Multidimension Technology Co., Ltd.

Chine

Retour au propriétaire

1-100 de 212 pour Multidimension Technology Co., Ltd. Trier par
Recheche Texte
Affiner par
Type PI
        Brevet 200
        Marque 12
Juridiction
        États-Unis 107
        International 99
        Europe 6
Date
Nouveautés (dernières 4 semaines) 1
2024 avril (MACJ) 1
2024 (AACJ) 1
2023 17
2022 10
Voir plus
Classe IPC
G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs 116
G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques 35
G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes 20
G01R 33/02 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques 18
G01D 5/14 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension 17
Voir plus
Classe NICE
09 - Appareils et instruments scientifiques et électriques 12
42 - Services scientifiques, technologiques et industriels, recherche et conception 6
11 - Appareils de contrôle de l'environnement 5
40 - Traitement de matériaux; recyclage, purification de l'air et traitement de l'eau 5
Statut
En Instance 14
Enregistré / En vigueur 198
  1     2     3        Prochaine page

1.

LASER WRITING APPARATUS AND METHOD FOR PROGRAMMING MAGNETORESISTIVE DEVICES

      
Numéro d'application 18549104
Statut En instance
Date de dépôt 2022-03-02
Date de la première publication 2024-04-11
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed in the embodiments of the present invention are a laser writing apparatus and method for programming magnetoresistive devices. The apparatus comprises: a substrate, a magnetoresistive sensor and a thermal control layer which are sequentially arranged in a stacked manner. A non-magnetic insulating layer for electrical isolation is provided between the magnetoresistive sensor and the thermal control layer. The magnetoresistive sensor is composed of a magnetoresistive sensing unit which is a multilayer thin-film stacked structure containing an anti-ferromagnetic layer. The laser writer programming apparatus is used during the laser writer programming phase, along with varied parameters of the thermal control layers and/or magnetoresistive sensors, to change the thermal gradient produced by the laser on the magnetoresistive sensor, to increase or decrease the temperature change of the magnetoresistive sensor at the same laser power, and the film parameters use d to do this include material composition and film thickness. Through the embodiments of this invention, high precision laser programming of a magneotresistive sensor is obtained, with improved magnetoresistive sensor manufacturability, improved magnetoresistive sensor noise performance, and with improved magnetoresistive sensor detectability.

Classes IPC  ?

  • G01R 3/00 - Appareils ou procédés spécialement adaptés à la fabrication des appareils de mesure
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G11B 5/39 - Structure ou fabrication de têtes sensibles à un flux utilisant des dispositifs magnétorésistifs
  • H10N 35/01 - Fabrication ou traitement

2.

MAGNETIC SWITCH HAVING FILTERING FUNCTION

      
Numéro d'application CN2022137479
Numéro de publication 2023/216578
Statut Délivré - en vigueur
Date de dépôt 2022-12-08
Date de publication 2023-11-16
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Li, Dongfeng
  • Lin, Xiulong
  • Yao, Gang
  • Yang, Kai

Abrégé

The present application discloses a magnetic switch having a filtering function. The magnetic switch comprises: a magnetic sensing module and a specific integrated circuit; the specific integrated circuit comprises a power supply module, a comparison module, a filtering module, and a logic operation module; an output end of the magnetic sensing module is electrically connected to an input end of the comparison module; the filtering module is electrically connected between an output end of the comparison module and an input end of the logic operation module; or, the filtering module is electrically connected between the output end of the magnetic sensing module and the input end of the comparison module, and the output end of the comparison module is electrically connected to the input end of the logic operation module. The present application provides a high-integration magnetic switch which has high frequency response, not only has the characteristics of a conventional magnetic switch, but also can set a switching frequency threshold by means of the filtering module, such that the high-integration magnetic switch can output high and low level change signals within a set switching frequency range. Therefore, the present application avoids the effect of invalid action of the magnetic switch under the effect of a vibration environment and other environments, and also reduces the power consumption and costs.

Classes IPC  ?

  • H03K 17/90 - Commutation ou ouverture de porte électronique, c. à d. par d'autres moyens que la fermeture et l'ouverture de contacts caractérisée par l'utilisation de composants spécifiés par l'utilisation, comme éléments actifs, de dispositifs galvano-magnétiques, p.ex. des dispositifs à effet Hall

3.

CAPILLARY CHANNEL ENVIRONMENTAL SENSOR AND PREPARATION METHOD THEREFOR

      
Numéro d'application 17996424
Statut En instance
Date de dépôt 2021-04-15
Date de la première publication 2023-10-05
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Jin, Insik
  • Qi, Bin
  • Xue, Songsheng

Abrégé

Disclosed in the present invention are a capillary channel environmental sensor and a preparation method therefor. The capillary channel environmental sensor comprises a transfer cavity and at least one capillary channel. The cross sectional area of the transfer cavity is greater than the cross sectional area of the capillary channel, and one end of the capillary channel is connected with the transfer cavity; an elastic transfer diaphragm is provided between the transfer cavity and an external measurement environment. A positioned droplet is provided in the interior of the capillary channel, the positioned droplet is in tight contact with the inner walls of the capillary channel and the positioned droplet is in tight contact with a transfer medium. By means of the transfer cavity and the capillary channel that are connected to one another, because the cross sectional area of the transfer cavity is larger than the cross sectional area of the capillary channel, differences in volume between the transfer cavity and the capillary channel are used to transform a small displacement in a region of large volume into a large displacement in a region of small volume. Because the positioned droplet is provided in the capillary channel, and the capillary channel environmental sensor comprises a magnetic sensing element, the magnetic sensing element causes, on the basis of movement of the positioned droplet, the change in displacement through an intermediate variable to provide high-sensitivity and low-power detection.

Classes IPC  ?

  • G01D 5/16 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance

4.

A TYPE OF ROTATING DISK MAGNETIC FIELD PROBE

      
Numéro d'application 18000191
Statut En instance
Date de dépôt 2021-05-27
Date de la première publication 2023-08-31
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A type of rotating disk magnetic field probe (1) comprising: a non-magnetic rotating disk (2), 4N first soft ferromagnetic sectors (3), M second soft ferromagnetic sectors (4), a reference signal generator, an X-axis magnetoresistive sensor (7, 8), a Y-axis magnetoresistive sensor (5,6), and a Z-axis magnetoresistive sensor (9). Both the first soft ferromagnetic sectors (3) and the second soft ferromagnetic sector (4) are located on the non-magnetic rotating disk (2). In operation, the non-magnetic rotating disk (2) rotates about a Z-axis at a frequency f. An external magnetic field is modulated by the first soft ferromagnetic sector (3) into an X-axis magnetic field sensed component and a Y-axis magnetic field sensed component having a frequency of 4N×f, and is modulated by the second soft ferromagnetic field sectors into a Z-axis magnetic field sensed component having a frequency of M×f. The X-axis sensed magnetic field component, the Y-axis sensed magnetic field component, and the Z-axis sensed magnetic field component respectively are converted into output signals by means of the X-axis magnetoresistive sensor (7, 8) the Y-axis magnetoresistive sensor (5, 6) and the Z-axis magnetoresistive sensor (9). The reference signal generator respectively outputs a first reference signal having a frequency of 4N×f and a second reference signal having a frequency of M×f. The first reference signal, the second reference signal, and the measurement signals are demodulated by an external processing circuit to output magnetic field values Hx, Hy and Hz.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/02 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques

5.

MAGNETORESISTIVE SENSOR LAYER STRUCTURE FOR LASER ANNEALING

      
Numéro d'application CN2022137478
Numéro de publication 2023/142708
Statut Délivré - en vigueur
Date de dépôt 2022-12-08
Date de publication 2023-08-03
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed in the embodiments of the present invention are a magnetoresistive sensor layer structure for laser annealing. The magnetoresistive sensor layer structure comprises a substrate; a magnetoresistive sensing unit, which is located on the substrate, and comprises an antiferromagnetic pinning layer or a permanent magnet bias layer; a top heat absorption layer, which is located above the magnetoresistive sensing unit and/or a bottom heat absorption layer, which is located below the magnetoresistive sensing unit, wherein the product of the volume, specific heat and density of the top heat absorption layer is greater than the product of the volume, specific heat and density of a top electrode layer, the product of the volume, specific heat and density of the bottom heat absorption layer is greater than the product of the volume, specific heat and density of a bottom electrode layer, and when a write temperature of the antiferromagnetic pinning layer or the permanent magnet bias layer is higher than a blocking temperature or Curie temperature respectively corresponding thereto, the temperature of the bottom electrode layer and the temperature of the top electrode layer are lower than melting point temperatures respectively corresponding thereto; and a laser absorption layer and a laser transparent layer. The embodiments of the present invention can solve the problem of an electrode layer being easily ablated.

