis reluctance sensor (7, 8), the Y-axis reluctance sensor (5, 6), and the Z-axis reluctance sensor (9). The reference signal generator respectively outputs a first reference signal having a frequency of 4N×f and a second reference signal having a frequency of M×f. The first reference signal, the second reference signal, and the measurement signals are demodulated by an external processing circuit to output magnetic field values Hx, Hy, and Hz.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

15.

ELECTROMECHANICAL MODULATION MAGNETORESISTIVE ROTARY MAGNETIC FIELD PROBE

      
Numéro d'application CN2021087772
Numéro de publication 2021/218668
Statut Délivré - en vigueur
Date de dépôt 2021-04-16
Date de publication 2021-11-04
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

An electromechanical modulation magnetoresistive rotary magnetic field probe (1) comprises: a cylindrical substrate (11), wherein the cylindrical substrate (11) is a hollow structure, and a center axis of the cylindrical substrate (11) coincides with a z-axis of a cylindrical coordinate system; a first arc magnet (12) and a second arc magnet (13) attached to an outer side wall of the cylindrical substrate (11); and a magnetoresistive sensor (14) and a reference signal generator (15) located on the center axis of the cylindrical substrate (11). During operation, the cylindrical substrate (11) rotates about the z-axis at a frequency f, and the first arc magnet (12) and the second arc magnet (13) modulate an external magnetic field into a sensitive magnetic field having a frequency 2f, and a measurement signal having a frequency 2f is output via the magnetoresistive sensor (14). The reference signal generator (15) outputs a reference signal having a frequency 2f. The reference signal and the measurement signal are demodulated by an external processing circuit (4) to output a magnetic field value, so as to measure a signal-to-noise ratio of the external magnetic field. The invention adds a detachable rotating sleeve to the magnetoresistive sensor (14) to realize signal-to-noise ratio measurement of external magnetic fields while being structural simple and small in size, thereby reducing process complexity, and having a low cost.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

16.

CAPILLARY CHANNEL ENVIRONMENTAL SENSOR AND PREPARATION METHOD THEREFOR

      
Numéro d'application CN2021087542
Numéro de publication 2021/209011
Statut Délivré - en vigueur
Date de dépôt 2021-04-15
Date de publication 2021-10-21
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Jin, Insik
  • Qi, Bin
  • Xue, Songsheng

Abrégé

Disclosed in the present invention are a capillary channel environmental sensor and a preparation method therefor. The capillary channel environmental sensor comprises a transmission cavity and at least one capillary channel, the cross sectional area of the transmission cavity being greater than the cross sectional area of the capillary channel, and one end of the capillary channel being in communication with the transmission cavity. An elastic transmission diaphragm is provided between the transmission diaphragm and an external measurement environment. A positioned droplet is provided in the interior of the capillary channel, the positioned droplet being in tight contact with the inner walls of the capillary channel and the positioned droplet being in tight contact with a transmission medium. By means of a transmission cavity and a capillary channel that are connected to one another, and by means of the cross sectional area of the transmission cavity being larger than the cross sectional area of the capillary channel, differences in volume between the transmission cavity and the capillary channel are used to transform a small displacement in a region of large volume into a large displacement in a region of small volume. Because a positioned droplet is provided in the capillary channel, and because the capillary channel environmental sensor comprises a magnetism-sensitive induction component, the magnetism-sensitive induction component causes, on the basis of movement of the positioned droplet, the change in displacement to pass through an intermediate variable to implement high-sensitivity and low-power detection.

Classes IPC  ?

  • G01D 5/14 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension

17.

MEMS ENVIRONMENTAL SENSOR AND PREPARATION METHOD THEREFOR

      
Numéro d'application CN2021087504
Numéro de publication 2021/209004
Statut Délivré - en vigueur
Date de dépôt 2021-04-15
Date de publication 2021-10-21
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Jin, Insik
  • Qi, Bin
  • Xue, Songsheng

Abrégé

Disclosed in the present invention are a MEMS environmental sensor and a preparation method therefor. A transmission cavity is provided in a transmission substrate of the MEMS environmental sensor, and a transmission medium is located inside the transmission cavity. The surface area of a reception opening in the transmission cavity is larger than the surface area of a release opening. An elastic transmission membrane is provided on the surface of the reception opening, and an elastic pressure membrane is provided on the surface of the release opening. A bearing cavity is provided in the bearing substrate, a magnetism-sensitive induction element is at least positioned inside the bearing cavity, and the bearing cavity at least partially overlaps with the release opening. The surface area of the reception opening in the transmission cavity is larger than the surface area of the release opening, and on the basis of Pascal's principle, differences in the volume of the transmission cavity are used to transform a small displacement in an region of large volume into a large displacement in a region of small volume. In addition, because the release opening and the bearing cavity at least partially overlap, and a magnetism-sensitive induction element is arranged in the bearing cavity, the change in displacement passes through an intermediate variable, such as a change in a magnetic field, to be converted into a change in electrical resistance, implementing high-sensitivity and low-power detection.

Classes IPC  ?

  • G01D 5/14 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension
  • B81B 7/02 - Systèmes à microstructure comportant des dispositifs électriques ou optiques distincts dont la fonction a une importance particulière, p.ex. systèmes micro-électromécaniques (SMEM, MEMS)
  • B81C 1/00 - Fabrication ou traitement de dispositifs ou de systèmes dans ou sur un substrat

18.

MAGNETIC PROBE-BASED CURRENT MEASUREMENT DEVICE, AND MEASUREMENT METHOD

      
Numéro d'application CN2021082698
Numéro de publication 2021/190556
Statut Délivré - en vigueur
Date de dépôt 2021-03-24
Date de publication 2021-09-30
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Qu, Pin
  • Xue, Songsheng
  • Wang, Huijuan
  • Liu, Zongxin

Abrégé

A magnetic probe-based current measurement device and a measurement method. The device comprises: a conductor (100) for a current under test, a magnetic probe, a magnetic bias structure (300, 300a, 300b), and a programmable chip (400). The conductor (100) has a first axis (01), a second axis (02), and a third axis (03). The conductor (100) is provided with through holes (101, 101a, 101b, 101c). The direction of the through holes (101, 101a, 101b, 101c) are parallel to the third axis (03). Vertical projections of the through holes (101, 101a, 101b, 101c) on a first cross section are symmetric about the first axis. At least one of the through holes (101, 101a, 101b, 101c) has a center position located on the first axis (01); and/or every pair of the through holes (101, 101a, 101b, 101c) have center positions that are symmetric about the first axis (01). The magnetic probe is provided within the through holes (101, 101a, 101b, 101c), and is electrically connected to the programmable chip (400). A sensing center position of the magnetic probe is located on the first cross section. A vertical projection of the magnetic probe on the first cross section is symmetric about the first axis (01). The magnetic bias structure (300, 300a, 300b) is provided within the through holes (101, 101a, 101b, 101c). A magnetization direction (301) of the magnetic bias structure (300, 300a, 300b) is perpendicular to a sensing direction (2011) of the magnetic probe. The device has advantages of having a compact size, high measurement accuracy, and high adaptability.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe
  • G01R 19/32 - Compensation des variations de température
  • G01R 15/20 - Adaptations fournissant une isolation en tension ou en courant, p.ex. adaptations pour les réseaux à haute tension ou à courant fort utilisant des dispositifs galvano-magnétiques, p.ex. des dispositifs à effet Hall

19.

GAIN-CONTROLLABLE MAGNETORESISTIVE ANALOG AMPLIFIER

      
Numéro d'application CN2021076124
Numéro de publication 2021/164629
Statut Délivré - en vigueur
Date de dépôt 2021-02-09
Date de publication 2021-08-26
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Zhou, Zhimin
  • Deak, James Geza

Abrégé

A gain-controllable magnetoresistive analog amplifier. The amplifier comprises: a substrate (1) located on an X-Y plane; an output signal magnetoresistive sensor (34) located on the substrate (1); and an input signal coil (2) and a gain adjustment coil (5). The input signal coil (2) and the gain adjustment coil (5) are respectively located on two side surfaces of the output signal magnetoresistive sensor (34); the gain adjustment coil (5) is used for inputting a gain signal and generating a gain magnetic field, so that the gain magnetic field acts on a magnetization direction of a free layer of the output signal magnetoresistive sensor (34) to adjust the slope of a resistance-input magnetic field transfer curve of the output signal magnetoresistive sensor (34); the input signal coil (2) is used for inputting a current signal and generating an input magnetic field, so that the input magnetic field acts on a magnetization direction of a pinned layer of the output signal magnetoresistive sensor (34) to control the gain signal to adjust a gain factor of an output signal after the current signal passes through the output signal magnetoresistive sensor (34). The magnetoresistive analog amplifier achieves isolation between input and output signals and controllable gains.

Classes IPC  ?

  • H03F 9/00 - Amplificateurs magnétiques
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

20.

LINEAR DISPLACEMENT ABSOLUTE POSITION ENCODER

      
Numéro d'application CN2021076130
Numéro de publication 2021/164632
Statut Délivré - en vigueur
Date de dépôt 2021-02-09
Date de publication 2021-08-26
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Guo, Haiping
  • Li, Haochen
  • Shen, Weifeng
  • Xue, Songsheng

Abrégé

Disclosed is a linear displacement absolute position encoder (10) used for measuring displacement of a tested apparatus, the linear displacement absolute position encoder (10) comprising a base (100), a magneto-resistance sensor array (300), an encoding strip (200) and a back magnet, wherein the encoding strip (200) is fixed on the base (100) and extends in the direction of a rail of the tested apparatus; the encoding strip (200) is a magnetic material block having a recess and a protrusion for identifying encoding information of different positions; the magneto-resistance sensor array (300) is arranged between the encoding strip (200) and the back magnet in a non-contact manner; the back magnet is used for generating a non-uniform magnetic field around the encoding strip (300) so as to magnetize the encoding strip (200); and the magneto-resistance sensor array (300) is used for acquiring the position encoding information of the coding strip (200) by detecting magnetic field information of the encoding strip (200). The encoder (10) can achieve the monitoring of long-distance positions and is low in cost.

Classes IPC  ?

  • G01D 5/245 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques produisant des impulsions ou des trains d'impulsions utilisant un nombre variable d'impulsions dans un train
  • G01B 7/00 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques

21.

MAGNETORESISTIVE SENSOR WITH HARMONIC WIDENED LINEAR RANGE

      
Numéro d'application CN2021070518
Numéro de publication 2021/139695
Statut Délivré - en vigueur
Date de dépôt 2021-01-06
Date de publication 2021-07-15
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

0iisipii0jjSjpjjj]. Linear parts and nonlinear harmonic parts of R-H feature curves that characterize the push magnetoresistive sensing units and the pull magnetoresistive sensing units are superimposed, so that the linear range of the multi-push-pull magnetoresistive sensing bridge is greater than the linear range of the standard push-pull linear magnetoresistive sensor.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

22.

HYDROGEN SENSOR BASED ON ELECTRICAL ISOLATION MAGNETIC RESISTANCE STRESS SENSITIVE ELEMENT

      
Numéro d'application CN2020123946
Numéro de publication 2021/083137
Statut Délivré - en vigueur
Date de dépôt 2020-10-27
Date de publication 2021-05-06
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed is a hydrogen sensor based on an electrical isolation magnetic resistance stress sensitive element, the hydrogen sensor comprising a deformable substrate (1); a magnetic resistance stress sensor bridge (2) located on the deformable substrate (1), an electrical isolation layer (3) covering the magnetic resistance stress sensor bridge (2), and a magnetic shielding layer (4) located on the electrical isolation layer (3); and a hydrogen sensitive layer (5) located above the deformable substrate (1), wherein an orthographic projection of the hydrogen sensitive layer (5) on the plane where the deformable substrate (1) is located covers the electrical isolation layer (3), the hydrogen sensitive layer (5) is used for adsorbing or desorbing hydrogen to generate expansion or contraction deformation and cause a stress change of the deformable substrate (1), and the magnetic resistance stress sensor bridge (2) is used for measuring a hydrogen concentration according to the stress change of the deformable substrate (1). Various performances of the hydrogen sensor are improved.

Classes IPC  ?

  • G01N 27/72 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant des variables magnétiques

23.

MAGNETIC SENSING LEVEL GAUGE

      
Numéro d'application CN2020109715
Numéro de publication 2021/036859
Statut Délivré - en vigueur
Date de dépôt 2020-08-18
Date de publication 2021-03-04
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Qi, Bin
  • Xue, Songsheng

Abrégé

A magnetic sensing level gauge, being installed on a side wall of a material storage container. The magnetic sensing level gauge comprises: a magnetic displacement assembly (101) used to generate, according to a level of a material in the material storage container, a mechanical displacement with respect to the side wall of the material storage container; a magnetic sensing assembly (2) comprising a protective housing (108) and a magnetic reluctance chip (103) and a processing module (2a) located within the protective housing (108). The protective housing (108) is fixed on the side wall of the material storage container. The magnetic reluctance chip (103) is located at a side of the processing module (2a) facing the magnetic displacement assembly (101). The magnetic sensing assembly (2) is used to sense a magnetic field signal of the magnetic displacement assembly (101) and determine, according to the magnetic field signal, the level of the material in the material storage container. The magnetic displacement assembly (101) generates the mechanical displacement according to the level of the material, and a magnetic reluctance structure senses a magnetic field change of the magnetic displacement assembly (101) to determine the level of the material accordingly. The magnetic sensing level gauge has advantages of low power consumption, high sensitivity, structural simplicity, and a low cost, thereby being applicable in solid and liquid material measurement.

Classes IPC  ?

  • G01F 23/22 - Indication ou mesure du niveau des liquides ou des matériaux solides fluents, p.ex. indication en fonction du volume ou indication au moyen d'un signal d'alarme en mesurant des variables physiques autres que les dimensions linéaires, la pression ou le poids, selon le niveau à mesurer, p.ex. par la différence de transfert de chaleur de vapeur ou d'eau

24.

HYDROGEN GAS SENSOR BASED ON ELECTRICALLY ISOLATED TUNNEL MAGNETORESISTIVE SENSITIVE ELEMENT

      
Numéro d'application CN2020109816
Numéro de publication 2021/036867
Statut Délivré - en vigueur
Date de dépôt 2020-08-18
Date de publication 2021-03-04
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James, Geza
  • Zhou, Zhimin

Abrégé

Provided is a hydrogen gas sensor based on an electrically isolated tunnel magnetoresistive sensitive element. The hydrogen gas sensor comprises: a substrate (9) located on an X-Y plane, a tunnel magnetoresistive sensor (2) located on the substrate (9), and a hydrogen sensitive layer (1) located on the tunnel magnetoresistive sensor (2). The hydrogen sensitive layer (1) and the tunnel magnetoresistive sensor (2) are electrically isolated from each other. The hydrogen sensitive layer (1) includes a multi-layer thin film structure formed by a palladium metal layer (1-1) and ferromagnetic layers (1-3), wherein the palladium metal layer (1-1) is used for adsorbing hydrogen in the air to cause a change in the deflection angle of an anisotropic magnetic field of each of the ferromagnetic layers (1-3) in an X-axis direction on an X-Z plane. The tunnel magnetoresistive sensor (2) is used for sensing a magnetic field signal of the hydrogen sensitive layer (1) and determining hydrogen concentration information according to the magnetic field signal. The hydrogen gas sensor ensures measurement safety.

Classes IPC  ?

  • G01N 27/74 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant des variables magnétiques des fluides

25.