Classes IPC  ?

6.

CURRENT SENSOR

      
Numéro d'application CN2022132436
Numéro de publication 2023/116279
Statut Délivré - en vigueur
Date de dépôt 2022-11-17
Date de publication 2023-06-29
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Liu, Mingfeng
  • Shi, Ran
  • Xue, Songsheng

Abrégé

Provided is a current sensor, an input module thereof comprising a differential copper bar (1) and a shunt copper bar (2), connected in parallel. A current to be measured flows through the differential copper bar (1) and the shunt copper bar (2), and a magnetic field is generated at positions of high and low current detection modules (3, 4). In the high current detection module (3), a first magnetic induction module is secured on a circuit board (5) and placed in an internal gap of the input module, and the first magnetic induction module at least comprises first and second magnetic induction units (311, 312), the first and second magnetic induction units (311, 312) differentially sensing a magnetic field of the input module and forming an output signal by means of a first signal output module (32). In the low current detection module (4), a second magnetic induction module is secured on a circuit board (5) and placed outside the input module, and the second magnetic induction module at least comprises third and fourth magnetic induction units (411, 412), which differentially sense the magnetic field of the input module and form an output signal by means of a second signal output module (42). The current measurement range can be increased.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe

7.

CURRENT SENSOR

      
Numéro d'application CN2022132433
Numéro de publication 2023/116277
Statut Délivré - en vigueur
Date de dépôt 2022-11-17
Date de publication 2023-06-29
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Liu, Mingfeng
  • Shi, Ran
  • Xue, Songsheng

Abrégé

A current sensor, comprising: a to-be-measured current input assembly, composed of a first current shunting copper bar (11), a second current shunting copper bar (21), and a differential copper bar (31) that are arranged in the same direction, and a signal output assembly, composed of a substrate (51) and a magnetic sensing module (41) fixed on the substrate (51), wherein the signal output assembly is electrically isolated from said current input assembly; current to be measured flows through a cross section perpendicular to the first current shunting copper bar (11), the second current shunting copper bar (21), and the differential copper bar (31), and generates a magnetic field at the position of the magnetic sensing module (41); the magnetic sensing module (41) at least comprises a first magnetic sensing unit (411) and a second magnetic sensing unit (421); the two magnetic sensing units (411, 421) are located between the differential copper bar (31) and the first current shunting copper bar (11), sense, in a differential manner, a differential mode magnetic field generated by said current input assembly, and generate a differential voltage signal to form an output signal of the current sensor. Hence, the advantages of high precision, and an adjustable and large current measurement range of the current sensor are realized.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe
  • G01R 15/20 - Adaptations fournissant une isolation en tension ou en courant, p.ex. adaptations pour les réseaux à haute tension ou à courant fort utilisant des dispositifs galvano-magnétiques, p.ex. des dispositifs à effet Hall

8.

CURRENT SENSOR

      
Numéro d'application CN2022132435
Numéro de publication 2023/116278
Statut Délivré - en vigueur
Date de dépôt 2022-11-17
Date de publication 2023-06-29
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Liu, Mingfeng
  • Shi, Ran
  • Xue, Songsheng

Abrégé

A current sensor. In the current sensor, a primary-side current input copper bar comprises a differential copper bar area (11) and a shunting copper bar area (12) which are connected in parallel, wherein the differential copper bar area (11) comprises a current conduction path of a U-shaped structure; and there are one or more shunting copper bar areas (12), and any shunting copper bar area (12) and the differential copper bar area (11) are located in the same horizontal plane or in different horizontal planes. The primary-side current input copper bar is integrally formed or is formed by connecting more than one independent copper bars. A magnetic induction module is fixed on a circuit board, the magnetic induction module is located above the current conduction path of a U-shaped structure in the differential copper bar area (11), and an output of the magnetic induction module forms an output signal of the current sensor. The structure of the current sensor is simple, the manufacturing costs for the current sensor are low, the current measurement range of the current sensor is large, an input and an output are electrically isolated, and the current sensor can measure alternating currents and direct currents and has an adjustable sensitivity and a strong resistance to external magnetic field interference.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe

9.

STEPPED COPPER-BAR CURRENT MEASUREMENT APPARATUS

      
Numéro d'application CN2022132437
Numéro de publication 2023/116280
Statut Délivré - en vigueur
Date de dépôt 2022-11-17
Date de publication 2023-06-29
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Liu, Mingfeng
  • Shi, Ran
  • Xue, Songsheng

Abrégé

A stepped copper-bar current measurement apparatus. The apparatus comprises: a circuit board (3), a magnetic induction module (2) and a stepped copper bar (1), wherein the magnetic induction module (2) comprises a first magnetic induction unit (211) and a second magnetic induction unit (212); the side of the stepped copper bar (1) facing the magnetic induction module (2) comprises a first step (11) and a second step (12), which are different from each other; the first magnetic induction unit (211) is located above the first step (11), and the second magnetic induction unit (212) is located above the second step (12); a current to be measured flows through the cross section perpendicular to the stepped copper bar (1); the first magnetic induction unit (211) and the second magnetic induction unit (212) induct, in a differential manner, a differential-mode magnetic field which is generated by said current flowing through the stepped copper bar (1), and generate differential voltage signals and output the differential voltage signals. The apparatus has the characteristics of having an adjustable common-mode magnetic field working point, being applicable to various magnetic induction units, having adjustable sensitivity, realizing electrical isolation between an input and an output, having a strong resistance to common-mode interference, being able to measure alternating currents and direct currents, and having a large current.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe

10.

MEMS ENVIRONMENTAL SENSOR AND PREPARATION METHOD THEREFOR

      
Numéro d'application 17996425
Statut En instance
Date de dépôt 2021-04-15
Date de la première publication 2023-06-22
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Jin, Insik
  • Qi, Bin
  • Xue, Songsheng

Abrégé

The disclosed invention is a MEMS environmental sensor and preparation method thereof. A transfer cavity is produced in the middle of a transfer substrate of a MEMS environmental sensor, and a transfer medium is located inside the transfer cavity. The surface area of an input port is larger than the surface area of an output port. An elastic transfer membrane is provided on the surface of the input port, and an elastic pressure membrane is provided on the surface of the output port. A load bearing cavity is provided in a load bearing substrate, a magnetic sensing element is positioned inside the load bearing cavity, and the load bearing cavity partially overlaps with the output port. The surface area of the input port of the transfer cavity is larger than the surface area of the output port, and on the basis of Pascal's principle, differences in the volume of the transmission cavity are used to transform a small displacement in a region of large volume into a large displacement in a region of small volume. In addition, because the output port and the end of the output port at least partially overlap, and a magnetic sensing element is arranged in the load bearing cavity, a change in displacement is produced, producing a change in a magnetic field, that is converted into a change in electrical resistance, which provides high-sensitivity and low-power detection.

Classes IPC  ?

  • B81B 7/00 - Systèmes à microstructure
  • G01D 5/14 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension
  • B81C 1/00 - Fabrication ou traitement de dispositifs ou de systèmes dans ou sur un substrat

11.

ELECTRIC SHIELDING MAGNETIC TUNNEL JUNCTION SIGNAL ISOLATOR

      
Numéro d'application CN2022132434
Numéro de publication 2023/109418
Statut Délivré - en vigueur
Date de dépôt 2022-11-17
Date de publication 2023-06-22
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed in the embodiments of the present invention is an electric shielding magnetic tunnel junction signal isolator. In the isolator, a coil is located between a magnetic shielding layer and an electric shielding layer, the electric shielding layer is located between the coil and a magnetic resistance sensor, and the magnetic resistance sensor is composed of a plurality of magnetic tunnel junctions that are connected in series and in parallel; a signal sending circuit having a first reference ground is electrically connected to two ends of the coil; a signal receiving circuit having a second reference ground is connected to the magnetic resistance sensor; and the magnetic shielding layer is electrically connected to the first reference ground in a single-point or multi-point mode, or is completely electrically isolated from same, and the electric shielding layer is electrically connected to the second reference ground in a single-point or multi-point mode, or is completely electrically isolated from same; or the electric shielding layer and the magnetic shielding layer are respectively electrically connected to any potential of potentials between the first reference ground and the second reference ground in a single-point or multi-point mode. In the embodiments of the present invention, an electric field is prevented from damaging a magnetic field signal of a magnetic resistance sensor, thereby solving the problem of interference and damage of a coil to a magnetic tunnel junction in the magnetic resistance sensor.

Classes IPC  ?

12.

Magnetic sensor packaging structure with hysteresis coil

      
Numéro d'application 16497409
Numéro de brevet 11852698
Statut Délivré - en vigueur
Date de dépôt 2018-03-22
Date de la première publication 2023-06-08
Date d'octroi 2023-12-26
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Visvanathan, Elamparithi

Abrégé

A magnetic sensor packaging structure with a hysteresis coil comprising a substrate, a sensor chip, a spiral hysteresis coil on the substrate, and wire bonding pads. The sensor bridge arms are composed of magnetoresistive sensing elements. The sensor bridge arms are deposited on the sensor chip, and the sensor bridge arms are electrically interconnected to form a magnetoresistive sensor bridge that is located on the hysteresis coil. The magnetic field generated by the spiral hysteresis coil is collinear with a sensitive axis of the sensor bridge. The magnetoresistive sensor bridge is located on the substrate and encapsulated. By placing the spiral hysteresis coil on the substrate, it is capable of supporting larger currents with smaller resistance value. This allows the sensor hysteresis to be effectively eliminated. In addition, the packaging structure manufacturing process is simple and cost effective.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

13.

ELECTROMECHANICAL MODULATION MAGNETORESISTIVE ROTARY MAGNETIC FIELD PROBE

      
Numéro d'application 17997626
Statut En instance
Date de dépôt 2021-04-16
Date de la première publication 2023-06-01
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A magnetoresistive magnetic field probe with rotating electromechanical modulator (1) comprises: a bulk cylindrical base (11), wherein the bulk cylindrical base (11) has a cavity structure, and a center axis of the bulk cylindrical base (11) overlaps with a z-axis of a cylindrical coordinate system; a first magnetic tile (12) and a second magnetic tile (13) attached to an outer side wall of the bulk cylindrical base (11); and a magnetoresistive sensor (14) and a reference signal generator (15) located on the center axis of the bulk cylindrical base (11). During operation, the bulk cylindrical base (11) rotates about the z-axis at a frequency f, and the first magnetic tile (12) and the second magnetic tile (13) modulate an external magnetic field into a sensed magnetic field having a frequency 2f, and a measurement signal having a frequency 2f is output via the magnetoresistive sensor (14). The reference signal generator (15) outputs a reference signal having a frequency 2f. The reference signal and the measurement signal are demodulated by an external processing circuit (4) to output a magnetic field value, so as to provide a measurement of the external magnetic field with superior signal-to-noise ratio. Through adding a detachable rotating sleeve to the magnetoresistive sensor (14), superior signal-to-noise ratio measurement of the external magnetic fields can be realized. This invention is small in size with a simple structure, and the complexity of the process is also greatly reduced, enabling lower cost.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

14.

MAGNETIC SENSOR APPARATUS

      
Numéro d'application CN2022118641
Numéro de publication 2023/065894
Statut Délivré - en vigueur
Date de dépôt 2022-09-14
Date de publication 2023-04-27
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Guo, Haiping
  • Song, Chen
  • Chen, Ye
  • Shen, Weifeng
  • Xue, Songsheng

Abrégé

Disclosed in the embodiments of the present invention is a magnetic sensor apparatus. The apparatus comprises a magnetic field generation portion, a magnetic sensor portion and a signal processing portion, wherein the magnetic sensor portion comprises a first magnetic sensor arranged at a first position, a second magnetic sensor arranged at a second position, and a third magnetic sensor arranged at a third position; the first position, the second position and the third position are on the same horizontal line and are arranged at equal intervals; magnetic fields generated by the magnetic field generation portion at the three different positions are different; the signal processing portion comprises a first differential circuit, a second differential circuit and a third differential circuit; the first differential circuit generates a first difference between a first signal that is sensed and output by the first magnetic sensor and a second signal that is sensed and output by the second magnetic sensor; the second differential circuit generates a second difference between the second signal and a third signal that is sensed and output by the third magnetic sensor; and the third differential circuit generates a differential measurement signal on the basis of the difference between the first difference and the second difference. By means of the present invention, the impact of a magnetic interfering field can be eliminated, thereby improving the current detection precision.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/02 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques

15.

MAGNETIC PROBE-BASED CURRENT MEASUREMENT DEVICE, AND MEASUREMENT METHOD

      
Numéro d'application 17907388
Statut En instance
Date de dépôt 2021-03-24
Date de la première publication 2023-04-20
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Qu, Pin
  • Xue, Songsheng
  • Wang, Huijuan
  • Liu, Zongxin

Abrégé

A magnetic probe-based current measurement device and measurement method is disclosed. The device comprises a conductor for a current under test, a magnetic probe, a magnetic bias structure, and a programmable chip. A conductor has a first axis, a second axis, and a third axis. The conductor is provided with through holes. The direction of the through holes are parallel to the third axis. Vertical projections of the through holes on a first cross section are symmetric about the first axis. At least one of the through holes has a center position located on the first axis. And/or every pair of the through holes have center positions that are symmetric about the first axis. The magnetic probe is provided within the through holes, and is electrically connected to the programmable chip. A sensitive center position of the magnetic probe is located on the first cross section. A vertical projection of the magnetic probe on the first cross section is symmetric about the first axis. The magnetic bias structure is provided within the through holes. A magnetization direction of the magnetic bias structure is perpendicular to a sensitive direction of the magnetic probe. The device is small size and has the advantages of high measurement accuracy, and high adaptability

Classes IPC  ?

  • G01R 15/20 - Adaptations fournissant une isolation en tension ou en courant, p.ex. adaptations pour les réseaux à haute tension ou à courant fort utilisant des dispositifs galvano-magnétiques, p.ex. des dispositifs à effet Hall

16.

CURRENT MEASUREMENT DEVICE

      
Numéro d'application CN2022118642
Numéro de publication 2023/056827
Statut Délivré - en vigueur
Date de dépôt 2022-09-14
Date de publication 2023-04-13
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Guo, Haiping
  • Song, Chen
  • Chen, Ye
  • Shen, Weifeng
  • Xue, Songsheng

Abrégé

A current measurement device, comprising three or more different positions, wherein each position is provided with at least two magneto-resistors, the two magneto-resistors are two magneto-resistors which respectively have a first sensitive direction and an opposite second sensitive direction, the resistance value of the magneto-resistor has, within a set range, a linear relationship with a magnetic field at the position where the magneto-resistor is located, and the sensitive directions of all magneto-resistors at different positions are the same or opposite, a magnetic field to be measured has a component in the sensitive direction of the magneto-resistor, the component, in the sensitive direction, of said magnetic field on at least one position is different from components, in the sensitive direction, of said magnetic fields at other positions, and all the magneto-resistors are electrically connected to form a resistance network in which an output signal includes the signals of said magnetic fields, and does not include or includes an interference magnetic field signal less than a first preset intensity. The current measurement device eliminates the interference of an interference magnetic field with current measurement.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe
  • G01R 15/20 - Adaptations fournissant une isolation en tension ou en courant, p.ex. adaptations pour les réseaux à haute tension ou à courant fort utilisant des dispositifs galvano-magnétiques, p.ex. des dispositifs à effet Hall

17.

CURRENT SENSOR

      
Numéro d'application CN2022118643
Numéro de publication 2023/056828
Statut Délivré - en vigueur
Date de dépôt 2022-09-14
Date de publication 2023-04-13
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Qu, Pin
  • Xue, Songsheng
  • Zhang, Jiuyuan

Abrégé

Embodiments of the present invention disclose a current sensor. The sensor comprises: a current conductor to be measured, comprising a first conductor section and a second conductor section having identical shapes, an area defined by an extended shape of each of the first conductor section and the second conductor section being distributed in a U shape, and the two conductor sections being symmetrically distributed about a geometric center line of the current conductor to be measured; a first magnetic sensor group arranged at one side or two sides of the first conductor section, and a second magnetic sensor group arranged at one side or two sides of the second conductor section, the first magnetic sensor group and the second magnetic sensor group being symmetrically distributed about the geometric center line of the current conductor to be measured, and sensitive directions of the two magnetic sensor groups being the same; a shielding cover sealed on all sides, the shielding cover being placed in a housing made of insulating material and wrapping the current conductor to be measured, the first magnetic sensor group, the second magnetic sensor group, a signal processor and a circuit board. The current sensor provided by the embodiments of the present invention has the effects of small size, strong anti-interference capability, wide measurement range, low temperature drift, high frequency response and high measurement precision.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe

18.