HIGH-SENSITIVITY MAGNETORESISTIVE ACOUSTIC WAVE SENSOR AND ARRAY DEVICE

      
Numéro d'application CN2020109764
Numéro de publication 2021/036861
Statut Délivré - en vigueur
Date de dépôt 2020-08-18
Date de publication 2021-03-04
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Qi, Bin
  • Xue, Songsheng

Abrégé

A high-sensitivity magnetoresistive acoustic wave sensor and an array device. The high-sensitivity magnetoresistive acoustic wave sensor comprises a protective tube shell (106), a magnetic vibration assembly (101) and a magnetoresistive chip (102) located inside the protective tube shell (106). The protective tube shell (106) comprises at least one opening which is covered by the magnetic vibration assembly (101). The plane where the magnetoresistive chip (102) is located is perpendicular to the plane where the magnetic vibration assembly (101) is located, and the sensitive direction of the magnetoresistive chip (102) is located in the plane where the magnetoresistive chip (102) is located, and is perpendicular to or parallel to the plane where the magnetic vibration assembly (101) is located; alternatively, the plane where the magnetoresistive chip (102) is located is parallel to the plane where the magnetic vibration assembly (101) is located, and the sensitive direction of the magnetoresistive chip (102) is located in the plane where the magnetoresistive chip (102) is located and is parallel to the plane where the magnetic vibration assembly (101) is located. The high-sensitivity magnetoresistive acoustic wave sensor and the array device have the characteristics of high response speed, high sensitivity, good temperature stability, low power consumption, small size, large response frequency bandwidth, excellent low-frequency response and the like.

Classes IPC  ?

  • G01H 11/02 - Mesure des vibrations mécaniques ou des ondes ultrasonores, sonores ou infrasonores par détection des changements dans les propriétés électriques ou magnétiques par des moyens magnétiques, p.ex. la réluctance

26.

MAGNETIC SENSOR-BASED ELECTRONIC CIGARETTE

      
Numéro d'application CN2020088311
Numéro de publication 2020/224540
Statut Délivré - en vigueur
Date de dépôt 2020-04-30
Date de publication 2020-11-12
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Guo, Haiping
  • Yang, Kai
  • Li, Haochen
  • Shen, Weifeng
  • Xue, Songsheng

Abrégé

A magnetic sensor-based electronic cigarette, comprising a movable magnet (1), a stationary magnet (2), a magnetic sensor (3), and an electronic cigarette body (7); the electronic cigarette body (7) comprises a mouthpiece (8) and a cigarette channel (100) in communication with the mouthpiece (8); the movable magnet (1) is slidably provided in the cigarette channel (100); both the stationary magnet (2) and the magnetic sensor (3) are mounted on the electronic cigarette body (7); a limiting member is provided between the stationary magnet (2) and the movable magnet (1) and is used for limiting a gap between the movable magnet (1) and the stationary magnet (2); the magnetic sensor (3) is used for measuring the magnetic field strength of the movable magnet (1); when detecting that the magnetic field strength of the movable magnet (1) reaches a set value, the magnetic sensor (3) triggers a circuit between a heating wire and a battery to be conducted. The present invention solves the problem in existing electronic cigarettes that the contamination, by e-liquid, of a pressure-sensitive element of a pressure sensor affects normal operation of the electronic cigarettes.

Classes IPC  ?

  • A24F 47/00 - Articles pour fumeurs non prévus ailleurs

27.

MAGNETORESISTIVE INERTIAL SENSOR CHIP

      
Numéro d'application CN2020081618
Numéro de publication 2020/200076
Statut Délivré - en vigueur
Date de dépôt 2020-03-27
Date de publication 2020-10-08
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Qi, Bin
  • Feng, Lixian
  • Guo, Haiping
  • Shen, Weifeng
  • Xue, Songsheng

Abrégé

Disclosed is a magnetoresistive inertial sensor chip, comprising a substrate (101), a vibrating diaphragm (102, 102'), an inductive magnetoresistor (105) and at least one permanent magnetic thin film (108), wherein the vibrating diaphragm (102, 102') covers a side surface of the substrate (101); the inductive magnetoresistor (105) and the permanent magnetic thin film (108) are arranged on a surface of the vibrating diaphragm (102, 102') away from the substrate (101); a contact electrode (106) is also provided on the surface of the vibrating diaphragm (102, 102') away from the substrate (101); the inductive magnetoresistor (105) is connected to the contact electrode (106) through a connecting lead (104); the substrate (101) comprises a cavity (103) formed through etching; and either one or both of the inductive magnetoresistor (105) and the permanent magnetic thin film (108) are arranged in a vertical projection area of the cavity (103) in the vibrating diaphragm (102, 102'). A magnetic field generated by the permanent magnetic thin film (108) of the magnetoresistive inertial sensor chip changes in a sensitivity direction component of the inductive magnetoresistor (105), so that the resistance value of the inductive magnetoresistor (105) changes, thereby causing a change in an output electrical signal. The magnetoresistive inertial sensor chip uses the high-sensitivity and high-frequency response characteristics of a magnetoresistor to improve output signal strength and frequency response, thereby facilitating the detection of weak pressure, vibration or acceleration and high-frequency vibration.

Classes IPC  ?

  • G01D 5/16 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance

28.

MAGNETIC ISOLATOR

      
Numéro d'application CN2020078993
Numéro de publication 2020/187127
Statut Délivré - en vigueur
Date de dépôt 2020-03-12
Date de publication 2020-09-24
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Guo, Haiping
  • Shen, Weifeng
  • Xue, Songsheng

Abrégé

Disclosed is a magnetic isolator, comprising a substrate, a magnetic field generation unit, a magnetic field sensing unit, a shielding layer, and an isolation dielectric. The magnetic field generation unit comprises a current conductor, and the current conductor is arranged to extend along a first direction at one side of the substrate. The magnetic field sensing unit is arranged on the same side of the substrate as the current conductor and located at a lateral side of the current conductor, and a distance between the current conductor and the magnetic field sensing unit is greater than 0 along a second direction, wherein the first direction is perpendicular to the second direction. The isolation dielectric is arranged between the current conductor and the magnetic field sensing unit. Arranging the isolation dielectric between the current conductor and the magnetic field sensing unit at the distance in the second direction achieves an electrical isolation effect, thereby improving isolation strength, and simplifying a process. The shielding layer is capable of absorbing an external interference magnetic field, thereby further improving a signal-to-noise ratio.

Classes IPC  ?

  • G01R 15/20 - Adaptations fournissant une isolation en tension ou en courant, p.ex. adaptations pour les réseaux à haute tension ou à courant fort utilisant des dispositifs galvano-magnétiques, p.ex. des dispositifs à effet Hall

29.

DIGITAL LIQUID LEVEL SENSOR BASED ON MAGNETO-RESISTIVE SENSOR CROSS-POINT ARRAY

      
Numéro d'application CN2020076803
Numéro de publication 2020/177595
Statut Délivré - en vigueur
Date de dépôt 2020-02-26
Date de publication 2020-09-10
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James, Geza
  • Visvanathan, Elamparithi

Abrégé

Disclosed is a digital liquid level sensor based on a magneto-resistive sensor cross-point array, comprising: a plurality of TMR magnetic sensor chips, a microcontroller, a row decoder and a column decoder. The microcontroller is electrically connected to the row decoder and the column decoder; the TMR magnetic sensor chips comprise a plurality of MTJ elements, diodes are connected between each row of MTJ elements and a row lead or a column lead, and the TMR magnetic sensor chips are addressed by means of data decoded by the row decoder and the column decoder and on the basis of the equation Address = m + [Mx(n-1)], Address representing an address value, and m representing the value of a current row; and the microcontroller is used for scanning the addresses of the TMR magnetic sensor chips and finding the address of an MTJ element in the highest activation state, converting the address value into a liquid level value in a linear proportional relationship therewith, and transmitting the liquid level value to an output interface. The digital liquid level sensor further comprises a permanent magnet and a protective tube. The invention greatly minimizes the power consumption of a sensor element by supplying power only to one sensor chip element each time.

Classes IPC  ?

  • G01F 23/72 - Indication ou mesure du niveau des liquides ou des matériaux solides fluents, p.ex. indication en fonction du volume ou indication au moyen d'un signal d'alarme par des flotteurs du type à flotteur libre en utilisant des moyens d'indication actionnés magnétiquement
  • G01F 23/24 - Indication ou mesure du niveau des liquides ou des matériaux solides fluents, p.ex. indication en fonction du volume ou indication au moyen d'un signal d'alarme en mesurant des variables physiques autres que les dimensions linéaires, la pression ou le poids, selon le niveau à mesurer, p.ex. par la différence de transfert de chaleur de vapeur ou d'eau en mesurant les variations de résistance de résistances électriques produites par contact avec des fluides conducteurs

30.

MAGNETIC NAVIGATION SENSOR AND MAGNETIC NAVIGATION SYSTEM

      
Numéro d'application CN2019125807
Numéro de publication 2020/135137
Statut Délivré - en vigueur
Date de dépôt 2019-12-17
Date de publication 2020-07-02
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Chen, Jinliang
  • Li, Dongfeng
  • Qian, Chen
  • Guo, Haiping

Abrégé

Disclosed are a magnetic navigation sensor and a magnetic navigation system. The magnetic navigation sensor comprises a plurality of tunnel magnetoresistance (TMR) sensor elements (201) and a control processing system (400); the plurality of TMR sensor elements (201) being arranged along the width extension direction of a magnetic tape at equal vertical distances from the plane where the magnetic tape is located; an input end of the control processing system (400) is electrically connected with output ends of the plurality of TMR sensor elements (201), and the control processing system (400) is used for processing output signals of the plurality of TMR sensor elements (201). The described system has larger detection width, higher flight height, and extremely high absolute position accuracy and position resolution ratio, and is very suitable for industrial application.

Classes IPC  ?

  • G01C 21/00 - Navigation; Instruments de navigation non prévus dans les groupes
  • G01R 33/07 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs à effet Hall

31.

MAGNETORESISTANCE ELEMENT-BASED HYDROGEN SENSOR AND HYDROGEN DETECTING METHOD THEREOF

      
Numéro d'application CN2019118051
Numéro de publication 2020/103740
Statut Délivré - en vigueur
Date de dépôt 2019-11-13
Date de publication 2020-05-28
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Liu, Xuanzuo

Abrégé

A magnetoresistance element-based hydrogen sensor and a hydrogen detecting method thereof. The hydrogen sensor comprises a substrate (1) located in an X-Y plane, and magnetoresistance sensing units (2) and magnetoresistance reference units (3) located on the substrate (1); the magnetoresistance sensing units (2) are electrically connected to form a sensing arm (4), and the magnetoresistance reference units (3) are electrically connected to form a reference arm (5); the sensing arm (4) and the reference arm (5) are electrically connected to form a reference bridge structure (6); the magnetoresistance sensing units (2) and the magnetoresistance reference units (3) are AMR units having the same magnetic multilayer thin film structure, or GMR spin valves or GMR multilayer film stacks having the same magnetic multilayer thin film structure; Pd layers respectively cover the magnetoresistance sensing units (2) and the magnetoresistance reference units (3), and a passivation insulating layer (7) covers the Pd layer of the magnetoresistance reference unit (3); the magnetic multilayer thin film structure is made into a serpentine strip circuit by a semiconductor micromachining process. The hydrogen detecting method comprises: the hydrogen sensor is placed in a gas environment containing hydrogen, and the Pd layers covering the magnetoresistance sensing units (2) absorb hydrogen to change the perpendicular magnetic anisotropy of ferromagnetic layers (13) in the magnetic multilayer thin film structures of the magnetoresistance sensing units (2), so that the magnetic moment of the ferromagnetic layers (13) rotates to produce a change in the magnetoresistance value positively correlated to the hydrogen concentration; obtain a change in the output voltage value of the reference bridge structure (6) according to the change of the magnetoresistance value, and detect the hydrogen concentration according to the change in the output voltage value of the reference bridge structure (6).

Classes IPC  ?

  • G01N 27/12 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant l'impédance en recherchant la résistance d'un corps solide dépendant de la réaction avec un fluide

32.

NONDESTRUCTIVE DETECTION DEVICE FOR DETECTING DAMAGE TO STEEL WIRE ROPE

      
Numéro d'application CN2019106138
Numéro de publication 2020/057491
Statut Délivré - en vigueur
Date de dépôt 2019-09-17
Date de publication 2020-03-26
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Zheng, Kuohai
  • Li, Junyong

Abrégé

Disclosed is a nondestructive detection device for detecting damage to a steel wire rope. A bushing (3) limits a lower shell (1) and an upper shell (4) by means of a limiting groove, the lower shell (1) is connected to the upper shell (4) via an opening and closing structure, an air bag (9) is wrapped around the bushing (3), a PCB (10) is fixed on the upper shell (4) or the lower shell (1), and the PCB (10) is connected to a guide wheel (16) via an electrical connector (5). A magneto-resistance sensor array is arranged inside the air bag (9) and is uniformly arranged in a circumferential direction of the bushing (3), a steel wire rope (15) passes through the magneto-resistance sensor array, and the steel wire rope (15) moves to drive the guide wheel (16) to rotate and triggers the acquisition of a command. The guide wheel (16) is provided with a position coder, wherein same is used to calculate a relative position of movement of the steel wire rope. The PCB (10) is connected to a single chip microcomputer via a peripheral interface, and the single chip microcomputer is used to calculate a differential signal of N adjacent magneto-resistance sensors and to determine whether the steel wire rope is damaged. The nondestructive detection device improves the abilities of detecting a broken wire, a narrowed rope diameter and deep damage of the steel wire rope.

Classes IPC  ?

  • G01N 27/82 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant des variables magnétiques pour rechercher la présence des criques

33.

RESETABLE BIPOLAR SWITCH SENSOR

      
Numéro d'application CN2019073730
Numéro de publication 2019/149194
Statut Délivré - en vigueur
Date de dépôt 2019-01-29
Date de publication 2019-08-08
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed is a resettable bipolar switch sensor, comprising: a bipolar hysteresis switch sensor, a reset coil, an ASIC switch circuit and a reset power circuit. The bipolar hysteresis switch sensor comprises: a substrate and a magnetoresistance sensing arm located on the substrate, wherein the magnetoresistance sensing arm is of a two-port structure formed from one or more magnetoresistance sensing unit strings arranged in series, parallel or series and parallel. The magnetization direction of a free layer of a TMR magnetoresistance sensing unit is only determined by an anisotropic field Hk, and together with the sensitive direction of a magnetic field and the magnetization direction of a reference layer can all be in an N or S direction. The reset coil is located between the substrate and the magnetoresistance sensing unit, or is located on a lead frame below the substrate. The direction of each reset magnetic field is one of the N or S direction. The ASIC switch circuit comprises a bias function module, a reading function module and an output function module. The reset power circuit is connected to the reset coil. The present invention has the characteristics of low power consumption, a small size and being able to preset the initial state of the switch sensor.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

34.

THREE-AXIS PRE-MODULATED LOW NOISE MAGNETORESISTIVE SENSOR

      
Numéro d'application CN2019073734
Numéro de publication 2019/149197
Statut Délivré - en vigueur
Date de dépôt 2019-01-29
Date de publication 2019-08-08
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A three-axis pre-modulated low noise magnetoresistive sensor, comprising an X-axis magnetoresistive sensor (100), a Y-axis magnetoresistive sensor (110), and a Z-axis magnetoresistive sensor (120), wherein the X, Y, and Z-axis magnetoresistive sensors comprise X, Y, and Z-axis magnetoresistive sensing unit arrays, X, Y, and Z-axis soft magnetic flux concentrator arrays, and X, Y, and Z-axis pre-modulated wire arrays respectively; the X, Y, and Z-axis magnetoresistive sensing unit arrays are separately electrically connected to X, Y and Z-axis magnetoresistive sensing bridges; the X, Y and Z-axis pre-modulated wire arrays are separately electrically connected to two-port X, Y and Z-axis excitation coils; and when measuring external magnetic fields, the two-port X, Y and Z-axis excitation coils separately traverse an f-frequency high-frequency alternating current excitation power supply, and the X-axis magnetoresistive sensor (100), the Y-axis magnetoresistive sensor (110) and the Z-axis magnetoresistive sensor (120) output harmonic signal components that have a frequency of 2f, which are demodulated to obtain X, Y and Z-axis low noise signals. The present invention has the advantages of a simple structure, a small size and low noise.

Classes IPC  ?

  • G01D 5/16 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

35.