GAIN-CONTROLLABLE MAGNETORESISTIVE ANALOG AMPLIFIER

      
Numéro d'application 17904515
Statut En instance
Date de dépôt 2021-02-09
Date de la première publication 2023-03-16
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Zhou, Zhimin
  • Deak, James Geza

Abrégé

A gain-controllable magnetoresistive analog amplifier comprises a substrate located in an X-Y plane, an output signal magnetoresistive sensor located on the substrate, and an input signal coil and a gain adjustment coil. The input signal coil and the gain adjustment coil are respectively located on two side surfaces of the output signal magnetoresistive sensor. The gain adjustment coil is used to input a gain signal by the generation of a gain magnetic field, in order to set the gain the magnetic field is applied along a magnetization direction of a free layer of the output signal magnetoresistive sensor, thereby adjusting the slope of the input resistance-magnetic field transfer curve of the output signal magnetoresistive sensor. The input signal coil is used for inputting a current signal to generate an input magnetic field, in order to apply the input magnetic field to a magnetization direction of a pinned layer of the output signal magnetoresistive sensor, thereby controlling the gain signal to adjust a gain factor of an output signal after the current signal passes through the output signal magnetoresistive sensor. This magnetoresistive analog amplifier provides isolation between input signals, output signals, and controllable gain signals.

Classes IPC  ?

  • H03F 1/34 - Circuits à contre-réaction avec ou sans réaction
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

19.

LINEAR DISPLACEMENT ABSOLUTE POSITION ENCODER

      
Numéro d'application 17904414
Statut En instance
Date de dépôt 2021-02-09
Date de la première publication 2022-12-22
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Guo, Haiping
  • Shen, Weifeng
  • Xue, Songsheng
  • Li, Haochen

Abrégé

Disclosed is linear displacement absolute position encoder used for measuring displacement of a tested apparatus. The linear displacement absolute position encoder comprises a base, a magnetoresistive sensor array, an encoding strip, and a back magnet. The encoding strip is fixed on the base and extends in the direction of a rail of the tested apparatus. The encoding strip is a magnetic material block having recess and protrusion for identifying encoding information of different positions. The magnetoresistive sensor array is arranged between the encoding strip and the back magnet in a non-contact manner. The back magnet is used for generating a non-uniform magnetic field around the encoding strip so as to magnetize the encoding strip. The magnetoresistive sensor array is used for acquiring the position encoding information of the encoding strip by detecting magnetic field information of the encoding strip. The encoder is low cost and can monitor large distances.

Classes IPC  ?

  • G01D 5/16 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance
  • G01D 5/14 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension

20.

HIGH-SENSITIVITY MAGNETORESISTIVE ACOUSTIC WAVE SENSOR AND ARRAY DEVICE

      
Numéro d'application 17753358
Statut En instance
Date de dépôt 2020-08-18
Date de la première publication 2022-12-15
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Qi, Bin
  • Xue, Songsheng

Abrégé

A magnetoresistive acoustic wave sensor with high sensitivity and an array device thereof is disclosed, in which a magnetoresistive acoustic wave sensor comprises a protective tube shell, a magnetic vibration assembly, and a magnetoresistive chip located inside the protective tube shell. The protective tube shell comprises at least one opening which is covered by the magnetic vibration assembly. The plane where the magnetoresistive sensor chip is located is perpendicular to the plane where the magnetic vibration assembly is located, and the sensing direction of the magnetoresistive sensor chip is located in the plane where magnetoresistive sensor chip is located, and is perpendicular to or parallel to the plane where the magnetic vibration assembly is located. Alternatively, the plane where the magnetoresistive sensor chip is located is parallel to the plane where the magnetic vibration assembly is located, and the sensing direction of the magnetoresistive sensor chip is located in the plane where the magnetoresistive sensor chip is located, and is parallel to the plane where the magnetic vibration assembly is located. The magnetoresistive acoustic wave sensor with high sensitivity and an array device thereof is of small size, high sensitivity, low power consumption, high response speed, good stable temperature, large response frequency bandwidth, excellent low-frequency response and the like.

Classes IPC  ?

  • G01N 29/24 - Sondes
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

21.

HYDROGEN GAS SENSOR UTILIZING ELECTRICALLY ISOLATED TUNNELING MAGNETORESISTIVE STRESS SENSING ELEMENTS

      
Numéro d'application 17755180
Statut En instance
Date de dépôt 2020-10-27
Date de la première publication 2022-11-24
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A hydrogen gas sensor utilizing electrically isolated tunneling magnetoresistive stress sensing elements is disclosed. The hydrogen gas sensor comprises: a deformable substrate, a magnetoresistive bridge stress sensor located on the deformable substrate, an electrical isolation layer covering the magnetoresistive bridge stress sensor, a magnetic shielding layer located on the electrical isolation layer, and a hydrogen sensing layer located above the deformable substrate. The hydrogen sensing layer is located in a plane perpendicular to the deformation of the substrate covering the electrical isolation layer. The hydrogen sensing layer is used for absorbing or desorbing hydrogen gas to generate expansion or contraction deformation and cause a stress change of the deformable substrate. The magnetoresistive bridge stress sensor is used for measuring a hydrogen gas concentration utilizing the stress change of the deformable substrate. It results in a hydrogen gas sensor with improved performance.

Classes IPC  ?

  • G01N 27/72 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant des variables magnétiques
  • G01N 33/00 - Recherche ou analyse des matériaux par des méthodes spécifiques non couvertes par les groupes

22.

HYDROGEN GAS SENSOR BASED ON ELECTRICALLY ISOLATED TUNNEL MAGNETORESISTIVE SENSITIVE ELEMENT

      
Numéro d'application 17753360
Statut En instance
Date de dépôt 2020-08-18
Date de la première publication 2022-10-27
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A hydrogen gas sensor utilizing electrically isolated tunneling magnetoresistive sensing elements is provided. The hydrogen gas sensor comprises: a substrate in an X-Y plane, tunneling magnetoresistive sensors located on the substrate, and a hydrogen sensing layer located on the tunnel magnetoresistive sensors. The hydrogen sensing layer and the tunneling magnetoresistive sensor are electrically isolated from each other. The hydrogen sensing layer includes a multi-layer thin film structure formed from palladium layers and ferromagnetic layers, wherein the palladium layers are used for absorbing hydrogen in the air that causes a change in the orientation angle of a magnetic anisotropy field in each of the ferromagnetic layers in the X-Z plane into an X-axis direction. The tunnel magnetoresistive sensors are used for detecting a magnetic field signal of the hydrogen sensing layer, wherein the magnetic signal determines the hydrogen gas concentration. This hydrogen gas sensor ensures measurement safety.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01N 33/00 - Recherche ou analyse des matériaux par des méthodes spécifiques non couvertes par les groupes

23.

LOW-MAGNETIC-FIELD MAGNETORESISTIVE ANGLE SENSOR

      
Numéro d'application CN2022081199
Numéro de publication 2022/194205
Statut Délivré - en vigueur
Date de dépôt 2022-03-16
Date de publication 2022-09-22
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed in embodiments of the present invention is a low-magnetic-field magnetoresistive angle sensor. The sensor comprises: a substrate located on an X-Y plane; and a magnetoresistive sensing unit located on the substrate, the magnetoresistive sensing unit comprising a multi-layer thin film structure, the multi-layer thin film structure at least comprising a free layer, a barrier layer, and a reference layer which are stacked. The magnetoresistive sensing unit is in an oval shape; the free layer is in an oval shape having a long axis Ly, a short axis Lx, and a thickness Lz; and the free layer has a saturation magnetic field, a shape anisotropic demagnetizing field, and a magnetocrystalline anisotropic field in the X direction. If an external magnetic field rotates by 0-360° in the X-Y plane, the magnetocrystalline anisotropic field is compensated by the shape anisotropic demagnetizing field to cause the effective anisotropic field of the free layer to be close to 0, such that the external magnetic field has a low working magnetic field value close to that of the saturation magnetic field of the free layer. In the embodiments of the present invention, the accuracy of angle measurement of a magnetoresistive angle sensor can be improved; and since a required magnetic field value of an external magnetic field is low, the price and use cost of a sensor are reduced.

Classes IPC  ?

  • G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes

24.

LASER PROGRAMMING AND WRITINGWRITING APPARATUS AND METHOD FOR MAGNETO-RESISTIVE DEVICE

      
Numéro d'application CN2022078776
Numéro de publication 2022/184090
Statut Délivré - en vigueur
Date de dépôt 2022-03-02
Date de publication 2022-09-09
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed in the embodiments of the present invention are a laser programming and writing apparatus and method for a magneto-resistive device. The apparatus comprises: a substrate, a magneto-resistive sensor and a thermal control layer which are sequentially arranged in a stacked manner, a non-magnetic insulating layer for electrical isolation being provided between the magneto-resistive sensor and the thermal control layer, the magneto-resistive sensor being composed of a magneto-resistive sensing unit which is a multilayer thin-film stacking structure having an anti-ferromagnetic layer; the laser programming and writing apparatus is configured to change, at a laser programming and writing stage, film layer parameters of the thermal control layer and/or the magneto-resistive sensor, so as to adjust a rate of change of the temperature of the magneto-resistive sensor along with the laser power, and to increase or decrease the temperature at which the same laser power is written into the magneto-resistive sensor, and the film layer parameters include at least one of a film layer material and a film layer thickness. By means of the embodiments of the present invention, high-precision laser writing and programming of the magneto-resistive sensor is achieved, the manufacturing defects of the magneto-resistive sensor are overcome, the performance of the magneto-resistive sensor is improved, and the detection precision of the magneto-resistive sensor are further improved.

Classes IPC  ?

  • G01D 5/16 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance

25.

MAGNETIC LEVEL GAUGE

      
Numéro d'application 17753201
Statut En instance
Date de dépôt 2020-08-18
Date de la première publication 2022-09-01
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Qi, Bin
  • Xue, Songsheng

Abrégé

A wall-mounted magnetic level gauge for material storage containers, the magnetic level gauge comprises: A magnetic displacement assembly, which is located on the sidewall of the material storage container and generates a mechanical displacement in response to the level of a material in the material storage container. It further includes a magnetic sensor assembly, comprising a protective housing, a magnetoresistive chip, and a processing module located within the protective housing. The protective housing is fixed on the side wall of the material storage container. The magentoresistive chip is located at a side of the processing module facing a magnet displacement assembly. The magnetic sensor assembly is used to sense a magnetic field produced by the magnet displacement assembly to determine the level of the material in the material storage container. The magnet displacement assembly displaces the magnet according to the level of the material. The magnetoresistive chip senses a magnetic field change of the magnet displacement assembly to determine the level of the material accordingly. The magnetic level gauge has the advantages of simple structure, low power consumption, high sensitivity, and low cost. It is suitable for the solid and liquid material measurement.

Classes IPC  ?

  • G01F 23/72 - Indication ou mesure du niveau des liquides ou des matériaux solides fluents, p.ex. indication en fonction du volume ou indication au moyen d'un signal d'alarme par des flotteurs du type à flotteur libre en utilisant des moyens d'indication actionnés magnétiquement
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

26.

Magnetoresistive inertial sensor chip

      
Numéro d'application 17594149
Numéro de brevet 11940299
Statut Délivré - en vigueur
Date de dépôt 2020-03-27
Date de la première publication 2022-05-19
Date d'octroi 2024-03-26
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Qi, Bin
  • Feng, Lixian
  • Guo, Haiping
  • Shen, Weifeng
  • Xue, Songsheng

Abrégé

This invention describes a magnetoresistive inertial sensor chip, comprising a substrate, a vibrating diaphragm, a magnetic field sensing magnetoresistor and at least one permanent magnet thin film. The vibrating diaphragm is located on one side surface of the substrate. The magnetic field sensing magnetoresistor and the permanent magnet thin film are set on the surface of the vibrating diaphragm displaced from the base of the substrate. A contact electrode is also arranged on the surface of the vibrating diaphragm away from the base of the substrate. The magnetic field sensing magnetoresistor is connected to the contact electrode through a lead. The substrate comprises a cavity formed through etching and either one or both of the magnetic field sensing magnetoresistors and the permanent magnet thin film are arranged in a vertical projection area of the cavity in the vibrating diaphragm portion. A magnetic field generated by the permanent magnet thin film changes in the sensing direction of the magnetic field sensing magnetoresistor of magnetoresistive inertial sensor chip, which changes the resistance valve of the magnetic field sensing magnetoresistor, thereby producing a change in an output electrical signal. This magnetoresistive inertial sensor chip uses the high-sensitivity and high-frequency response characteristics of a magnetoresistor to improve the output signal strength and frequency response, thereby facilitating the detection of small and high frequency pressure, vibration, or acceleration changes.

Classes IPC  ?

  • G01D 5/16 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance

27.

DIGITAL LIQUID LEVEL SENSOR UTILIZING CROSS-POINT MAGNETORESISTIVE SENSOR ARRAY

      
Numéro d'application 17310912
Statut En instance
Date de dépôt 2020-02-26
Date de la première publication 2022-04-21
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Visvanathan, Elamparithi

Abrégé

Disclosed is a digital liquid level sensor based on a magnetoresistive sensor cross-point array, including: a plurality of TMR magnetic sensor chips; a microcontroller, a row decoder, and a column decoder, wherein the microcontroller is electrically connected to the row decoder and the column decoder, the TMR magnetic sensor chips include a plurality of MTJ elements, diodes are connected between each row of MTJ elements and a row lead or a column lead, the TMR magnetic sensor chips are addressed by means of data decoded by the row decoder and the column decoder and on the basis of the equation Address=m+[M×(n−1)], Address representing an address value, and m representing the value of a current row, and the microcontroller is used for scanning addresses of the TMR magnetic sensor chips for the address of an MTJ element in the highest active state, converting the address value into a liquid level value in a linear proportional relationship therewith, and transmitting the liquid level value to an output interface; and a permanent magnet and a protective tube. The power consumption of a sensor element is greatly minimized by powering only one sensor chip element each time.

Classes IPC  ?

  • G01F 23/72 - Indication ou mesure du niveau des liquides ou des matériaux solides fluents, p.ex. indication en fonction du volume ou indication au moyen d'un signal d'alarme par des flotteurs du type à flotteur libre en utilisant des moyens d'indication actionnés magnétiquement
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01F 23/68 - Indication ou mesure du niveau des liquides ou des matériaux solides fluents, p.ex. indication en fonction du volume ou indication au moyen d'un signal d'alarme par des flotteurs du type à flotteur libre en utilisant des moyens d'indication actionnés électriquement

28.

Magnetoresistive hydrogen sensor and sensing method thereof

      
Numéro d'application 17309266
Numéro de brevet 11408949
Statut Délivré - en vigueur
Date de dépôt 2019-11-13
Date de la première publication 2022-01-13
Date d'octroi 2022-08-09
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Liu, Xuanzuo

Abrégé

A magnetoresistive hydrogen sensor and sensing method thereof, wherein the hydrogen sensor comprises a substrate located in an X-Y plane, magnetoresistive sensing units and magnetoresistive reference units located on the substrate. The magnetoresistive sensing units are electrically connected to form a sensing arm, and the magnetoresistive reference units are electrically connected to form a reference arm. The sensing arm and the reference arm are electrically interconnected to form a referenced bridge structure. The magnetoresistive sensing units and the magnetoresistive reference units may be AMR units having the same magnetic multilayer thin film structure, GMR spin valves, or GMR multilayer film stacks having the same magnetic multilayer thin film structure. The magnetoresistive sensing units and the magnetoresistive reference units are respectively covered with a Pd layer, and a passivating insulation layer is deposited over the Pd layer of the magnetoresistive reference units. The magnetic multilayer thin film structure is made into a serpentine strip circuit by a semiconductor micromachining process. The hydrogen detecting method comprises placing the hydrogen sensor in a gas environment containing hydrogen, the Pd layers covering in the magnetoresistive sensing units absorb hydrogen to change the perpendicular magnetic anisotropy of ferromagnetic layers in the magnetic multilayer thin film structures of the magnetoresistance sensing units, which makes the magnetic moment of the ferromagnetic layer rotate to produce a change in the magnetoresistance value that correlates to the hydrogen concentration. The resulting change of the magnetoresistance value changes the output voltage value of the referenced bridge structure, and this change of the output voltage value of the referenced bridge structure is used to measure the hydrogen concentration.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01N 27/04 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant l'impédance en recherchant la résistance

29.