MAGNETIC HYSTERESIS LASER PROGRAMMED SINGLE SLICE TMR SWITCH SENSOR

      
Numéro d'application CN2018120902
Numéro de publication 2019/114790
Statut Délivré - en vigueur
Date de dépôt 2018-12-13
Date de publication 2019-06-20
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A magnetic hysteresis laser programmed single slice tunnel magneto resistance (TMR) switch sensor, comprising: a magnetic hysteresis switch sensor (1), comprising: a substrate (5), and a magneto resistance sensor arm (6) that is located on the substrate (5), wherein a magneto resistance sensor unit (8) is a TMR sensor unit, and the magnetization direction and the magnetic-field sensitive direction of a free layer (170) and the magnetization direction of a reference layer (150) are all along the N or S direction; when the magnetization intensity of the free layer (170) is determined by only an anisotropic field Hk, a bipolar magnetic hysteresis switch sensor is formed, or when determined jointly by the anisotropic field Hk and a bias field Hb in the N or S direction, an S or N unipolar magnetic hysteresis switch sensor or an omni-polar magnetic hysteresis switch sensor is formed, the magnetization direction of an anti-ferromagnetic layer (140) being written by using a laser programming process; and an application-specific integrated circuit (ASIC) (2), comprising a bias function module, a read function module, and an output function module, the bias function module being connected to a power source end, and the read function module being connected to a signal output end, while the output function module is connected to the read function module. The described single slice TMR switch sensor has advantages of low power consumption, a small size, and easy operations.

Classes IPC  ?

  • H03K 17/95 - Commutateurs de proximité utilisant un détecteur magnétique

36.

MONOLITHIC-CHIP AND HIGH-SENSITIVITY TYPE MAGNETO-RESISTOR LINEAR TRANSDUCER

      
Numéro d'application CN2018085479
Numéro de publication 2018/202085
Statut Délivré - en vigueur
Date de dépôt 2018-05-03
Date de publication 2018-11-08
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

The present invention discloses a monolithic-chip and high-sensitivity type magneto-resistor linear transducer, which comprises a substrate located in the X-Y plane, a soft magnetic flux concentrator array located on the substrate, and +X and- X magneto-resistor sensing unit arrays located above or below the soft magnetic flux concentrator array, wherein, the soft magnetic flux concentrator array comprises a plurality of soft magnetic flux concentrators, and a gap is formed between two adjacent soft magnetic flux concentrators. Each of the +X and- X magneto-resistor sensing unit arrays respectively comprises +X and- X magneto-resistor sensing units located in the gap. The +X and- X magneto-resistor sensing units are electrically connected to form a push-pull type X-axis magnetic resistor sensor, and the magneto-resistor sensing units, having the same magnetic field sensitive direction, are arranged adjacently. The magneto-resistor sensing units are all MTJ magneto-resistor units and have the same magnetic multi-layer film structure. The laser-programmed magnetic annealing is conducted, and laser spots scan the magneto-resistor sensing unit arrays along the long axis direction of the gap. The invention has the advantages of small size, high precision and low power consumption.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

37.

LOW-NOISE MAGNETORESISTIVE SENSOR HAVING MULTI-LAYER MAGNETIC MODULATION STRUCTURE

      
Numéro d'application CN2018084439
Numéro de publication 2018/196785
Statut Délivré - en vigueur
Date de dépôt 2018-04-25
Date de publication 2018-11-01
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A low-noise magnetoresistive sensor having a multi-layer magnetic modulation structure, comprising: a substrate (1) and a multi-layer magnetic modulation structure array which is located on the substrate (1); a multi-layer magnetic modulation structure comprises an upper layer and lower layer of a soft magnetic material as well as an intermediate metal conductive layer; head and tail ends of multi-layer magnetic modulation structures (21, 22, ..., 2N) are sequentially connected by means of conductive strips (31, 32, ..., 3N-1) to form a two-port excitation coil, adjacent multi-layer magnetic modulation structures having opposite current directions; a magnetoresistive sensing unit is located directly above or directly below a multi-layer magnetic modulation structure and between a center of a gap, the sensitive direction of the magnetoresistive sensing unit being perpendicular to the long-axis direction of the multi-layer magnetic modulation structure; an array of magnetoresistive sensing units (41, 42, ..., 4N-2) is electrically connected to form a magnetoresistive sensor, and is connected to a sensor pad (7, 8); when measuring an external magnetic field, an excitation current is inputted into the excitation coil, and the voltage or current signal of the magnetoresistive sensor is demodulated and output as a low-noise voltage signal. The low-noise magnetoresistive sensor has the advantages of a compact structure, high sensitivity, low noise, and a small size.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

38.

MAGNETORESISTIVE LINEAR POSITION SENSOR

      
Numéro d'application CN2018084750
Numéro de publication 2018/196835
Statut Délivré - en vigueur
Date de dépôt 2018-04-27
Date de publication 2018-11-01
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Liu, Mingfeng
  • Xue, Songsheng

Abrégé

A magnetoresistive linear position sensor, comprising a permanent magnet (1) and a magnetoresistive sensor chip (2); one of the permanent magnet (1) and the magnetoresistive sensor chip (2) is fixed; the permanent magnet (1) and the magnetoresistive sensor chip (2) are in relative motion along a fixed motion path; the sensitive direction of the magnetoresistive sensor chip (2) is a direction perpendicular to the fixed motion path; the magnetoresistive sensor chip (2) senses the change in the magnetic field caused by the change in the relative positions of the magnetoresistive sensor chip (2) and the permanent magnet (1), outputs a voltage signal changing with the position, and converts same into position information by means of signal processing.

Classes IPC  ?

  • G01D 5/16 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/022 - Mesure du gradient
  • G01B 7/14 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour mesurer la distance ou la marge entre des objets ou des ouvertures espacés

39.

PREMODULATED MAGNETORESISTIVE SENSOR

      
Numéro d'application CN2018081914
Numéro de publication 2018/184565
Statut Délivré - en vigueur
Date de dépôt 2018-04-04
Date de publication 2018-10-11
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A premodulated magnetoresistive sensor provided with a substrate (1) on plane XY. Magnetoresistive sensing elements (3), a modulator, electrical connectors (4), an electrically insulating layer (13), and bonding solder pads (6, 7, 8, and 9) are deposited on the substrate (1). The sensing direction of the magnetoresistive sensing elements (3) is parallel to the X axis. The magnetoresistive sensing elements (3) are connected in series into a magnetoresistive sensing element string. The modulator is constituted by multiple modulator rods (2). The modulator rods (2) are constituted by a three-layered structure of an FM1 layer (21), an NM layer (22), and an FM2 layer (23). The extremities of the modulator rods (2) are electrically connected therebetween to form zig-zagging current paths. The electrically insulating layer (13) is provided between the modulator rods (2) and the magnetoresistive sensing elements (3). The electrically insulating layer (13) separates the modulator rods (2) from the magnetoresistive sensing elements (3). By modulating a current, a modulated signal is ensured to be working in a linear area of the magnetoresistive sensor; furthermore, the magnetic permeability is altered by modulating a magnetic field, thus implementing noise suppression.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

40.

MAGNETIC SENSOR PACKAGING STRUCTURE WITH HYSTERESIS COIL

      
Numéro d'application CN2018079920
Numéro de publication 2018/171648
Statut Délivré - en vigueur
Date de dépôt 2018-03-22
Date de publication 2018-09-27
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Visvanathan, Elamparithi

Abrégé

Disclosed is a magnetic sensor packaging structure with a hysteresis coil, the structure comprising: a substrate (1), a sensor slice, a spiral hysteresis coil (2) arranged on the substrate (1), and wire bonding pads (4). Sensor bridge arms (3) are composed of magneto-resistance sensing elements; the sensor bridge arms (3) are deposited on the sensor slice; the sensor bridge arms (3) are electrically connected to form a magneto-resistance sensor bridge; the magneto-resistance sensor bridge is arranged on the hysteresis coil (2); a magnetic field generated by the spiral hysteresis coil (2) is collinear with a sensitive axis of the sensor bridge; and a magneto-resistance sensor bridge circuit is packaged on the substrate (1). By arranging the spiral hysteresis coil (2), larger currents can be borne thereby, a resistance value is smaller, and the hysteresis generated by a sensor in a hysteresis period is eliminated. In addition, the manufacturing process of the packaging structure is simple and the manufacturing cost thereof is low.

Classes IPC  ?

  • G01R 33/02 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques

41.

SINGLE-CHIP DOUBLE-AXIS MAGNETO-RESISTANCE ANGLE SENSOR

      
Numéro d'application CN2018076783
Numéro de publication 2018/153335
Statut Délivré - en vigueur
Date de dépôt 2018-02-14
Date de publication 2018-08-30
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A single-chip double-axis magneto-resistance angle sensor comprises a substrate (1) on an X-Y plane, and a magneto-resistance angle sensor (2) in a push-pull X axis and a magneto-resistance angle sensor (3) in a push-pull Y axis both located on the substrate. The magneto-resistance angle sensor (2) in a push-pull X axis comprises an X push arm and an X pull arm, and the magneto-resistance angle sensor (3) in a push-pull Y axis comprises a Y push arm and a Y pull arm, each of the X push arm, the X pull arm, the Y push arm and Y pull arm comprises at least one magneto-resistance angle sensing unit array. Magnetic field sensing directions of the magneto-resistance angle sensing unit arrays of the X push arm, the X pull arm, the Y push arm and the Y pull arm are along +X, -X, +Y and -Y directions respectively. Each magneto-resistance angle sensing unit (20) comprises a TMR/GMR spin valve of the same magnetic multi-layer film structure, a magnetization direction of an anti-ferromagnetic layer is obtained by laser program-control heating magnetic annealing, and a magnetic field attenuation layer can be deposited in the surface of the magneto-resistance angle sensing unit (20).

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/04 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant le principe du déclenchement périodique de flux

42.

MAGNETORESISTIVE SENSOR WAFER LAYOUT USED FOR LASER WRITING SYSTEM, AND LASER SCANNING METHOD

      
Numéro d'application CN2017101663
Numéro de publication 2018/050082
Statut Délivré - en vigueur
Date de dépôt 2017-09-13
Date de publication 2018-03-22
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed are a magnetoresistive sensor wafer layout used for a laser writing system, and a laser scanning method. The layout comprises a magnetoresistive multilayer film (1) arranged on a surface of a rectangular slice array and including an antiferromagnetic pinning layer (4), wherein antiferromagnetic pinning layers (4) of magnetoresistive sensing units are magnetically oriented and are directionally aligned by means of the laser writing system; the magnetoresistive sensing units are electrically connected into bridge arms; the bridge arms are electrically connected into a magnetoresistive sensor; magnetoresistive sensing units in slices are arranged into magnetoresistive orientation groups isolated by at least two spaces; in the magnetoresistive orientation groups, the antiferromagnetic pinning layers (4) of the magnetoresistive sensing units have the same angle of magnetic orientation; the angle of magnetic orientation is 0-360 degrees; the angles of magnetic orientation of two adjacent magnetoresistive orientation groups are different, and each magnetoresistive orientation group is adjacent to a magnetoresistive orientation group with the same angle of magnetic orientation in at least one adjacent slice. The layout can shorten a laser scanning process, and realize characteristics of in-situ single chip production of a push-pull type magnetoresistive sensor.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

43.

BALANCED MAGNETORESISTANCE FREQUENCY MIXER

      
Numéro d'application CN2017097933
Numéro de publication 2018/033125
Statut Délivré - en vigueur
Date de dépôt 2017-08-17
Date de publication 2018-02-22
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed in the present invention is a balanced magnetoresistance frequency mixer. The balanced magnetoresistance frequency mixer comprises a first spiral coil, a second spiral coil, a balanced bridge type magnetoresistance sensor, and a magnetic shielding layer. The first spiral coil and the second spiral coil are respectively located between the magnetic shielding layer and the balanced bridge type magnetoresistance sensor, the balanced bridge type magnetoresistance sensor comprises a magnetoresistance full bridge consisting of four magnetoresistance bridge arms and a magnetoresistance balanced arm connected to a power supply end of the magnetoresistance full bridge, the four magnetoresistance bridge arms in pairs are located in a first sub region and a second sub region having reverse current directions above or below the first spiral coil, the magnetoresistance balanced arm is located in a third sub region having the same current direction above or below the second spiral coil, a first frequency signal source is inputted through the first spiral coil, a second frequency signal source is inputted through the second spiral coil, and a frequency-mixing signal is outputted through a signal output end of the magnetoresistance full bridge. The frequency mixer has the characteristics: input signals and a power supply are mutually isolated, the linearity is good, and the structure is simple.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

44.

ANISOTROPIC MAGNETIC RESISTANCE AND CURRENT SENSOR WITHOUT SETTING AND RESETTING APPARATUS

      
Numéro d'application CN2017092284
Numéro de publication 2018/006879
Statut Délivré - en vigueur
Date de dépôt 2017-07-07
Date de publication 2018-01-11
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Shen, Weifeng
  • Xue, Songsheng
  • Feng, Lixian

Abrégé

An anisotropic magnetic resistance and current sensor without a setting and resetting apparatus, comprising a substrate (170). An exchange bias layer (160) is deposited on the substrate (170); the exchange bias layer (160) is constituted by an antiferromagnetic material; an AMR magnetic resistance layer (150) is deposited on the exchange bias layer (160); Barbey electrodes (140) are provided on the magnetic resistance layer (150); the exchange bias layer (160) and the AMR magnetic resistance layer (150) form a plurality of AMR magnetic resistance bars through a semi-conductor processing process; the Barbey electrodes (140) are arranged on each AMR magnetic resistance bar regularly; the AMR magnetic resistance bars are connected in series into an AMR magnetic resistor element; the AMR magnetic resistor element constitutes a Wheatstone bridge; an insulating layer (130) is deposited on the magnetic resistor element; a current conductor layer (120) is provided on the insulating layer (130); and an insulating protective layer (100) is deposited on the current conductor layer (120). The current sensor improves the sensitivity under a weak magnetic field, enlarges the linear operation range, and cancels a setting/resetting apparatus by utilizing the exchange coupling property between an antiferromagnetic layer and a magnetic resistance layer, thus reducing power consumption and costs.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • H01L 43/08 - Résistances commandées par un champ magnétique

45.

MAGNETORESISTIVE SENSOR HAVING COMPENSATING COIL

      
Numéro d'application CN2017087365
Numéro de publication 2017/211279
Statut Délivré - en vigueur
Date de dépôt 2017-06-07
Date de publication 2017-12-14
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s) Deak, James Geza

Abrégé

A magnetoresistive sensor having a compensating coil, comprising: a silicon substrate (1), a sequence of MR sensor units (6) disposed on the silicon substrate (1), a rectangular soft iron magnetic flux concentrator (4), a serpentine compensating coil (7), a connection circuit, and a pad (16); the sequence of MR sensor units (6) is connected to one another, forming a push-pull sensor bridge; the sequence of MR sensor units (6) is provided below the gap between any two adjacent soft iron magnetic flux concentrators (4); the serpentine compensating coil (7) has a positive electrode current area that passes through the sequence of MR sensor units (6) and a negative electrode current area that passes through the rectangular soft iron magnetic flux concentrator (4); the pad (16) connects the sensor bridge arm and the serpentine compensating coil (7) to an encapsulation structure. The magnetoresistive sensor also comprises a helix initialization coil; the helix initialization coil is disposed on an encapsulation substrate, and a sensor chip is disposed on the initialization coil for decreasing magnetic hysteresis. The magnetoresistive sensor is small in dimension and low in cost, enhances the dynamic range and linearity of the sensor, decreases magnetic hysteresis, and enables easier operation of magnetic field sensors in a closed loop mode.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

46.