NON-DESTRUCTIVE TESTING DEVICE FOR DETECTING DAMAGE TO STEEL WIRE ROPE

      
Numéro d'application 17278037
Statut En instance
Date de dépôt 2019-09-17
Date de la première publication 2021-12-09
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Zheng, Kuohai
  • Li, Junyong

Abrégé

A non-destructive testing device for detecting damage to a steel wire rope, including a bushing which limits a lower shell and an upper shell through a limiting groove. The lower shell is connected to the upper shell via an opening and closing structure. An air bag is wrapped around the bushing. A PCB is fixed on the upper shell or the lower shell. The PCB is connected to a guide wheel via an electrical connector. A magnetoresistive sensor array is arranged inside the air bag and is uniformly arranged in a circumferential direction of the bushing. A steel wire rope passes through the magnetoresistive sensor array. And when the steel wire rope moves, it drives the guide wheel to rotate and triggers the acquisition of a command. Guide wheel is set with a position coder which is used to calculate a relative position of movement of the steel wire rope. The PCB is connected to a single chip microcomputer via a peripheral interface. And the single chip microcomputer is used to calculate a differential signal of N adjacent magnetoresistive sensors and to determine whether the steel wire rope is damaged. The capability of this non-destructive testing device for detection of a broken wire, a narrowed diameter, and deep damage of the steel wire rope is improved.

Classes IPC  ?

  • G01N 27/82 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant des variables magnétiques pour rechercher la présence des criques
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

30.

MAGNETORESISTANCE RELAXATION OSCILLATOR TYPE MAGNETOMETER

      
Numéro d'application CN2021096227
Numéro de publication 2021/239031
Statut Délivré - en vigueur
Date de dépôt 2021-05-27
Date de publication 2021-12-02
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A magnetoresistance relaxation oscillator type magnetometer (1), comprising: a capacitor (2), a charging resistor (3), a discharging resistor (4), a charging and discharging change-over switch (5), a high-voltage source terminal (6), a grounding terminal (7), and a signal output terminal (Vout). The charging resistor (3) consists of at least one charging magnetoresistance unit, and the discharging resistor (4) consists of at least one discharging magnetoresistance unit. A first end of the capacitor (2) is connected to the grounding terminal (7), a second end of the capacitor (2) is separately connected to the charging resistor (3), the discharging resistor (4) and the signal output terminal (Vout) by means of the charging and discharging change-over switch (5), and the charging and discharging change-over switch (5) is further connected to the high-voltage source terminal (6). In the charging stage, the charging and discharging change-over switch (5) is switched to the high-voltage source terminal (6), and the high-voltage source terminal (6) charges the capacitor (2) by means of the charging resistor (3); and in the discharging stage, the charging and discharging change-over switch (5) is switched to the grounding terminal (7), and the capacitor (2) discharges to the grounding terminal (7) by means of the discharging resistor (4). Rapid measurement of the magnetic field size of an external magnetic field can be achieved.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • H03K 3/012 - Modifications du générateur pour améliorer le temps de réponse ou pour diminuer la consommation d'énergie

31.

ROTATING DISC TYPE MAGNETIC FIELD INTENSITY PROBE

      
Numéro d'application CN2021092974
Numéro de publication 2021/228065
Statut Délivré - en vigueur
Date de dépôt 2021-05-11
Date de publication 2021-11-18
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James, Geza
  • Zhou, Zhimin

Abrégé

A rotating disc type magnetic field intensity probe (1), comprising: a non-magnetic rotating wheel (2), 4N first soft magnetic sectors (3), M second soft magnetic sectors (4), a reference signal generator, an X-axis reluctance sensor (7, 8), a Y-axis reluctance sensor (5, 6), and a Z-axis reluctance sensor (9). Both the first soft magnetic sectors (3) and the second soft magnetic sectors (4) are located on the non-magnetic rotating wheel (2). During working, the non-magnetic rotating wheel (2) rotates about a z axis at a frequency f. An external magnetic field is modulated by the first soft magnetic sectors (3) into an x-axis sensitive magnetic field component and a y-axis sensitive magnetic field component having a frequency of 4N×f, and is modulated by the second soft magnetic sectors into a z-axis sensitive magnetic field component having a frequency of M×f. The x-axis sensitive magnetic field component, the y-axis sensitive magnetic field component, and the z-axis sensitive magnetic field component respectively output corresponding measurement signals by means of the X-axis reluctance sensor (7, 8), the Y-axis reluctance sensor (5, 6), and the Z-axis reluctance sensor (9). The reference signal generator respectively outputs a first reference signal having a frequency of 4N×f and a second reference signal having a frequency of M×f. The first reference signal, the second reference signal, and the measurement signals are demodulated by an external processing circuit to output magnetic field values Hx, Hy, and Hz.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

32.

ELECTROMECHANICAL MODULATION MAGNETORESISTIVE ROTARY MAGNETIC FIELD PROBE

      
Numéro d'application CN2021087772
Numéro de publication 2021/218668
Statut Délivré - en vigueur
Date de dépôt 2021-04-16
Date de publication 2021-11-04
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

An electromechanical modulation magnetoresistive rotary magnetic field probe (1) comprises: a cylindrical substrate (11), wherein the cylindrical substrate (11) is a hollow structure, and a center axis of the cylindrical substrate (11) coincides with a z-axis of a cylindrical coordinate system; a first arc magnet (12) and a second arc magnet (13) attached to an outer side wall of the cylindrical substrate (11); and a magnetoresistive sensor (14) and a reference signal generator (15) located on the center axis of the cylindrical substrate (11). During operation, the cylindrical substrate (11) rotates about the z-axis at a frequency f, and the first arc magnet (12) and the second arc magnet (13) modulate an external magnetic field into a sensitive magnetic field having a frequency 2f, and a measurement signal having a frequency 2f is output via the magnetoresistive sensor (14). The reference signal generator (15) outputs a reference signal having a frequency 2f. The reference signal and the measurement signal are demodulated by an external processing circuit (4) to output a magnetic field value, so as to measure a signal-to-noise ratio of the external magnetic field. The invention adds a detachable rotating sleeve to the magnetoresistive sensor (14) to realize signal-to-noise ratio measurement of external magnetic fields while being structural simple and small in size, thereby reducing process complexity, and having a low cost.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

33.

CAPILLARY CHANNEL ENVIRONMENTAL SENSOR AND PREPARATION METHOD THEREFOR

      
Numéro d'application CN2021087542
Numéro de publication 2021/209011
Statut Délivré - en vigueur
Date de dépôt 2021-04-15
Date de publication 2021-10-21
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Jin, Insik
  • Qi, Bin
  • Xue, Songsheng

Abrégé

Disclosed in the present invention are a capillary channel environmental sensor and a preparation method therefor. The capillary channel environmental sensor comprises a transmission cavity and at least one capillary channel, the cross sectional area of the transmission cavity being greater than the cross sectional area of the capillary channel, and one end of the capillary channel being in communication with the transmission cavity. An elastic transmission diaphragm is provided between the transmission diaphragm and an external measurement environment. A positioned droplet is provided in the interior of the capillary channel, the positioned droplet being in tight contact with the inner walls of the capillary channel and the positioned droplet being in tight contact with a transmission medium. By means of a transmission cavity and a capillary channel that are connected to one another, and by means of the cross sectional area of the transmission cavity being larger than the cross sectional area of the capillary channel, differences in volume between the transmission cavity and the capillary channel are used to transform a small displacement in a region of large volume into a large displacement in a region of small volume. Because a positioned droplet is provided in the capillary channel, and because the capillary channel environmental sensor comprises a magnetism-sensitive induction component, the magnetism-sensitive induction component causes, on the basis of movement of the positioned droplet, the change in displacement to pass through an intermediate variable to implement high-sensitivity and low-power detection.

Classes IPC  ?

  • G01D 5/14 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension

34.

MEMS ENVIRONMENTAL SENSOR AND PREPARATION METHOD THEREFOR

      
Numéro d'application CN2021087504
Numéro de publication 2021/209004
Statut Délivré - en vigueur
Date de dépôt 2021-04-15
Date de publication 2021-10-21
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Jin, Insik
  • Qi, Bin
  • Xue, Songsheng

Abrégé

Disclosed in the present invention are a MEMS environmental sensor and a preparation method therefor. A transmission cavity is provided in a transmission substrate of the MEMS environmental sensor, and a transmission medium is located inside the transmission cavity. The surface area of a reception opening in the transmission cavity is larger than the surface area of a release opening. An elastic transmission membrane is provided on the surface of the reception opening, and an elastic pressure membrane is provided on the surface of the release opening. A bearing cavity is provided in the bearing substrate, a magnetism-sensitive induction element is at least positioned inside the bearing cavity, and the bearing cavity at least partially overlaps with the release opening. The surface area of the reception opening in the transmission cavity is larger than the surface area of the release opening, and on the basis of Pascal's principle, differences in the volume of the transmission cavity are used to transform a small displacement in an region of large volume into a large displacement in a region of small volume. In addition, because the release opening and the bearing cavity at least partially overlap, and a magnetism-sensitive induction element is arranged in the bearing cavity, the change in displacement passes through an intermediate variable, such as a change in a magnetic field, to be converted into a change in electrical resistance, implementing high-sensitivity and low-power detection.

Classes IPC  ?

  • G01D 5/14 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension
  • B81B 7/02 - Systèmes à microstructure comportant des dispositifs électriques ou optiques distincts dont la fonction a une importance particulière, p.ex. systèmes micro-électromécaniques (SMEM, MEMS)
  • B81C 1/00 - Fabrication ou traitement de dispositifs ou de systèmes dans ou sur un substrat

35.

MAGNETIC PROBE-BASED CURRENT MEASUREMENT DEVICE, AND MEASUREMENT METHOD

      
Numéro d'application CN2021082698
Numéro de publication 2021/190556
Statut Délivré - en vigueur
Date de dépôt 2021-03-24
Date de publication 2021-09-30
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Qu, Pin
  • Xue, Songsheng
  • Wang, Huijuan
  • Liu, Zongxin

Abrégé

A magnetic probe-based current measurement device and a measurement method. The device comprises: a conductor (100) for a current under test, a magnetic probe, a magnetic bias structure (300, 300a, 300b), and a programmable chip (400). The conductor (100) has a first axis (01), a second axis (02), and a third axis (03). The conductor (100) is provided with through holes (101, 101a, 101b, 101c). The direction of the through holes (101, 101a, 101b, 101c) are parallel to the third axis (03). Vertical projections of the through holes (101, 101a, 101b, 101c) on a first cross section are symmetric about the first axis. At least one of the through holes (101, 101a, 101b, 101c) has a center position located on the first axis (01); and/or every pair of the through holes (101, 101a, 101b, 101c) have center positions that are symmetric about the first axis (01). The magnetic probe is provided within the through holes (101, 101a, 101b, 101c), and is electrically connected to the programmable chip (400). A sensing center position of the magnetic probe is located on the first cross section. A vertical projection of the magnetic probe on the first cross section is symmetric about the first axis (01). The magnetic bias structure (300, 300a, 300b) is provided within the through holes (101, 101a, 101b, 101c). A magnetization direction (301) of the magnetic bias structure (300, 300a, 300b) is perpendicular to a sensing direction (2011) of the magnetic probe. The device has advantages of having a compact size, high measurement accuracy, and high adaptability.

Classes IPC  ?

  • G01R 19/00 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe
  • G01R 19/32 - Compensation des variations de température
  • G01R 15/20 - Adaptations fournissant une isolation en tension ou en courant, p.ex. adaptations pour les réseaux à haute tension ou à courant fort utilisant des dispositifs galvano-magnétiques, p.ex. des dispositifs à effet Hall

36.

GAIN-CONTROLLABLE MAGNETORESISTIVE ANALOG AMPLIFIER

      
Numéro d'application CN2021076124
Numéro de publication 2021/164629
Statut Délivré - en vigueur
Date de dépôt 2021-02-09
Date de publication 2021-08-26
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Zhou, Zhimin
  • Deak, James Geza

Abrégé

A gain-controllable magnetoresistive analog amplifier. The amplifier comprises: a substrate (1) located on an X-Y plane; an output signal magnetoresistive sensor (34) located on the substrate (1); and an input signal coil (2) and a gain adjustment coil (5). The input signal coil (2) and the gain adjustment coil (5) are respectively located on two side surfaces of the output signal magnetoresistive sensor (34); the gain adjustment coil (5) is used for inputting a gain signal and generating a gain magnetic field, so that the gain magnetic field acts on a magnetization direction of a free layer of the output signal magnetoresistive sensor (34) to adjust the slope of a resistance-input magnetic field transfer curve of the output signal magnetoresistive sensor (34); the input signal coil (2) is used for inputting a current signal and generating an input magnetic field, so that the input magnetic field acts on a magnetization direction of a pinned layer of the output signal magnetoresistive sensor (34) to control the gain signal to adjust a gain factor of an output signal after the current signal passes through the output signal magnetoresistive sensor (34). The magnetoresistive analog amplifier achieves isolation between input and output signals and controllable gains.

Classes IPC  ?

  • H03F 9/00 - Amplificateurs magnétiques
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

37.

LINEAR DISPLACEMENT ABSOLUTE POSITION ENCODER

      
Numéro d'application CN2021076130
Numéro de publication 2021/164632
Statut Délivré - en vigueur
Date de dépôt 2021-02-09
Date de publication 2021-08-26
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Guo, Haiping
  • Li, Haochen
  • Shen, Weifeng
  • Xue, Songsheng

Abrégé

Disclosed is a linear displacement absolute position encoder (10) used for measuring displacement of a tested apparatus, the linear displacement absolute position encoder (10) comprising a base (100), a magneto-resistance sensor array (300), an encoding strip (200) and a back magnet, wherein the encoding strip (200) is fixed on the base (100) and extends in the direction of a rail of the tested apparatus; the encoding strip (200) is a magnetic material block having a recess and a protrusion for identifying encoding information of different positions; the magneto-resistance sensor array (300) is arranged between the encoding strip (200) and the back magnet in a non-contact manner; the back magnet is used for generating a non-uniform magnetic field around the encoding strip (300) so as to magnetize the encoding strip (200); and the magneto-resistance sensor array (300) is used for acquiring the position encoding information of the coding strip (200) by detecting magnetic field information of the encoding strip (200). The encoder (10) can achieve the monitoring of long-distance positions and is low in cost.

Classes IPC  ?

  • G01D 5/245 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques produisant des impulsions ou des trains d'impulsions utilisant un nombre variable d'impulsions dans un train
  • G01B 7/00 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques

38.

MAGNETORESISTIVE SENSOR WITH HARMONIC WIDENED LINEAR RANGE

      
Numéro d'application CN2021070518
Numéro de publication 2021/139695
Statut Délivré - en vigueur
Date de dépôt 2021-01-06
Date de publication 2021-07-15
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

0iisipii0jjSjpjjj]. Linear parts and nonlinear harmonic parts of R-H feature curves that characterize the push magnetoresistive sensing units and the pull magnetoresistive sensing units are superimposed, so that the linear range of the multi-push-pull magnetoresistive sensing bridge is greater than the linear range of the standard push-pull linear magnetoresistive sensor.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

39.

HYDROGEN SENSOR BASED ON ELECTRICAL ISOLATION MAGNETIC RESISTANCE STRESS SENSITIVE ELEMENT

      
Numéro d'application CN2020123946
Numéro de publication 2021/083137
Statut Délivré - en vigueur
Date de dépôt 2020-10-27
Date de publication 2021-05-06
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed is a hydrogen sensor based on an electrical isolation magnetic resistance stress sensitive element, the hydrogen sensor comprising a deformable substrate (1); a magnetic resistance stress sensor bridge (2) located on the deformable substrate (1), an electrical isolation layer (3) covering the magnetic resistance stress sensor bridge (2), and a magnetic shielding layer (4) located on the electrical isolation layer (3); and a hydrogen sensitive layer (5) located above the deformable substrate (1), wherein an orthographic projection of the hydrogen sensitive layer (5) on the plane where the deformable substrate (1) is located covers the electrical isolation layer (3), the hydrogen sensitive layer (5) is used for adsorbing or desorbing hydrogen to generate expansion or contraction deformation and cause a stress change of the deformable substrate (1), and the magnetic resistance stress sensor bridge (2) is used for measuring a hydrogen concentration according to the stress change of the deformable substrate (1). Various performances of the hydrogen sensor are improved.

Classes IPC  ?

  • G01N 27/72 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant des variables magnétiques

40.