MAGNETO-RESISTANCE SENSOR WITH ENCAPSULATION OF INITIALIZATION COIL

      
Numéro d'application CN2017079948
Numéro de publication 2017/177877
Statut Délivré - en vigueur
Date de dépôt 2017-04-10
Date de publication 2017-10-19
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhang, Xiaojun

Abrégé

A magneto-resistance sensor with encapsulation of an initialization coil, comprising an encapsulation structure, at least one set of sensor slices (5), a spiral initialization coil (4), a lead bonding pad (2), an ASIC-specific integrated circuit (3) and an encapsulation layer, wherein the spiral initialization coil (4) is arranged on a PCB substrate (1) of the encapsulation structure; each set of sensor slices (5) comprises two sensor slices (5); each sensor slice (5) comprises two sets of magneto-resistance sensing unit series, and the magneto-resistance sensing unit series located on the sensor slice (5) is connected to form a magneto-resistance sensing unit electrical bridge; the ASIC-specific integrated circuit (3) and the magneto-resistance sensing unit electrical bridge are electrically connected; the sensor slices (5) are located above the spiral initialization coil (4), and are respectively arranged surrounding the spiral initialization coil (4); and the lead bonding pad (2) and the ASIC-specific integrated circuit (3) are electrically connected. The sensor reduces the sensor hysteresis lag and offset generated due to the magnetic domain of a flux concentrator, is low in cost, and is easy to manufacture.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

47.

ANISOTROPIC MAGNETORESISTANCE (AMR) SENSOR NOT REQUIRING SET/RESET DEVICE

      
Numéro d'application CN2017079493
Numéro de publication 2017/173992
Statut Délivré - en vigueur
Date de dépôt 2017-04-05
Date de publication 2017-10-12
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Xue, Songsheng
  • Lei, Xiaofeng
  • Shen, Weifeng
  • Feng, Lixian

Abrégé

An anisotropic magnetoresistance (AMR) sensor (100) not requiring a set/reset device comprises a substrate (140), an exchange bias layer (130), an AMR layer (110), and barber-pole electrodes (122). The exchange bias layer (130) is deposited on the substrate (140), and the AMR layer (110) is deposited on the exchange bias layer (130). The AMR layer (110) is composed of multiple groups of AMR strips, and each group of AMR strips is composed of multiple AMR strips. The barber-pole electrodes (122) are arranged on each AMR strip in a regular pattern. The AMR sensor (100) of the present invention achieves coupling by using the exchange bias layer (130), without requiring a reset/set coil, thereby greatly reducing chip power consumption, simplifying the manufacturing process, increasing product yield, and reducing production costs.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

48.

HIGH-SENSITIVITY SINGLE-CHIP PUSH-PULL TYPE TMR MAGNETIC FIELD SENSOR

      
Numéro d'application CN2016104000
Numéro de publication 2017/076252
Statut Délivré - en vigueur
Date de dépôt 2016-10-31
Date de publication 2017-05-11
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A high-sensitivity single-chip push-pull type TMR magnetic field sensor (30) comprises a substrate (31) and two comb-shaped soft magnetic flux concentrators (36, 37) located on the substrate (31) and forming an interdigital structure. The comb-shaped soft magnetic flux concentrators (36, 37) respectively comprise N and N-1 rectangular comb teeth and corresponding comb seats, N being an integer greater than 1. Gaps are formed between comb teeth of one comb-shaped soft magnetic flux concentrator (36) and the comb seat of the other comb-shaped soft magnetic flux concentrator (37) in an X direction. Adjacent comb teeth form odd space gaps marked as 2m-1 and even space gaps marked as 2m in a +Y direction, m being an integer and 0

Classes IPC  ?

  • G01R 33/02 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

49.

HALF TURNING-OVER DUAL-AXIS MAGNETORESISTIVE SENSOR

      
Numéro d'application CN2016096830
Numéro de publication 2017/036352
Statut Délivré - en vigueur
Date de dépôt 2016-08-26
Date de publication 2017-03-09
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A half turning-over dual-axis magnetoresistive sensor (1, 5), comprising at least one set of slices (2, 2(1), 6, 6(1), 20, 20(1), 60, 60(1), 91, 92) arranged in an X-Y plane. Each set of slices comprises two slices, wherein the two slices are arranged in a 180-degree out-of-phase relationship in the X-Y plane. Each slice comprises two sets of magnetoresistive sensing unit strings (3, 4, 7, 8) having orthogonal magnetization directions of a ferromagnetic reference layer (13). Each of the magnetoresistive sensing unit strings (3, 4, 7, 8) is comprised of at least two magnetoresistive sensing units (31, 32, 41, 42, 71, 72, 81, 82, 21-24, 61-64). Also, the magnetoresistive sensing unit strings (3, 4, 7, 8) on the two slices are in electrical connection so as to form at least two single-axis push-pull type magnetoresistive sensing unit bridges having orthogonal magnetic field sensitive directions. Each of the push-pull type magnetoresistive sensing unit bridges comprises magnetoresistive sensing unit strings (3, 4, 7, 8) having opposite magnetization directions of the ferromagnetic reference layer (13) respectively arranged on two slices. The dual-axis magnetoresistive sensing unit bridges can be either linear magnetoresistive sensors or angular magnetoresistive sensors. The sensor of the present invention has the advantages of small number of slices, easy mounting position, simple structure and low power consumption.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

50.

MAGNETIC RESISTANCE RELAY

      
Numéro d'application CN2016094587
Numéro de publication 2017/025044
Statut Délivré - en vigueur
Date de dépôt 2016-08-11
Date de publication 2017-02-16
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Zhou, Zhimin
  • Deak, James Geza

Abrégé

A magnetic resistance relay (1) comprises a substrate (2), a magnetic field excitation coil (3), a magnetic resistance sensor (4) and an integrated circuit switch (5) which are disposed on the substrate, an excitation signal input electrode (6), an excitation signal output electrode (7), an external circuit input electrode (8) and an external circuit output electrode (9), a power input electrode (10), and a ground electrode (11). The two ends of the magnetic field excitation coil are respectively connected with the excitation signal input electrode and the excitation signal output electrode. The magnetic resistance sensor transmits output signals to the integrated circuit switch. The external circuit input electrode and the external circuit output electrode are connected with the integrated circuit switch. The power input ends and the ground ends of the magnetic resistance sensor and the integrated circuit switch are respectively connected with the power input electrode and the ground electrode. During working, an on/off control signal is input to the magnetic field excitation coil to cause the magnetic field excitation coil to generate an excitation magnetic field acting on the magnetic resistance sensor, and the integrated circuit switch receives the output signals of the magnetic resistance sensor to switch on/off the external circuit. The magnetic resistance relay is easy to operate, low in power consumption, small in size, and has a long life.

Classes IPC  ?

  • H01H 47/02 - Circuits autres que ceux appropriés à une application particulière du relais et prévue pour obtenir une caractéristique de fonctionnement donnée ou pour assurer un courant d'excitation donné en vue de modifier le fonctionnement du relais

51.

PUSH-PULL X-AXIS MAGNETORESISTIVE SENSOR

      
Numéro d'application CN2016084227
Numéro de publication 2016/197840
Statut Délivré - en vigueur
Date de dépôt 2016-06-01
Date de publication 2016-12-15
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A push-pull X-axis magnetoresistive sensor, comprising: a substrate (6), staggered soft magnetic flux concentrator arrays (1, 2) and a push-pull magnetoresistive sensing unit bridge being arranged on the substrate (6), and also comprising calibration coils (40, 50) and/or reset coils, any one of the soft magnetic flux concentrators forming a staggered structure with at least one soft magnetic flux concentrator, and respectively forming alternate staggered and non-staggered gaps along the X direction, push-pull magnetoresistive sensing unit strings (7, 8, 81, 71, 72) respectively being positioned at the staggered and non-staggered gaps, and being electrically connected to form the push-pull magnetoresistive sensing unit bridge, the magnetoresistive sensing unit having an X magnetic field sensitivity direction, the calibration coils (40, 50) and the reset coils respectively comprising push/pull calibration direct leads (41, 42, 51, 52, 110, 111) and reset direct leads (400, 411, 611) parallel and perpendicular to the push and pull magnetoresistive sensing unit strings (7, 8, 81, 71, 72). The present push-pull magnetoresistive sensor has the advantages of a simple structure, far higher magnetic field sensitivity than a reference bridge X magnetoresistive sensing unit, and low power consumption.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

52.

INTERDIGITATED Y-AXIS MAGNETORESISTIVE SENSOR

      
Numéro d'application CN2016084255
Numéro de publication 2016/197841
Statut Délivré - en vigueur
Date de dépôt 2016-06-01
Date de publication 2016-12-15
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

An interdigitated Y-axis magnetoresistive sensor, comprising a substrate (1) and a first comb-shaped soft magnetic flux guide (4), a second comb-shaped soft magnetic flux guide (7), and a push-pull magnetoresistive sensing unit bridge (14) being positioned on the substrate (1), and also comprising a calibration and/or a reset coil, the first and the second comb-shaped soft magnetic flux guides (4, 7) forming an interdigitated shape, a first gap (8) and a second gap (9) being formed between a second comb tooth (6(1)) and two adjacent first comb teeth (2(1), 2(2)), gaps (10, 11) being formed respectively between the second comb teeth (6) and a first comb base (3) and between the first comb teeth (2) and a second comb base (5), a push magnetoresistive unit string (12) and a pull magnetoresistive unit string (13) being alternately positioned in the first gap (8) and the second gap (9), a magnetoresistive sensing unit having an X magnetic field sensitivity direction, the calibration coil comprising a calibration direct lead parallel to the magnetoresistive sensing unit string, and the reset coil respectively comprising a reset direct lead perpendicular to the magnetoresistive sensing unit string; Y-axis magnetic field measurement is implemented by means of an interdigitated soft magnetic flux guide, being characterised by simplicity, high gain, and low power consumption.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

53.

INTEGRATED CURRENT SENSOR USING Z-AXIS MAGNETORESISTIVE GRADIOMETER AND LEAD FRAME CURRENT

      
Numéro d'application CN2016079850
Numéro de publication 2016/173447
Statut Délivré - en vigueur
Date de dépôt 2016-04-21
Date de publication 2016-11-03
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

An integrated current sensor, comprising a Z-axis gradiometer (13) and lead frame primary coil (15); the Z-axis gradiometer (13) is a magnetoresistive Z-axis gradiometer, comprising a substrate (10), two elongated soft magnetic flux concentrators (A1, B1) having a separate gradient feature interval and being positioned on the substrate (10), and magnetoresistive sensing unit strings positioned on the upper surface and the lower surface of the soft magnetic flux concentrators (A1, B1) and being equidistant from a long axis centre line (11), the magnetic field sensitive direction of the magnetoresistive sensing units being perpendicular to the long axis centre line (11) and the magnetoresistive sensing units being electrically connected to form a gradient sensor bridge; the lead frame primary coil (15) comprises an elongated current detection band (151) positioned above or below the Z-axis gradiometer (13), the current detection direction (17) of the current detection belt being parallel to the direction of the long axis centre line (11); 5-50A current measurement can be implemented, and the present invention has the advantages of low power consumption, small size, and a high degree of integration.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe
  • G01R 15/00 - MESURE DES VARIABLES ÉLECTRIQUES; MESURE DES VARIABLES MAGNÉTIQUES - Détails des dispositions pour procéder aux mesures des types prévus dans les groupes ,  ou

54.

RAPID THERMAL TREATMENT METHOD AND APPARATUS FOR PINNING LAYER OF SPINTRONIC DEVICE

      
Numéro d'application CN2016080195
Numéro de publication 2016/173481
Statut Délivré - en vigueur
Date de dépôt 2016-04-26
Date de publication 2016-11-03
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s) Deak, James Geza

Abrégé

A rapid thermal treatment method and apparatus for pinning layer of a local programming spintronic device, the apparatus comprising a rapid thermal annealing light source (31), a reflective cover, a magnet, a wafer (34), and a substrate (55), the light source being used to heat the substrate, the reflective cover at least comprising a transparent insulating layer (33, 51, 53) and a reflective layer (32, 52), the magnet being used to produce a constant magnetic field; by means of controlling the light exposure time, heating a heating area of the wafer (34) to above the blocking temperature of an anti-ferromagnetic layer (47), and then when cooling same in the magnetic field, closing the magnetic field, such that the anti-ferromagnetic layer (47) is secured. The present rapid thermal treatment method uses rapid thermal annealing to improve the spatial resolution of laser annealing, has good performance and is suitable for large-scale production.

Classes IPC  ?

  • H01L 43/12 - Procédés ou appareils spécialement adaptés à la fabrication ou le traitement de ces dispositifs ou de leurs parties constitutives
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

55.

SINGLE-PACKAGE HIGH-INTENSITY MAGNETIC FIELD MAGNETO-RESISTANCE ANGLE SENSOR

      
Numéro d'application CN2016078639
Numéro de publication 2016/165578
Statut Délivré - en vigueur
Date de dépôt 2016-04-07
Date de publication 2016-10-20
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A single-package high-intensity magnetic field magneto-resistance angle sensor (73, 74) comprises at least one push-pull magneto-resistance bridge and a soft magnetic flux attenuator (17, 29, 68, 70) located on the push-pull magneto-resistance bridge; the push-pull magneto-resistance bridge comprises a plurality of magneto-resistance sensor units (16, 20-23, 28, 67, 69, 7310, 7310', 7311, 7311'), the magneto-resistance sensor units (16, 20-23, 28, 67, 69, 7310, 7310', 7311, 7311') are of an MTJ or GMR type, each magneto-resistance sensor unit (16, 20-23, 28, 67, 69, 7310, 7310', 7311, 7311') comprises at least one pinning layer (76, 83, 95-98), a ferromagnetic reference layer (79, 88), a nonmagnetic spacing layer (80, 89) and a ferromagnetic free layer (81, 90), and the ferromagnetic free layer (81, 90) is low-aspect-ratio oval-shaped or circular, so that the intensity of magnetization of the ferromagnetic free layer (81, 90) can be aligned along an external magnetic field in any direction; the soft magnetic flux attenuator (17, 29, 68, 70) covers the surfaces of all the magneto-resistance sensor units (16, 20-23, 28, 67, 69, 7310, 7310', 7311, 7311') to attenuate the high-intensity external magnetic field to be within a measurable range of the magneto-resistance sensor units (16, 20-23, 28, 67, 69, 7310, 7310', 7311, 7311'); the push-pull magneto-resistance bridge has unidirectional or mutually-orthogonal reference layer magnetization directions. The magneto-resistance angle sensor is capable of measuring high-intensity magnetic-field rotational angles and has the advantages of low power consumption and small size.

Classes IPC  ?

  • G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

56.

COPPER THERMAL RESISTANCE THIN FILM TEMPERATURE SENSOR CHIP, AND PREPARATION METHOD THEREFOR

      
Numéro d'application CN2016074799
Numéro de publication 2016/138840
Statut Délivré - en vigueur
Date de dépôt 2016-02-29
Date de publication 2016-09-09
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Xue, Songsheng
  • Shen, Weifeng
  • Feng, Lixian

Abrégé

A copper thermal resistance thin film temperature sensor chip, comprising a substrate (3), a temperature sensor, and two electrode plates (1, 2), the temperature sensor being arranged on the substrate (3) and including a plurality of electrically connected resistance elements (4), a portion of the resistance elements forming a resistance adjustment circuit (5). An integrated circuit element is formed by thin film technology deposition, the components of the integrated circuit element being: a seed layer, a copper thermal resistance thin film layer above the seed layer, and a passivation protective layer on the copper thermal resistance thin film layer, the thermosensitive resistance layer of the structure being made into a series of thermosensitive resistance wires via a semiconductor manufacturing technique and process to form the temperature sensor, the resistance adjustment circuit (5) being arranged on the temperature sensor to accurately adjust a resistance value. The preparation method for the sensor chip comprises depositing a thin film on a surface of the substrate, and obtaining the final sensor chip via processes such as magnetron sputtering, patterning, peeling and etching. The sensor chip has advantages such as high impedance, good thermal stability, high linearity and low costs.

Classes IPC  ?

  • G01K 7/18 - Mesure de la température basée sur l'utilisation d'éléments électriques ou magnétiques directement sensibles à la chaleur utilisant des éléments résistifs l'élément étant une résistance linéaire, p.ex. un thermomètre à résistance de platine

57.

SINGLE-CHIP HIGH-STRENGTH MAGNETIC FIELD X-AXIS LINEAR MAGNETORESISTANCE SENSOR HAVING CALIBRATION COIL AND/OR RESET COIL

      
Numéro d'application CN2016073244
Numéro de publication 2016/124135
Statut Délivré - en vigueur
Date de dépôt 2016-02-03
Date de publication 2016-08-11
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A single-chip high-strength magnetic field X-axis linear magnetoresistance sensor having a calibration coil (70, 80, 81) and/or a reset coil (82, 83), the sensor comprising a high-strength magnetic field single-chip reference bridge-type X-axis magnetoresistance sensor, and the calibration coil (70, 80, 81) and/or the reset coil (82, 83), the calibration coil (70, 80, 81) being a planar coil, the reset coil (82, 83) being a planar or three-dimensional coil, the planar calibration coil (70, 80, 81) and the planar reset coil (82) being located above a substrate (1) and below magnetoresistance sensing units (4, 41, 5, 51), between the magnetoresistance sensing units (4, 41, 5, 51) and soft magnetic flux guides, above the soft magnetic flux guides, or at gaps, the three-dimensional reset coil (83) being wound around the soft magnetic flux guides and the magnetoresistance sensing units (4, 41, 5, 51), the calibration coil (70, 80, 81) and the reset coil (82, 83) respectively generating a calibration magnetic field and a uniform reset magnetic field at the magnetoresistance sensing units (4, 41, 5, 51), the calibration magnetic field being parallel to the direction of a pinned layer, the uniform reset magnetic field being in the direction of a free layer. Calibration and magnetic state resetting of the single-chip X-axis linear magnetoresistance sensor may be implemented by controlling the current of the calibration coil (70, 80, 81) and the reset coil (82, 83).

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

58.

MAGNETIC AUTOMATION FLOW RECORDER

      
Numéro d'application CN2016073175
Numéro de publication 2016/124131
Statut Délivré - en vigueur
Date de dépôt 2016-02-02
Date de publication 2016-08-11
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Guo, Haiping
  • Cheng, Xiaofeng
  • Zhou, Zhimin

Abrégé

A magnetic automation flow recorder, comprising a plurality of coaxially arranged hard magnetic rotating wheels (1), the hard magnetic rotating wheels (1) being circular and being provided with a preset rotation ratio, each hard magnetic rotating wheel (1) corresponding to at least one biaxial magnetoresistance angle sensor (2; 2(1)), the biaxial magnetoresistance angle sensor (2; 2(1)) measuring the angular position of the hard magnetic rotating wheel (1) within the range of 0-360 degrees, the biaxial magnetoresistance angle sensor (2; 2(1)) including at least two uniaxial linear magnetoresistance sensors, the uniaxial linear magnetoresistance sensors being X-axis magnetoresistance sensors or Z-axis magnetoresistance sensors, the X-axis magnetoresistance sensors measuring a magnetic field component along the tangential direction of the circumference of the hard magnetic rotating wheel (1) at the position where the hard magnetic rotating wheel (1) is located, the Z-axis magnetoresistance sensors measuring a magnetic field component along the radial direction of the hard magnetic rotating wheel (1) at the position where the hard magnetic rotating wheel (1) is located. With respect to electronic water meters having X and Y biaxial angle sensors, the present flow recorder has the advantages that the mounting position is flexible, the influence of neighbouring hard magnetic rotating wheels (1) is slight, and power consumption is low.

Classes IPC  ?

  • G01F 15/06 - Dispositifs d'indication ou d'enregistrement
  • G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes

59.

MAGNETORESISTANCE ANGLE SENSOR FOR STRONG MAGNETIC FIELD ERROR CALIBRATION AND CALIBRATION METHOD THERFOR

      
Numéro d'application CN2016070743
Numéro de publication 2016/115995
Statut Délivré - en vigueur
Date de dépôt 2016-01-13
Date de publication 2016-07-28
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s) Deak, James Geza

Abrégé

A biaxial magnetoresistance angle sensor (1) and a calibration method for a magnetic field error, comprising: two homotaxial magnetoresistance angle sensors for detecting an external magnetic field in the X-axial direction and the Y-axial direction that are perpendicular to each other, an element for calculating vector amplitudes of voltage outputs of the homotaxial magnetoresistance angle sensors along the X axis and the Y axis in real time, an element for calculating a difference between a known calibration vector amplitude and a measured vector amplitude, an element for dividing the difference by (I) to calculate a signal error, an element for adding the signal error to the X-axial output and the Y-axial output respectively or subtracting the signal error from the X-axial output and the Y-axial output to calculate calibrated output signals of the X-axis and the Y-axis, and an element for calculating an arc tangent of a factor obtained by dividing the calibrated Y-axis output signal by the calibrated X-axis output signal to calculate a rotating angle of the external magnetic field. The calibration method for a magnetic field error is applied to the biaxial magnetoresistance angle sensor, so that the measurement error is reduced, the magnetic field application range is expanded, and the measurement precision in a high magnetic field is improved.

Classes IPC  ?

  • G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes

60.

DIRECT-READING GAUGE CAPABLE OF ELIMINATING MAGNETIC INTERFERENCE OF ADJACENT ROTARY WHEEL

      
Numéro d'application CN2016070543
Numéro de publication 2016/112829
Statut Délivré - en vigueur
Date de dépôt 2016-01-11
Date de publication 2016-07-21
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A direct-reading gauge capable of eliminating a magnetic interference of adjacent rotary wheels, the direct-reading gauge comprising N coaxial permanent magnet rotary wheels (31, 32 to 3N) and corresponding magnetic angle sensors (41, 42 to 4N), a sampling element (51), a storage element (53) and a computing element (52); the magnetic angle sensors (41, 42 to 4N) sense a linear superposition of the required magnetic field from the measured permanent magnet rotary wheels (31, 32 to 3N) and the interference magnetic field from other permanent magnet rotary wheels (31, 32 to 3N); the sampling element (51) samples original output signals of the N magnetic angle sensors (41, 42 to 4N) to form N*1 original signal matrices [V/Vp]k(i)raw; the storage element (53) stores N*N correction matrices [Cij]; and the computing element (52) computes the correction signal matrices [V/Vp]kcorr(i) = [V/Vp]k(i)raw-sum{C(i, j)*[V/Vp]k(j)raw}, thus eliminating the interference magnetic field and calculating to obtain rotation angles of the permanent magnet rotary wheels (31, 32 to 3N) according to correction signals. The direct-reading gauge uses a simple calculation and has a high precision, and obviates the need for magnetic shielding.

Classes IPC  ?

  • G01F 15/00 - MESURE DES VOLUMES, DES DÉBITS VOLUMÉTRIQUES, DES DÉBITS MASSIQUES OU DU NIVEAU DES LIQUIDES; COMPTAGE VOLUMÉTRIQUE - Détails des appareils des groupes ou accessoires pour ces derniers, dans la mesure où de tels accessoires ou détails ne sont pas adaptés à ces types particuliers d'appareils, p.ex. pour l'indication à distance

61.

MAGNETO-RESISTANCE SENSOR LINEAR IN Z-AXIS HAVING SINGLE CHIP AND CALIBRATION/RESET COIL

      
Numéro d'application CN2016070137
Numéro de publication 2016/110244
Statut Délivré - en vigueur
Date de dépôt 2016-01-05
Date de publication 2016-07-14
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A magneto-resistance sensor linear in Z-axis having a single chip and a calibration/reset coil comprises a magneto-resistance sensor that has a single ship and is linear in Z-axis, and a calibration coil and/or a reset coil. The calibration coil and the reset coil are planar or three-dimensional coils. The planar coils (101,102) are located above a substrate, below a magneto-resistance sensing unit, between a magneto-resistance sensing unit and a soft-magnetic flux concentrator (2), and above the soft-magnetic flux concentrator (2) or in a gap of the soft-magnetic flux concentrator (2). The three-dimensional coil is wound around the periphery of the soft-magnetic flux concentrator and the magneto-resistance sensing unit. The calibration/reset coil separately comprises straight wires (10,11,12,13) that are parallel to magnetization directions of a pinning layer/free layer, wherein the calibration coil generates an equivalent magnetic calibration field in/opposite the direction of the pinning layer at a pushing or a pulling magneto-resistance unit string (4,5), and the reset coil generates a uniform reset magnetic field in the direction of the free layer at all magneto-resistance sensing units. By controlling a current of the calibration/reset coil, calibration and magnetic state reset of the magneto-resistance sensor that has a single chip and is linear in Z-axis are achieved, which is efficient, fast, and convenient.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

62.

SINGLE-CHIP DIFFERENTIAL FREE LAYER PUSH-PULL MAGNETIC FIELD SENSOR BRIDGE AND PREPARATION METHOD

      
Numéro d'application CN2015090721
Numéro de publication 2016/045614
Statut Délivré - en vigueur
Date de dépôt 2015-09-25
Date de publication 2016-03-31
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Provided are a single-chip differential free layer push-pull magnetic field sensor bridge and preparation method, the magnetic field sensor bridge comprising: a substrate (4), a staggered soft magnetic flux concentrator array (11, 12), and a GMR spin valve or a TMR magnetoresistance sensing unit array (35, 36) having a magnetic sensitivity in an X-direction on the substrate (4). A soft magnetic flux concentrator (1) comprises sides parallel to an X-axis and a Y-axis, and four corners sequentially labelled as A, B, C and D clockwise from an upper left position. Magnetoresistance sensing units (31, 32, 33, 34) are located at gaps between the soft magnetic flux concentrators (1), and magnetoresistance sensing units (3) corresponding to the A and C corner positions and B and D corner positions of the soft magnetic flux concentrator (1) are defined as push magnetoresistance sensing units (31, 33) and pull magnetoresistance sensing units (32, 34) respectively. The push magnetoresistance sensing units (31, 33) are electrically connected to one or more push arms, and the pull magnetoresistance sensing units (32, 34) are electrically connected to one or more pull arms, such that the push and pull arms are electrically connected to form a push-pull sensor bridge. The present invention has a low power consumption, a high magnetic field sensitivity, and can measure a magnetic field in a Y-direction.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 17/00 - Dispositions pour procéder aux mesures impliquant une comparaison avec une valeur de référence, p.ex. pont
  • G01R 3/00 - Appareils ou procédés spécialement adaptés à la fabrication des appareils de mesure
  • G01C 17/28 - Compas électromagnétiques

63.

DUAL Z-AXIS MAGNETORESISTIVE ANGLE SENSOR

      
Numéro d'application CN2015087215
Numéro de publication 2016/026412
Statut Délivré - en vigueur
Date de dépôt 2015-08-17
Date de publication 2016-02-25
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A dual Z-axis magnetoresistive angle sensor, comprising a circular permanent magnet encoding disc (3), two Z-axis magnetoresistive sensor chips (1, 2) and a PCB (5), two Z-axis magnetoresistive sensors (9) being located on the PCB (5), the magnetic field sensitive directions of the Z-axis magnetoresistive sensors (9) being orthogonal. The Z-axis magnetoresistive sensor chips (1, 2) each comprise a substrate (8) and at least one magnetoresistive sensor (9) located on the substrate (8), the magnetic field sensitive direction of the magnetoresistive sensor (9) being perpendicular to the substrate (8), the magnetoresistive sensor (9) comprising a flux concentrator (6) and magnetoresistive sensing units (7), the magnetoresistive sensing units (7) being electrically connected into a push-pull structure, a push arm and a pull arm of the push-pull structure being respectively located at two side positions equidistant from a Y-axis central line and above or below the flux concentrator (6). The circular permanent magnet encoding disc (3) is provided with a magnetisation direction parallel to the diameter direction, and when the permanent magnet encoding disc (3) rotates, a magnetic field measurement angle is calculated via orthogonal magnetic fields measured by the two Z-axis magnetoresistive sensor chips (1, 2), and may be used for representing a rotation angle of the circular permanent magnet encoding disc (3). The present invention has a simple structure, high sensitivity and high spatial flexibility.

Classes IPC  ?

  • G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

64.

SINGLE-CHIP OFF-AXIS MAGNETORESISTIVE Z-X ANGLE SENSOR AND MEASURING INSTRUMENT

      
Numéro d'application CN2015087320
Numéro de publication 2016/026419
Statut Délivré - en vigueur
Date de dépôt 2015-08-18
Date de publication 2016-02-25
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A single-chip off-axis magnetoresistive Z-X angle sensor and measuring instrument. The single-chip off-axis magnetoresistive Z-X angle sensor comprises a substrate (1) located on an X-Y plane, at least one X-axis magnetoresistive sensor (3) and at least one Z-axis magnetoresistive sensor (2), the X-axis magnetoresistive sensor (3) and the Z-axis magnetoresistive sensor (2) being located on the substrate (1). The X-axis magnetoresistive sensor (3) and the Z-axis magnetoresistive sensor (2) each comprise magnetoresistive sensing units (5) and a flux concentrator (4), the magnetoresistive sensing units (5) being electrically connected into a magnetoresistive bridge comprising at least two bridge arms. The Z-axis magnetoresistive sensor (2) is a push-pull bridge structure, a push arm and a pull arm of the push-pull bridge structure being respectively located at positions equidistant from a Y-axis central line of the flux concentrator (4). The X-axis magnetoresistive sensor (3) is a reference bridge structure, a reference arm and a sensitive arm of the reference bridge structure being respectively located on the Y-axis central line of the flux concentrator (4) and a position more than half of the width of the flux concentrator (4) away from the Y-axis central line. The single-chip off-axis magnetoresistive Z-X angle sensor is placed at an edge of a circular permanent magnet encoding disc and forms an angle measuring instrument, angle measurement is achieved by measuring X-axis and Z-axis magnetic field components, the structure is compact and sensitivity is high.

Classes IPC  ?

  • G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes

65.

TMR NEAR-FIELD MAGNETIC COMMUNICATION SYSTEM

      
Numéro d'application CN2015083461
Numéro de publication 2016/008370
Statut Délivré - en vigueur
Date de dépôt 2015-07-07
Date de publication 2016-01-21
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Guo, Haiping
  • Xue, Songsheng

Abrégé

Disclosed is a TMR near-field magnetic communication system, which is used for detecting AC and DC magnetic fields generated by a near-field magnetic communication system, and inputting AC and DC magnetic field signals to an audio electroacoustic device and taking same as input signals thereof. The audio electroacoustic device comprises a hearing aid, an earphone of a home entertainment system, a public hearing loop system having an embedded hearing device, etc. The TMR near-field magnetic communication system comprises: one or more bridge type TMR sensors for detecting the AC and DC magnetic field signals; an analogue signal circuit containing a filter, wherein the filter is used for separating components of AC and DC signals output by a TMR sensor; an amplifier for amplifying an AC electrical signal; and an analogue output for transmitting the AC electrical signal to the audio electroacoustic device. The TMR sensor can be a linear or nonlinear TMR sensor, and the TMR sensor is designed to have an optimal signal-to-noise ratio in a specific DC magnetic field.

Classes IPC  ?

66.

COIN DETECTION SYSTEM

      
Numéro d'application CN2015081290
Numéro de publication 2015/196932
Statut Délivré - en vigueur
Date de dépôt 2015-06-12
Date de publication 2015-12-30
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Guo, Haiping

Abrégé

A coin detection system comprises an excitation coil (3), a radial magnetic gradiometer (5), an axial magnetic gradiometer (6), a signal excitation source (1), a drive circuit (2), an analog front-end circuit (7) and a processor (8). After the excitation coil (3) is excited by the signal excitation source (1) and the drive circuit (2), the excitation coil (3) generates an excitation magnetic field (10) parallel to the axial direction of a coin (4), and under the effect of the excitation magnetic field (10), the coin (4) generates an induced magnetic field (11) through eddies generated in the coin (4); the radial magnetic gradiometer (5) and the axial magnetic gradiometer (6) detect the magnetic field components of the magnetic field (11) in the radial direction and the axial direction of the coin (4), and the detected signal is transmitted to the analog front-end circuit (7) for amplification; the processor (8) processes and then outputs the amplified signal transmitted by the analog front-end circuit (7), and the material, design and color and denomination, etc. of the coin (4) are obtained according to the resonance amplitude, phase and other information of the output signal.

Classes IPC  ?

  • G07D 5/08 - Test des propriétés magnétiques ou électriques

67.

SENSOR CHIP FOR MULTI-PHYSICAL QUANTITY MEASUREMENT AND PREPARATION METHOD THEREFOR

      
Numéro d'application CN2015081293
Numéro de publication 2015/188772
Statut Délivré - en vigueur
Date de dépôt 2015-06-12
Date de publication 2015-12-17
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Xue, Songsheng
  • Shen, Weifeng
  • Feng, Lixian

Abrégé

A sensor chip for multi-physical quantity measurement. The chip comprises a substrate (24) and at least two sensors of a temperature sensor, a humidity sensor and a pressure sensor which are integrated on the substrate (24), wherein the pressure sensor is formed by electrically connecting resistance elements (4-7); the humidity sensor is of a finger-cross structure; thermistor lines are distributed around the pressure sensor and the humidity sensor to form the temperature sensor; a resistance adjusting circuit (14) is arranged on the temperature sensor; and a micro-cavity (12) is etched on the back of the substrate (24) in the position corresponding to the pressure sensor. Also disclosed is a preparation method for a sensor chip for multi-physical quantity measurement. The sensor chip has the advantages of low costs, low power consumption, simple manufacture, wide applicability, implementation of multi-physical quantity measurement of a single chip and the like.

Classes IPC  ?

  • G01D 21/02 - Mesure de plusieurs variables par des moyens non couverts par une seule autre sous-classe

68.

MAGNETIC ANTI-COUNTERFEIT MARK AND IDENTIFICATION SYSTEM THEREOF

      
Numéro d'application CN2015078929
Numéro de publication 2015/180569
Statut Délivré - en vigueur
Date de dépôt 2015-05-14
Date de publication 2015-12-03
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Cheng, Xiaofeng

Abrégé

A magnetic anti-counterfeit mark and identification system thereof; the magnetic anti-counterfeit mark (1) comprises a substrate (2), a magnetic ink layer, a light shielding layer (4) and a protective coating layer (5); the magnetic ink layer covers the substrate (2); the magnetic ink forms structures such as characters, a bar code and patterns; the light shielding layer (4) covers the magnetic ink layer, and shields the structures formed by the magnetic ink; the protective coating layer (5) covers the light shielding layer (4), and is formed by polymer or metal. The identification system comprises a magnetic sensor (6) for sensing the magnitude of a magnetic field transmitted by the magnetic anti-counterfeit mark, a permanent magnet (7) or an electromagnet for magnetizing the magnetic anti-counterfeit mark, a digital processing circuit (8) electrically connected to the magnetic sensor (6), and a frame (9) for fixing the magnetic sensor (6) and the digital processing circuit (8); and the digital processing circuit (8) outputs a code corresponding to the magnetic anti-counterfeit mark.

Classes IPC  ?

  • G06K 19/06 - Supports d'enregistrement pour utilisation avec des machines et avec au moins une partie prévue pour supporter des marques numériques caractérisés par le genre de marque numérique, p.ex. forme, nature, code
  • G06K 7/08 - Méthodes ou dispositions pour la lecture de supports d'enregistrement avec des moyens de perception des modifications d'un champ électrostatique ou magnétique, p.ex. par perception des modifications de la capacité entre des électrodes

69.

MAGNETO-RESISTIVE Z-AXIS GRADIENT SENSOR CHIP

      
Numéro d'application CN2015078926
Numéro de publication 2015/180568
Statut Délivré - en vigueur
Date de dépôt 2015-05-14
Date de publication 2015-12-03
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A magneto-resistive Z-axis gradient sensor chip for detecting the gradient on an XY plane of the component of a Z-axis magnetic field (4) generated by a magnetic medium; the sensor chip comprises an Si substrate (1), a collection of two flux guide devices (2) or two groups of flux guide devices (2) separated by a distance of Lg, and an arrangement of mutually electrically connected magneto-resistive sensing units (3(1), 3(2)); the magneto-resistive sensing units (3(1), 3(2)) are located on the Si substrate (1), and are located above or below the edge of the flux guide devices (2); the flux guide devices (2) convert the component of the Z-axis magnetic field (4) to be parallel to the surface of the Si substrate (1) and in the sensitive axis direction of the magneto-resistive sensing units (3(1), 3(2)); and the magneto-resistive sensing units (3(1), 3(2)) are electrically connected in a half-bridge or full-bridge gradient arrangement, and opposite bridge arms are separated by a distance of Lg. The sensor chip can be utilized with PCB, PCB plus back magnet or PCB plus back magnet plus packaging casing, measures the gradient of the Z-axis magnetic field (4) by utilizing a planar sensitive magneto-resistive sensor, and has a small size, low power consumption and higher magnetic field sensitivity than a Hall sensor.

Classes IPC  ?

70.

DIRECT-CURRENT FAN CONTROL CHIP

      
Numéro d'application CN2015076430
Numéro de publication 2015/158231
Statut Délivré - en vigueur
Date de dépôt 2015-04-13
Date de publication 2015-10-22
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Guo, Haiping
  • Li, Dan
  • Xue, Songsheng
  • Deak, James Geza

Abrégé

A direct-current fan control chip comprises a magnetic resistance sensor (4), a controller (5), a driver (6) and a substrate (7). The magnetic resistance sensor (4), the controller (5) and the driver (6) are integrally disposed on the substrate (7). The induction direction of the magnetic resistance sensor (4) is perpendicular to or parallel with the surface of the direct-current fan control chip. The magnetic resistance sensor (4) provides a rotor position signal, a rotor rotation speed signal and a rotor rotation direction signal for the controller (5). The controller (5) outputs a control signal to the driver (6) according to the received signals. The driver (6) outputs a drive signal after receiving the control signal. The control chip has the advantages of good in temperature stability, good in frequency response characteristic and so on.

Classes IPC  ?

  • F04D 27/00 - Commande, p.ex. régulation, des pompes, des installations ou des systèmes de pompage spécialement adaptés aux fluides compressibles

71.

SINGLE-CHIP AND THREE-AXIS LINEAR MAGNETIC SENSOR AND MANUFACTURING METHOD THEREFOR

      
Numéro d'application CN2015076517
Numéro de publication 2015/158243
Statut Délivré - en vigueur
Date de dépôt 2015-04-14
Date de publication 2015-10-22
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s) Deak, James Geza

Abrégé

A single-chip and three-axis linear magnetic sensor and a manufacturing method therefor. The sensor comprises an X-axis sensor (3), a Y-axis sensor (4), and a Z-axis sensor (5). The X-axis sensor (3) comprises a reference bridge and at least two X-magnetic flux controllers (8), the Y-axis sensor (4) comprises a push-pull bridge and at least two Y-magnetic flux controllers (23, 24), and the Z-axis sensor (5) comprises a push-pull bridge and at least two Z-magnetic flux controllers (10). The arms of the reference bridge and the push-pull bridges are each formed by one or more magneto-resistive sensing components (13, 14, 15, 16) that are electrically connected, and the direction of a sensitive axis of each magneto-resistive sensing component (13, 14, 15, 16) and the magnetization direction (6) of a pinning layer are both in the X-axis direction. The manufacturing method comprises: depositing a magneto-resistive thin film on a wafer, and performing processes such as magnetic annealing, photolithography, etching, and film coating to obtain a final sensor. The single-chip and three-axis linear magnetic sensor has the advantages of being low in cost, easy to manufacture, good in linearity, high in sensitivity and the like.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/04 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant le principe du déclenchement périodique de flux

72.

LOW-FLYING HEIGHT IN-PLANE MAGNETIC IMAGE RECOGNITION SENSOR CHIP

      
Numéro d'application CN2015076530
Numéro de publication 2015/158247
Statut Délivré - en vigueur
Date de dépôt 2015-04-14
Date de publication 2015-10-22
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed is a low-flying height in-plane magnetic image recognition sensor chip. The sensor chip comprises a Si substrate (1) whose surface (4) is provided with a pit (2), a magneto-resistive sensor (5), and an insulating layer (6). The magneto-resistive sensor (5) is located on a bottom surface (3) of the pit (2) in the Si substrate (1). The insulating layer (6) is located above the magneto-resistive sensor (5). In a working state, a detection surface of a magnetic image is co-planar or parallel with the surface (3) of the Si substrate (1). An input/output end of the magneto-resistive sensor (5) is in bonding connection with a lead directly, or in bonding connection with a lead by using a pad (7(2)) or by using a conductive pillar (8) and the pad (7(2)), and the flying height of the lead is lower than the height of the surface (4) of the Si substrate (1). This technical solution has the advantages that the structure is compact, packaging is not needed, the chip can directly contact the magnetic image, and output signals are strong.

Classes IPC  ?

  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
  • G07D 7/04 - Test des propriétés magnétiques des matériaux de ces papiers, p.ex. par détection d’empreinte magnétique
  • G07D 7/20 - Vérification de motifs des papiers

73.

MICRO GUIDING SCREW PUMP USING MAGNETIC RESISTANCE SENSOR AND MANUFACTURING METHOD THEREFOR

      
Numéro d'application CN2015076428
Numéro de publication 2015/158230
Statut Délivré - en vigueur
Date de dépôt 2015-04-13
Date de publication 2015-10-22
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Jin, Yuqin

Abrégé

A micro guiding screw pump (2) monitors rotation of a guiding screw (22) by using a magnetic resistance sensor (28) and an MCU (50), and controls and feeds back the rotation direction and speed of the guiding screw (22) through a motor controller (48), so that the speed of infusion to a patient can be controlled. Furthermore, the micro guiding screw pump (2) can control the insulin infusion speed according to the blood glucose concentration of the patient monitored by a CGM (45). The micro guiding screw pump (2) has characteristics of high sensitivity, high reliability, low power consumption, low cost and convenient use.

Classes IPC  ?

  • A61M 5/142 - Perfusion sous pression, p.ex. utilisant des pompes
  • A61M 5/168 - Moyens pour commander l'écoulement des agents vers le corps ou pour doser les agents à introduire dans le corps, p.ex. compteurs de goutte-à-goutte

74.

MAGNETO RESISTANCE SENSOR FOR IDENTIFYING MAGNETIC IMAGE

      
Numéro d'application CN2015074982
Numéro de publication 2015/144046
Statut Délivré - en vigueur
Date de dépôt 2015-03-24
Date de publication 2015-10-01
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Xue, Songsheng
  • Lei, Xiaofeng
  • Zhang, Xiaojun
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A magneto resistance sensor for identifying a magnetic image comprises a PCB (1) and multiple magneto resistance sensor chips (2). The multiple magneto resistance sensor chips (2) are located on the PCB (1) and the PCB (1) is perpendicular/parallel to a magnetic image detection surface (3). A side surface detection mode and a front surface detection mode are provided. In the side surface detection mode, side surfaces (2(1)) of the multiple magneto resistance sensor chips (2) are in parallel to or share surfaces with a side surface (1(1)) of the PCB (1), and are in parallel to the magnetic image detection surface (3). The multiple magneto resistance sensor chips (2) are provided with the same magnetic field sensitivity direction (7). In the side surface detection mode, a manner of arranging adjacent magneto resistance sensor chips (2) in a stack is used. In the front surface detection mode, a manner of alternatively arranging the adjacent magneto resistance sensor chips (2) is used to implement continuity of detection areas on the magnetic image detection surface (3). The magneto resistance sensor for identifying a magnetic image may also comprise a permanent magnet assembly (5) and a housing (6). The sensor has advantages of identification area continuity, signal completion, high sensitivity and low power consumption.

Classes IPC  ?

  • G07D 7/04 - Test des propriétés magnétiques des matériaux de ces papiers, p.ex. par détection d’empreinte magnétique

75.

SINGLE-CHIP THREE-AXIS MAGNETIC FIELD SENSOR AND PREPARATION METHOD THEREFOR

      
Numéro d'application CN2015075146
Numéro de publication 2015/144073
Statut Délivré - en vigueur
Date de dépôt 2015-03-26
Date de publication 2015-10-01
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Li, Dan

Abrégé

A single-chip three-axis magnetic field sensor and a preparation method therefor. The sensor comprises an X-axis sensor (3), a Y-axis sensor (4) and a Z-axis sensor (5) which are integratedly arranged on the same substrate (1), wherein the X-axis sensor (3) and the Y-axis sensor (4) have the same structure and are of a reference bridge structure. Magnetoresistance sensing elements (12, 14) on a reference arm are located beneath corresponding magnetic flux controllers (8, 9), and magnetoresistance sensing elements (11, 13) on a sensing arm are located in the gaps between the corresponding magnetic flux controllers (8, 9), but the distribution directions of all elements on the two sensors are perpendicular to each other, and magnetization directions of pinning layers of the magnetoresistance sensing elements are perpendicular to each other as well. The Z-axis sensor (5) is of a push-pull bridge structure, and magnetoresistance sensing elements (15, 16) on a push arm and a pull arm thereof are respectively arranged at the two sides of the upper part or the lower part of a magnetic flux controller (10) thereof in columns. Also disclosed is a preparation method for the single-chip three-axis magnetic field sensor. The single-chip three-axis magnetic field sensor has the advantages of simple manufacture and a wide dynamic range.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 3/00 - Appareils ou procédés spécialement adaptés à la fabrication des appareils de mesure

76.

MAGNETORESISTIVE AUDIO COLLECTOR

      
Numéro d'application CN2015074556
Numéro de publication 2015/139643
Statut Délivré - en vigueur
Date de dépôt 2015-03-19
Date de publication 2015-09-24
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Zhou, Zhimin
  • Deak, James Geza
  • Guo, Haiping

Abrégé

A magnetoresistive audio collector, comprising an audio collection circuit; the audio collection circuit comprises at least one linear magnetoresistive sensor, a coupling capacitor, an alternating current amplifier, an amplifier and a signal processing circuit; the linear magnetoresistive sensor comprises at least one axial linear magnetoresistive sensor unit; the linear magnetoresistive sensor is located on the measuring surface of the loudspeaker audio coil surface; the signal output end of each axial linear magnetoresistive sensor unit is connected to the alternating current amplifier via a coupling capacitor to output alternating current signals, and then is connected to the amplifier to combine the signals into one signal, and outputs audio signals via the signal processing circuit; and each axial linear magnetoresistive sensor unit is located in the linear magnetic field measurement area on the measuring surface. The present invention collects audio signals of the loudspeaker via the magnetic field coupling between the loudspeaker and the linear magnetoresistive sensor, has a simple structure, and saves power.

Classes IPC  ?

  • H04R 23/00 - Transducteurs autres que ceux compris dans les groupes

77.

PRECISE SYRINGE PUMP AND MANUFACTURING METHOD THEREOF

      
Numéro d'application CN2015072868
Numéro de publication 2015/124081
Statut Délivré - en vigueur
Date de dépôt 2015-02-12
Date de publication 2015-08-27
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Jin, Yuqin

Abrégé

A precise syringe pump (2) employing a syringe (4), the precise syringe pump (2) comprising a motor (52), a lead screw (22) and a syringe driving head (18) connected to the lead screw (22). The syringe (4) comprises a cylinder (6) and a plunger (8). The motor (52) drives the lead screw (22) to rotate clockwise or counterclockwise to drive the syringe driving head (18) and push the plunger (8) to move within the cylinder (6). The syringe pump (2) further comprises: a magneto-resistor sensor (28), at least one permanent magnet (30) and an MCU (50), the at least one permanent magnet (30) being located on the lead screw (22) and rotating therewith; the magneto-resistor sensor (28) can sense the magnetic field generated by at least one permanent magnet; the input end of the MCU (50) is connected to the magneto-resistor sensor (28), and the output end of the MCU (50) is connected to the motor (52); the MCU receives signals from the magneto-resistor sensor (28) and controls, according to the signal feedback, the direction and velocity of the lead screw (22) rotated by the motor (52). The precise syringe pump of the present invention is characterized by high sensitivity, high reliability, low power consumption and low cost, and is convenient to use.

Classes IPC  ?

  • A61M 5/142 - Perfusion sous pression, p.ex. utilisant des pompes
  • A61M 5/168 - Moyens pour commander l'écoulement des agents vers le corps ou pour doser les agents à introduire dans le corps, p.ex. compteurs de goutte-à-goutte

78.

SHORT-DISTANCE MAGNETORESISTANCE IMAGING SENSOR ARRAY

      
Numéro d'application CN2014095246
Numéro de publication 2015/101244
Statut Délivré - en vigueur
Date de dépôt 2014-12-29
Date de publication 2015-07-09
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Tondra, Mark C
  • Xue, Songsheng
  • Deak, James Geza
  • Jin, Insik
  • Shen, Weifeng

Abrégé

A short-distance magnetoresistance imaging sensor array (71) based on magnetic field induction, which reduces a distance (98) between a medium imaging sensor array (71) and a medium (10) by optimizing the arrangement manner of an application integrated circuit and a sensing element array and using an electric connection technology which can reduce the distance (98) between the medium imaging sensor array (71) and the medium (10), thereby increasing the resolution of the existing medium imaging sensor. The short-distance magnetoresistance imaging sensor array (71) comprises a sensing element array and an application integrated circuit, and also comprises a circuit which provides a power supply for the sensing element array, a magnetoresistance sensing element array selection circuit, a signal amplification circuit, a digitizer, a memory and a microprocessor. In addition, the sensing element array comprises at least one magnetoresistance sensing element.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

79.

SINGLE CHIP REFERENCE BRIDGE TYPE MAGNETIC SENSOR FOR HIGH-INTENSITY MAGNETIC FIELD

      
Numéro d'application CN2014094838
Numéro de publication 2015/096744
Statut Délivré - en vigueur
Date de dépôt 2014-12-24
Date de publication 2015-07-02
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s) Deak, James Geza

Abrégé

A single chip reference bridge type magnetic sensor for high-intensity magnetic field. The sensor comprises a substrate (1), a reference arm, an induction arm, shielding structures (4) and attenuators (5). The reference arm and the induction arm comprise at least two rows/columns of reference element strings (3) and induction element strings (2), respectively, the reference element strings (3) and the induction element strings (2) are formed by one or more same magnetic resistance sensing elements electrically connected, the reference element strings (3) and the induction element strings (2) are mutually staggered, one shielding structure (4) is correspondingly arranged on each reference element string (3), one attenuator (5) is correspondingly arranged on each induction element string (2), the magnetic resistance sensing elements are selected from one of AMR, GMR or TMR sensing elements, and the shielding structures (4) and the attenuators (5) are all long rectangular bar arrays made of permeability alloy, a ferromagnetic material. The sensor can be implemented on three electric bridge structures of a quasi-bridge, a reference half-bridge and a reference full-bridge. The sensor has the advantages of low power consumption, better linearity, wide working range, and being capable of operating in high-intensity magnetic field, and the like.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

80.

HIGH-SENSITIVITY PUSH-PULL BRIDGE MAGNETIC SENSOR

      
Numéro d'application CN2014094796
Numéro de publication 2015/096731
Statut Délivré - en vigueur
Date de dépôt 2014-12-24
Date de publication 2015-07-02
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Li, Dan

Abrégé

A high-sensitivity push-pull bridge magnetic sensor. The sensor comprises two substrates (20, 21),magnetoresistance sensing elements (22, 42), push-arm flux concentrators (23) and pull-arm flux concentrators (41), wherein the magnetization directions of pinning layers of the magnetoresistance sensing elements (22, 42) on the same one of the substrates (20, 21) are the same, but are opposite to the magnetization directions of the pinning layers of the magnetoresistance sensing elements (22, 42) on the adjacent one of the substrates (20, 21), the magnetoresistance sensing elements (22) on one substrate (20) are electrically connected mutually to form a push arm of a bridge, and the magnetoresistance sensing elements (42) on the other substrate (21) are electrically connected mutually to form a pull arm of the bridge; and the magnetoresistance sensing elements (22, 42) on the push arm and the pull arm are respectively arranged in the gaps between the two adjacent push-arm flux concentrators (23) and the two adjacent pull-arm flux concentrators (41). The sensor can be achieved in three kinds of bridge structures, i.e. a quasi-bridge structure, a half-bridge structure and a full-bridge structure. The sensor has the following advantages of small offset, high sensitivity, high linearity, low noise, etc.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

81.

NON-CONTACT MARKED POTENTIOMETER

      
Numéro d'application CN2014094064
Numéro de publication 2015/090198
Statut Délivré - en vigueur
Date de dépôt 2014-12-17
Date de publication 2015-06-25
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Wang, Feng
  • Wang, Junyun
  • Ji, Xiaochun

Abrégé

Disclosed is a non-contact marked potentiometer. The potentiometer comprises a slider, a rotating rod, a guide rod, a tunnel magneto-resistance sensor, a permanent magnet, a printed circuit board and two bases, wherein the slider slides along the rotating rod and the guide rod, thereby driving the rotating rod to rotate, and the permanent magnet is located at one end of the rotating rod and also rotates along with the rotating rod. The tunnel magneto-resistance sensor is adjacent to the permanent magnet, is soldered onto the printed circuit board, and is used for measuring the angle of rotation of the permanent magnet. The guide rod is used for providing a sliding direction to the slider, and the two bases are located at two ends of the rotating rod and the guide rod, and are used for fixing the rotating rod and the guide rod. A ball, a pin and a leaf spring are fitted between the slider and the rotating rod. The potentiometer has advantages such as a compact structure, simple manufacture, a long service life, and being capable of providing a smooth and comfortable sliding touch for a user.

Classes IPC  ?

82.

NON-CONTACT LIQUID LEVEL SENSOR

      
Numéro d'application CN2014092459
Numéro de publication 2015/078405
Statut Délivré - en vigueur
Date de dépôt 2014-11-28
Date de publication 2015-06-04
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Tondra, Mark C

Abrégé

A non-contact pulley liquid level sensor, comprising a float (12) capable of floating up and down, and floating on the surface of a liquid, a tether (11), at least one pulley (15, 16), a permanent magnet (105), and a magnetic field angle sensor (103). The two ends of the tether (11) are tied to the float (12), and wound on the top end pulley (15) and the optional bottom end pulley (16). The permanent magnet (105) is installed on one side of the top end pulley (15) and rotates together with the top end pulley (15) under the effect of the friction torque produced by the tether (11). The magnetic field angle sensor (103) detects the magnetic field produced by the permanent magnet (105), and converts the rotation angle of the magnetic field into a voltage signal. According to the relationship between the rotation angle of the permanent magnet (105) and a floating distance of the float (12), the liquid level height is calculated via the outputted voltage signal. A gear may also be used to calibrate the operating range and accuracy of the present liquid level sensor. The present liquid level sensor is simple in design, has a wide measurement range, and is easy to seal.

Classes IPC  ?

  • G01F 23/46 - Indication ou mesure du niveau des liquides ou des matériaux solides fluents, p.ex. indication en fonction du volume ou indication au moyen d'un signal d'alarme par des flotteurs en utilisant comme éléments de transmission des bandes ou des fils en utilisant des moyens d'indication actionnés magnétiquement

83.

PUSH-PULL BRIDGE-TYPE MAGNETIC SENSOR FOR HIGH-INTENSITY MAGNETIC FIELDS

      
Numéro d'application CN2014088503
Numéro de publication 2015/058632
Statut Délivré - en vigueur
Date de dépôt 2014-10-13
Date de publication 2015-04-30
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s) Deak, James Geza

Abrégé

A pull-pull bridge-type magnetic sensor for high-intensity magnetic fields. The sensor comprises two substrates (20, 21), magnetic resistance sensor elements (22, 42), push attenuators (23), and pull attenuators (41). The magnetization directions (100) of the pinning layers of the magnetic resistance sensor elements (22, 42) on a same substrate (20, 21) are the same, and the magnetization directions (101) of the pinning layers of the magnetic resistance sensor elements (22, 42) on different substrates (20, 21) are opposite. The magnetic resistance sensor elements (22) on one substrate (20) are electrically connected to one another forming the push of a push-pull bridge, and the magnetic resistance sensor elements (42) on the other substrate (21) are electrically connected to one another forming the pull of the push-pull bridge. The magnetic resistance sensor elements (22, 42) on the push and pull are arranged in columns above or below the push attenuators (23) and the pull attenuators (41). The sensor can be implemented in pseudo-bridge, half-bridge, and full-bridge structures, and has the following advantages: low power consumption, small offsets, good linearity, wide operation range, the operation capability in high-intensity magnetic fields, and twice the maximum sensitivity of a single-chip reference bridge-type magnetic sensor.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

84.

MULTITURN PULLEY LIQUID LEVEL SENSOR DEVICE

      
Numéro d'application CN2014087545
Numéro de publication 2015/043506
Statut Délivré - en vigueur
Date de dépôt 2014-09-26
Date de publication 2015-04-02
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Tondra, Mark C

Abrégé

A multiturn pulley liquid level sensor device for measuring a liquid level in a well and in a container, comprising a mechanical float (12) which is fastened to a fastening rope (11) and which can slide up and down. The fastening rope (11) is installed on one or more pulleys and slides up and down with the float (12), and the pulley rotates back and forth. One pulley is mechanically coupled to one digital absolute magnetic rotation encoder device, and the encoder device is used for monitoring the total rotation angle of the pulley in real time. By way of using an algorithm, the total rotation angle of the pulley is converted into a distance from the bottom to calculate the height of a liquid level. The multiwheel encoder has two reading types, i.e. one is an electrical signal reading type, and the other is an optical signal reading type. The electrical signal output of the encoder can be used as an input of an industrial control system, or is transported to a long-distance remote controller or the Internet through a data passage. The accurate measurement of the liquid level is determined by the number of rotating wheels of the encoder. A mechanical gear or a belt can adjust the total number of pulley rotations which are consistent with the omnidirectional liquid level measurement.

Classes IPC  ?

  • G01F 23/40 - Indication ou mesure du niveau des liquides ou des matériaux solides fluents, p.ex. indication en fonction du volume ou indication au moyen d'un signal d'alarme par des flotteurs en utilisant comme éléments de transmission des bandes ou des fils

85.

MAGNETIC BAR CODE CHIP AND READING METHOD THEREOF

      
Numéro d'application CN2014086229
Numéro de publication 2015/035911
Statut Délivré - en vigueur
Date de dépôt 2014-09-10
Date de publication 2015-03-19
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Shen, Weifeng
  • Xue, Songsheng
  • Zhou, Zhimin

Abrégé

Disclosed are a magnetic bar code chip and a reading method thereof. The magnetic bar code chip comprises binary information bits formed by N lines and M columns of permanent magnetic bars and/or null bits, and information identification bits that are peripheral to the binary information bits. The information identification bits are formed by permanent magnetic bars and used for representing a position and a state of the magnetic bar code chip. The permanent magnetic bars and null bits represent 1 and 0 or 0 and 1 respectively. During reading, using a strong magnetic field in a line direction of the binary information bits of the magnetic bar code chip to set a magnetization direction of the permanent magnetic bars first, and then using a magnetic bar code reader such as a multi-channel magnetic field gradient sensor, a magneto-optical microscopy, a magnetic field monitor, a scanning magnetic resistance microscopy and the like to convert magnetic field distribution information generated by the permanent magnetic bars on the magnetic bar code chip into the binary information bits and information identification bits, thus implementing reading on a reading result of the magnetic bar code chip. The present invention has characteristics of a small size and strong security.

Classes IPC  ?

  • G06K 7/08 - Méthodes ou dispositions pour la lecture de supports d'enregistrement avec des moyens de perception des modifications d'un champ électrostatique ou magnétique, p.ex. par perception des modifications de la capacité entre des électrodes
  • G06K 19/07 - Supports d'enregistrement avec des marques conductrices, des circuits imprimés ou des éléments de circuit à semi-conducteurs, p.ex. cartes d'identité ou cartes de crédit avec des puces à circuit intégré

86.

SINGLE-CHIP Z-AXIS LINEAR MAGNETIC RESISTANCE SENSOR

      
Numéro d'application CN2014086231
Numéro de publication 2015/035912
Statut Délivré - en vigueur
Date de dépôt 2014-09-10
Date de publication 2015-03-19
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s) Deak, James Geza

Abrégé

A single-chip Z-axis linear magnetic resistance sensor. The sensor comprises a substrate (1), magnetic resistance sensing elements (2, 3) and flux guiding pieces (4), wherein the magnetic-resistance sensing elements are mutually electrically connected to form pushing arms and pulling arms of a bridge; the pushing arms and the pulling arms are arranged at intervals, and the magnetic resistance sensing elements on the pushing arms and the pulling arms are respectively located at two sides beneath the flux guiding pieces; the magnetization direction of a pinning layer of each magnetic resistance sensing element is the same and is in an X-axis direction; and an external magnetic field in a Z-axis direction is converted into a magnetic field component in an X-axis direction through the flux guiding pieces, so that the magnetic resistance sensing elements beneath the flux guiding pieces can detect this component. The sensor has the following advantages: the volume is small, manufacturing is simple, packaging is convenient, sensitivity is high, linearity is good, operating range is wide, offset is low, temperature compensation function is good, etc., and it is suitable for a high-intensity magnetic field.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

87.

MAGNETORESISTIVE CURRENT LIMITER

      
Numéro d'application CN2014083054
Numéro de publication 2015/014248
Statut Délivré - en vigueur
Date de dépôt 2014-07-25
Date de publication 2015-02-05
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Zhou, Zhimin
  • Deak, James Geza

Abrégé

A magnetoresistive current limiter, comprising a substrate (1), a magnetoresistive sensor layer (2), a first insulating layer, a coil (4), a second insulating layer, a magnetic shield layer (6), and an input electrode (8) and output electrode (7). The coil (4) is located between the magnetic shield layer (6) and the magnetoresistive sensor layer (2); The first and second insulating layers are isolated from the magnetoresistive sensor layer (2) and the coil (4), and from the coil (4) and the magnetic shield layer (6), respectively; the magnetoresistive sensor layer (2) and the coil (4) are connected in series, and are connected to the input electrode (8) and the output electrode (7). The magnetoresistive sensor layer (2) comprises N rows of array-type magnetic tunnel junction lines; the coil (4) comprises 2*N+M (N>1, M=-1 or 3) conductive lines in series or N+M (N>1, M=0 or 2) conductive lines in parallel; current flows in the same direction into the conductive lines located above or below the tunnel junction lines and produces, at the magnetic tunnel junction lines, a uniform magnetic field. The magnetic tunnel junction of the magnetically sensitive axis is perpendicular to the magnetic tunnel junction lines, and the magnetoresistive sensor layer (2) has the feature of a monotonic or axisymmetric linear rise in resistance to the magnetic field. The magnetoresistive current limiter has the features of rapid response, continuous operation, and ability to increase or decrease current.

Classes IPC  ?

  • H02H 9/02 - Circuits de protection de sécurité pour limiter l'excès de courant ou de tension sans déconnexion sensibles à un excès de courant
  • H01L 43/08 - Résistances commandées par un champ magnétique

88.

SINGLECHIP PUSH-PULL BRIDGE TYPE MAGNETIC FIELD SENSOR

      
Numéro d'application CN2014083241
Numéro de publication 2015/014277
Statut Délivré - en vigueur
Date de dépôt 2014-07-29
Date de publication 2015-02-05
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s) Deak, James Geza

Abrégé

A singlechip push-pull bridge type magnetic field sensor. The sensor comprises a substrate (1), bonding pads (6-9), magneto-resistance sensing elements (10, 11) and flux concentrators (12, 13), wherein the magneto-resistance sensing elements (10, 11) are positioned in the clearances (14, 15) of the adjacent flux concentrators (12, 13), and the directions of the pinning layers of the magneto-resistance sensing elements (10, 11) are identical. The flux concentrators (12, 13) are divided into a push arm type and a pull arm type, the included angle between one type and an X-axis forward direction is positive, and the included angle between the other type and the X-axis forward direction is negative. The working principle of the sensor is that the magnetic field difference value in the X-axis direction is obtained by detecting the magnetic fields on the clearances of the flux concentrators (12, 13). The sensor has the following advantages of small size, low cost, simplicity in manufacturing, high sensitivity, good linearity, strong detected signals, wide working dynamic range and the like.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

89.

MAGNETO-RESISTIVE MIXER

      
Numéro d'application CN2014082830
Numéro de publication 2015/010620
Statut Délivré - en vigueur
Date de dépôt 2014-07-23
Date de publication 2015-01-29
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Zhou, Zhimin
  • Deak, James Geza

Abrégé

A magneto-resistive mixer, comprising a spiral coil (2), a bridge-type magneto-resistive sensor (9) and a magnetic shielding layer (1), wherein the spiral coil (2) is located between the bridge-type magneto-resistive sensor (9) and the magnetic shielding layer (1). Four tunnel magneto-resistive sensor units (3-6) forming the bridge-type magneto-resistive sensor (9) respectively contain N array-type magnetic tunnel junction rows. The magnetic tunnel junction rows are connected in a mode of series connection, parallel connection or combination of series connection and parallel connection to form two port structures. The four tunnel magneto-resistive sensor units (3-6) are respectively located in two regions (7, 8) of the spiral coil (2) having opposite current directions, sensitive shafts of magnetic tunnel junctions are perpendicular to the current directions, and in addition, the distribution characteristics of magnetic fields in directions of the sensitive shafts of the tunnel magneto-resistive sensor units (3-6) to the magnetic field in the two regions (7, 8) are opposite, and the distribution characteristics in a single region (7, 8) are the same. First frequency signals are input through the two ends of the spiral coil (2), second frequency signals are input through the two ends of the power source-ground of the bridge-type magneto-resistive sensor (9), and mixing signals are output through a signal output end of the bridge-type magneto-resistive sensor (9). The magneto-resistive mixer has the characteristics of good linearity, mutual isolation of input signals and low power consumption.

Classes IPC  ?

  • H03D 7/16 - Changement de fréquence multiple

90.

SINGLE RELUCTANCE TMR MAGNETIC FIELD SENSOR CHIP AND CURRENCY DETECTOR MAGNETIC HEAD

      
Numéro d'application CN2014082986
Numéro de publication 2015/010649
Statut Délivré - en vigueur
Date de dépôt 2014-07-25
Date de publication 2015-01-29
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Guo, Haiping

Abrégé

A single reluctance TMR magnetic field sensor chip (101) and currency detector magnetic head; the single reluctance TMR magnetic field sensor chip (101) is installed above a magnetic excitation element; the sensing direction of the chip is parallel to the surface of the chip, and the direction of the magnetic excitation field generated on the chip by the magnetic excitation element is perpendicular to the surface of the chip; the chip comprises a substrate (102), a magnetic biasing structure deposited on the substrate (102), a magnetoresistive element (108), and an input/output terminal; the magnetoresistive element (108) consists of an MTJ; the sensing directions of the magnetoresistive element (108) and the MTJ are the same as the sensing direction of the chip; and the direction of a bias magnetic field generated on the chip by the magnetic biasing structure is perpendicular to the sensing direction of the chip. The chip features high sensitivity, high signal-to-noise ratio, small size, high temperature stability and high reliability.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

91.

MAGNETORESISTANCE IMAGING SENSOR ARRAY

      
Numéro d'application CN2014081023
Numéro de publication 2014/206351
Statut Délivré - en vigueur
Date de dépôt 2014-06-27
Date de publication 2014-12-31
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Xue, Songsheng
  • Deak, James Geza
  • Jin, Insik
  • Shen, Weifeng
  • Tondra, Mark C

Abrégé

A magnetoresistance imaging sensor array, comprising a magnetic field trigger offset device of a medium; a magnetoresistance sensor chip containing a primary surface and a sensing face (100), wherein an X axis and a Y axis which are perpendicular to each other are established in the primary surface, and a plurality of magnetoresistance sensing elements constituting an array are arranged in the sensing face (100), a main sensing axis of one or more magnetoresistance sensing elements is parallel to the direction of the X axis, i.e., an X axis sensing element (32), and a main sensing axis of the remaining one or more magnetoresistance sensing elements is parallel to the direction of the Y axis, i.e., a Y axis sensing element (33); electric excitation sources (38, 39) exciting the magnetoresistance sensing element; an element selection circuit selecting the magnetoresistance sensing element; and a signal output circuit. The magnetoresistance imaging sensor array can measure the amplitude and gradient of a magnetic field along two axial directions, and the bias sensing capability can make a picture clearer with fewer blind spots; and the element selection circuit can monitor an absolute value and a difference value of a magnetic field at any time and in any desired time sequence.

Classes IPC  ?

  • G01R 33/022 - Mesure du gradient
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

92.

LIQUID LEVEL SENSOR SYSTEM

      
Numéro d'application CN2014078997
Numéro de publication 2014/190943
Statut Délivré - en vigueur
Date de dépôt 2014-05-30
Date de publication 2014-12-04
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Tondra, Mark C

Abrégé

A liquid level sensor system for remotely monitoring the liquid level in a container, the system comprising a first fixed portion (1), a first level response element, a second fixed portion (2), and a second level response element; at the bottom of the first fixed portion (1) is provided a conduit (14) inserted into the container; the conduit (14) is provided with a diversion hole (27), such that the liquid level in the conduit (14) is flush with the liquid level in the container; the first level response element comprises a float (15) floating up and down with the variation of the liquid level in the conduit (14), a rotation rod (19) rotating around a relatively fixed rotating shaft (16) in the up and down floating process of the float (15), and a permanent magnet (139); the second fixed portion (2) is fixedly disposed at the top of the first fixed portion (1); the second level response element comprises a PCB (104), a magnetoresistance angle sensor chip (103), and a control circuit electrically connected to the magnetoresistance angle sensor chip (103); the magnetoresistance angle sensor chip (103) outputs an analog voltage signal to the control circuit according to the angle of rotation of the permanent magnet (139), and the control circuit calculates the height of the liquid level according to the analog voltage signal.

Classes IPC  ?

  • G01F 23/38 - Indication ou mesure du niveau des liquides ou des matériaux solides fluents, p.ex. indication en fonction du volume ou indication au moyen d'un signal d'alarme par des flotteurs en utilisant des bras tournants ou d'autres éléments de transmission pivotants en utilisant des moyens d'indication actionnés magnétiquement

93.

SINGLE-CHIP BRIDGE-TYPE MAGNETIC FIELD SENSOR

      
Numéro d'application CN2014078662
Numéro de publication 2014/190907
Statut Délivré - en vigueur
Date de dépôt 2014-05-28
Date de publication 2014-12-04
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s) Deak, James, Geza

Abrégé

A single-chip bridge-type magnetic field sensor, comprising a substrate (1), a reference arm, a sensing arm, shielding structures (42), and bonding pads (7, 8, 9, 10); the reference arm and the sensing arm respectively comprise at least two rows/columns of strings of reference elements (44) and strings of sensing elements (43) formed by electrically connecting one or more of the same magnetoresistance sensing elements; the reference element strings (44) and the sensing element strings (43) are alternately arranged; the magnetoresistance sensing elements are selected from one of AMR, GMR or TMR sensing elements; the reference element strings (44) are correspondingly provided with shielding structures (42) thereon; the sensing element strings (43) are located in gaps (45) between two shielding structures (42); and the shielding structures (42) are strip arrays made of permalloy, a soft magnetic material. The sensors can be implemented on three bridge structures namely quasi bridge, half bridge and full bridge. The single-chip bridge-type magnetic field sensor has small size and offset, low cost, high sensitivity, and good linearity and good temperature stability.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

94.

THREE-AXIS DIGITAL COMPASS

      
Numéro d'application CN2014078685
Numéro de publication 2014/190909
Statut Délivré - en vigueur
Date de dépôt 2014-05-28
Date de publication 2014-12-04
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin
  • Li, Dan

Abrégé

A three-axis digital compass comprises two X-axis magnetic sensitive sensors (1, 2), two Y-axis magnetic sensitive sensors (3, 4), a flux concentrator (5), a signal sampling unit (17), a signal processing unit (18), and a signal outputting unit (19). The X-axis and Y-axis magnetic sensitive sensors (1, 2, 3, 4) are arranged along a periphery of the flux concentrator (5). An external magnetic field is distorted when passing through the flux concentrator (5). A component on a Z axis is converted into a component of the X-axis or Y-axis magnetic field when passing through the flux concentrator (5), and the converted components and the components of the external magnetic field on the X-axis and Y-axis coact on the X-axis and Y-axis magnetic sensitive sensors (1, 2, 3, 4). An output signal of the X-axis and Y-axis magnetic sensitive sensors (1, 2, 3, 4) is output to the signal processing unit (18) through the signal sampling unit (17), and is calculated to obtain three external magnetic field components, and the external magnetic field components are output in a digital format through the signal outputting unit (19). The three-axis digital compass has the characteristics of being novel in structure and simple in algorithm, and is suitable for to AMR, GMR, TMR or another magnetoresistive sensor.

Classes IPC  ?

95.

ELECTRONIC WATER METER

      
Numéro d'application CN2014075734
Numéro de publication 2014/169851
Statut Délivré - en vigueur
Date de dépôt 2014-04-18
Date de publication 2014-10-23
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Cheng, Xiaofeng
  • Deak, James Geza

Abrégé

An electronic water meter capable of implementing precision metering. The electronic water meter comprises a machine frame (500), multiple counter units, and multiple shielding plates (601-604). The counter units comprise numerical character wheels (301-303), magnets (201-203), magnetic angular displacement sensors (101-103), and digital circuits (401-403). The magnetic angular displacement sensors (101-103) are electrically connected to the digital circuits (401-403), sense components of magnetic fields at respective positions thereof on the basis of angular position changes of magnetic field vectors of the counter units, and transmit a corresponding electric signal to the digital circuits (401-403). The digital circuits (401-403) perform a calculation processing on the basis of the electrical signal outputted by the magnetic angular displacement sensors (101-103) and output a digital signal corresponding to the angular positions of the numerical character wheels (301-303). The shielding plates (601-604) are arranged on two sides of the counter units and are used for isolation among the multiple counter units and between the multiple counter units and the external. The electronic water meter has the advantages of a compact size, easy installation, high metering precision, and powerful anti-interference capability.

Classes IPC  ?

  • G01D 5/12 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques
  • G01F 15/06 - Dispositifs d'indication ou d'enregistrement

96.

NON-CONTACT POTENTIOMETER

      
Numéro d'application CN2014074557
Numéro de publication 2014/161477
Statut Délivré - en vigueur
Date de dépôt 2014-04-01
Date de publication 2014-10-09
Propriétaire MULTIDIMENSIONAL TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Wang, Junyun
  • Wang, Feng
  • Cheng, Xiaofeng
  • Dai, Yulin

Abrégé

The present invention relates to a non-contact potentiometer. The non-contact potentiometer comprises the following parts: a mechanical housing with holes; a rotating rod comprising a top end and a magnet end on which a permanent magnet is fixed, the top end is capable of accepting outer moment effect, thus driving the rotating rod and the permanent magnet to rotate around a rotating shaft relative to the housing; a magnetoresistive sensor assembly fixed opposite to the housing, comprising one or more sensor chips, the sensitivity axis of the sensor chips on a sensing plane is perpendicular to the rotating shaft, and separated from the permanent magnet by a predetermined distance in the direction of the rotating shaft, which is used for sensing magnetic variation when the permanent magnet rotates around the rotating shaft and generating sensing signals; and three electrical connection terminals, namely a ground terminal, a power terminal and a signal output terminal, respectively. The non-contact potentiometer has the advantages of good precision performance, low power loss and low cost, and is capable of converting a complex analogue signal with magnetic field information into a standard digital signal more quickly and more easily.

Classes IPC  ?

  • G01D 5/12 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques

97.

PUSH-PULL FLIP-CHIP HALF-BRIDGE MAGNETORESISTIVE SWITCH

      
Numéro d'application CN2014074574
Numéro de publication 2014/161482
Statut Délivré - en vigueur
Date de dépôt 2014-04-01
Date de publication 2014-10-09
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Bai, Jianmin
  • Shen, Weifeng
  • Lei, Xiaofeng
  • Zhang, Xiaojun
  • Zhong, Xiaojun

Abrégé

Push-pull half-bridge magnetoresistive switch, comprising two magnetic sensor chips (101, 102), each magnetic sensor chip having a magnetic induction resistor (108) and a magnetic induction resistor electrical connection pad. The two magnetic sensor chips are electrically interconnected and have opposite and parallel directions of induction, thus forming the push-pull half-bridge circuit. The magnetic induction resistor comprises one or a plurality of magnetoresistive elements (40) connected in series. The magnetic induction resistor pads are located at adjacent edges of the magnetic sensor chips, and each pad may accommodate the welding of at least two bonding wires. The magnetoresistive switch may improve the sensitivity of a sensor, and decrease output voltage deviation and output voltage temperature drift, which is beneficial for decreasing the volume and increasing the performance of the switch sensor.

Classes IPC  ?

  • H03K 17/97 - Commutateurs actionnés par le déplacement d'un élément incorporé dans ce commutateur utilisant un élément mobile magnétique
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

98.

TMR HALF-BRIDGE MAGNETIC FIELD GRADIENT SENSOR CHIP FOR CURRENCY DETECTOR MAGNETIC HEAD

      
Numéro d'application CN2014073637
Numéro de publication 2014/146570
Statut Délivré - en vigueur
Date de dépôt 2014-03-18
Date de publication 2014-09-25
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Liu, Mingfeng
  • Bai, Jianjun
  • Zhu, Min
  • Shen, Weifeng

Abrégé

A TMR half-bridge magnetic field gradient sensor chip for a currency detector magnetic head, the sensing direction of the sensor chip being parallel to the surface thereof, and the surface thereof being perpendicular to the direction of the magnetic field generated by a back-bias magnet of the sensor chip; the TMR half-bridge magnetic field gradient sensor chip is installed above the back-bias magnet; the sensor chip comprises a magnetic bias structure, a half-bridge circuit, and input-output wiring terminals all integrated on the TMR half-bridge magnetic field gradient sensor chip; the input-output wiring terminals comprise a power source input terminal, a half-bridge output terminal and a grounding terminal respectively disposed on the half-bridge circuit comprising two bridge arms; the magnetic bias structure provides biasing for a magnetic tunnel junction (MTJ) in the half-bridge circuit, such that the half-bridge circuit operates in a linear area. The currency detector magnetic head has good manufacturability, sensitivity and anti-interference capability, and low costs.

Classes IPC  ?

99.

LOW-POWER MAGNETIC RESISTANCE SWITCH SENSOR

      
Numéro d'application CN2014073801
Numéro de publication 2014/146594
Statut Délivré - en vigueur
Date de dépôt 2014-03-20
Date de publication 2014-09-25
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s) Zhong, Xiaojun

Abrégé

Disclosed in the present invention is a low-power magnetic resistance switch sensor, comprising an internal reference voltage circuit, a multiplexer, a magnetic resistance bridge circuit, a comparison circuit, a power voltage stabilizing circuit, a digital control circuit and a digital output circuit; one end of the internal reference voltage circuit is grounded while the other end of the internal reference voltage circuit is connected to the output end of the power voltage stabilizing circuit; the comparison circuit comprises one or more comparators, one end of the comparison circuit is electrically connected with the power voltage stabilizing circuit while the other end is grounded, the comparison circuit is provided with one or more input ends and one or more output ends, and the one or more output ends of the comparison circuit are electrically connected with one input end of the digital control circuit; one end of the magnetic resistance bridge circuit is electrically connected with the output end of the power voltage stabilizing circuit while the other end is grounded, and the output end of the magnetic resistance bridge circuit is electrically connected with one input end of the comparison circuit. The low-power magnetic resistance switch sensor has the advantages of being high in sensitivity, low in power consumption, high in response frequency, small in size and excellent in temperature property.

Classes IPC  ?

  • H03K 17/95 - Commutateurs de proximité utilisant un détecteur magnétique