Three-axis upstream-modulated low-noise magnetoresistive sensor

      
Numéro d'application 15733446
Numéro de brevet 11255927
Statut Délivré - en vigueur
Date de dépôt 2019-01-29
Date de la première publication 2021-04-08
Date d'octroi 2022-02-22
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A three-axis upstream-modulated low-noise magnetoresistive sensor comprises an X-axis magnetoresistive sensor, a Y-axis magnetoresistive sensor, and a Z-axis magnetoresistive sensor, wherein the X, Y, and Z-axis magnetoresistive sensors respectively comprise X, Y, and Z-axis magnetoresistive sensing unit arrays, X, Y, and Z-axis soft ferromagnetic flux concentrator arrays, and X, Y, and Z-axis modulator wire arrays. The X, Y, and Z-axis magnetoresistive sensing unit arrays are electrically interconnected into X, Y, and Z-axis magnetoresistive sensing bridges respectively. The X, Y, and Z-axis modulator wire arrays are electrically interconnected into individual two-port X, Y, and Z-axis excitation coils. In order to measure external magnetic fields, the two-port X, Y, and Z-axis excitation coils are separately supplied with high-frequency alternating current at a frequency f, from a current supply. The X-axis magnetoresistive sensor, Y-axis magnetoresistive sensor, and Z-axis magnetoresistive sensor each output harmonic signal components having a frequency of 2f, which are then demodulated to obtain the X, Y, and Z-axis low-noise signals. This device is small in size, has low noise, and a simple structure.

Classes IPC  ?

  • G01R 33/02 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

41.

Resettable bipolar switch sensor

      
Numéro d'application 15733447
Numéro de brevet 11300637
Statut Délivré - en vigueur
Date de dépôt 2019-01-29
Date de la première publication 2021-04-08
Date d'octroi 2022-04-12
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A resettable bipolar switch sensor is disclosed which comprises a bipolar magnetic hysteresis switch sensor, a reset coil, an ASIC switch circuit and a power reset circuit. The bipolar magnetic hysteresis switch sensor comprises a substrate and a magnetoresistive sensing arm located on the substrate. The magnetoresistive sensing arm is of a two-port structure composed of one or more magnetoresistive sensing unit strings arranged in series, parallel, or series-parallel. The magnetization direction of a free layer of a TMR magnetoresistive sensing unit is determined by an anisotropy field Hk, and together with the magnetization direction of a reference layer and the applied magnetic field, it can orient in an N or S direction. The reset coil is located between the substrate along with the magnetoresistive sensing unit, or it is located on a lead frame below the substrate. The direction of the reset magnetic field is either N or S. The ASIC switch circuit comprises a biasing circuit module, a reading circuit module, and an output circuit module. The power reset circuit is connected to the reset coil. This device has the advantages of low power consumption and small size in addition to the capability to set initial state of the switch sensor.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

42.

MAGNETIC SENSING LEVEL GAUGE

      
Numéro d'application CN2020109715
Numéro de publication 2021/036859
Statut Délivré - en vigueur
Date de dépôt 2020-08-18
Date de publication 2021-03-04
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Qi, Bin
  • Xue, Songsheng

Abrégé

A magnetic sensing level gauge, being installed on a side wall of a material storage container. The magnetic sensing level gauge comprises: a magnetic displacement assembly (101) used to generate, according to a level of a material in the material storage container, a mechanical displacement with respect to the side wall of the material storage container; a magnetic sensing assembly (2) comprising a protective housing (108) and a magnetic reluctance chip (103) and a processing module (2a) located within the protective housing (108). The protective housing (108) is fixed on the side wall of the material storage container. The magnetic reluctance chip (103) is located at a side of the processing module (2a) facing the magnetic displacement assembly (101). The magnetic sensing assembly (2) is used to sense a magnetic field signal of the magnetic displacement assembly (101) and determine, according to the magnetic field signal, the level of the material in the material storage container. The magnetic displacement assembly (101) generates the mechanical displacement according to the level of the material, and a magnetic reluctance structure senses a magnetic field change of the magnetic displacement assembly (101) to determine the level of the material accordingly. The magnetic sensing level gauge has advantages of low power consumption, high sensitivity, structural simplicity, and a low cost, thereby being applicable in solid and liquid material measurement.

Classes IPC  ?

  • G01F 23/22 - Indication ou mesure du niveau des liquides ou des matériaux solides fluents, p.ex. indication en fonction du volume ou indication au moyen d'un signal d'alarme en mesurant des variables physiques autres que les dimensions linéaires, la pression ou le poids, selon le niveau à mesurer, p.ex. par la différence de transfert de chaleur de vapeur ou d'eau

43.

HYDROGEN GAS SENSOR BASED ON ELECTRICALLY ISOLATED TUNNEL MAGNETORESISTIVE SENSITIVE ELEMENT

      
Numéro d'application CN2020109816
Numéro de publication 2021/036867
Statut Délivré - en vigueur
Date de dépôt 2020-08-18
Date de publication 2021-03-04
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James, Geza
  • Zhou, Zhimin

Abrégé

Provided is a hydrogen gas sensor based on an electrically isolated tunnel magnetoresistive sensitive element. The hydrogen gas sensor comprises: a substrate (9) located on an X-Y plane, a tunnel magnetoresistive sensor (2) located on the substrate (9), and a hydrogen sensitive layer (1) located on the tunnel magnetoresistive sensor (2). The hydrogen sensitive layer (1) and the tunnel magnetoresistive sensor (2) are electrically isolated from each other. The hydrogen sensitive layer (1) includes a multi-layer thin film structure formed by a palladium metal layer (1-1) and ferromagnetic layers (1-3), wherein the palladium metal layer (1-1) is used for adsorbing hydrogen in the air to cause a change in the deflection angle of an anisotropic magnetic field of each of the ferromagnetic layers (1-3) in an X-axis direction on an X-Z plane. The tunnel magnetoresistive sensor (2) is used for sensing a magnetic field signal of the hydrogen sensitive layer (1) and determining hydrogen concentration information according to the magnetic field signal. The hydrogen gas sensor ensures measurement safety.

Classes IPC  ?

  • G01N 27/74 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant des variables magnétiques des fluides

44.

HIGH-SENSITIVITY MAGNETORESISTIVE ACOUSTIC WAVE SENSOR AND ARRAY DEVICE

      
Numéro d'application CN2020109764
Numéro de publication 2021/036861
Statut Délivré - en vigueur
Date de dépôt 2020-08-18
Date de publication 2021-03-04
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Qi, Bin
  • Xue, Songsheng

Abrégé

A high-sensitivity magnetoresistive acoustic wave sensor and an array device. The high-sensitivity magnetoresistive acoustic wave sensor comprises a protective tube shell (106), a magnetic vibration assembly (101) and a magnetoresistive chip (102) located inside the protective tube shell (106). The protective tube shell (106) comprises at least one opening which is covered by the magnetic vibration assembly (101). The plane where the magnetoresistive chip (102) is located is perpendicular to the plane where the magnetic vibration assembly (101) is located, and the sensitive direction of the magnetoresistive chip (102) is located in the plane where the magnetoresistive chip (102) is located, and is perpendicular to or parallel to the plane where the magnetic vibration assembly (101) is located; alternatively, the plane where the magnetoresistive chip (102) is located is parallel to the plane where the magnetic vibration assembly (101) is located, and the sensitive direction of the magnetoresistive chip (102) is located in the plane where the magnetoresistive chip (102) is located and is parallel to the plane where the magnetic vibration assembly (101) is located. The high-sensitivity magnetoresistive acoustic wave sensor and the array device have the characteristics of high response speed, high sensitivity, good temperature stability, low power consumption, small size, large response frequency bandwidth, excellent low-frequency response and the like.

Classes IPC  ?

  • G01H 11/02 - Mesure des vibrations mécaniques ou des ondes ultrasonores, sonores ou infrasonores par détection des changements dans les propriétés électriques ou magnétiques par des moyens magnétiques, p.ex. la réluctance

45.

MAGNETIC SENSOR-BASED ELECTRONIC CIGARETTE

      
Numéro d'application CN2020088311
Numéro de publication 2020/224540
Statut Délivré - en vigueur
Date de dépôt 2020-04-30
Date de publication 2020-11-12
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Guo, Haiping
  • Yang, Kai
  • Li, Haochen
  • Shen, Weifeng
  • Xue, Songsheng

Abrégé

A magnetic sensor-based electronic cigarette, comprising a movable magnet (1), a stationary magnet (2), a magnetic sensor (3), and an electronic cigarette body (7); the electronic cigarette body (7) comprises a mouthpiece (8) and a cigarette channel (100) in communication with the mouthpiece (8); the movable magnet (1) is slidably provided in the cigarette channel (100); both the stationary magnet (2) and the magnetic sensor (3) are mounted on the electronic cigarette body (7); a limiting member is provided between the stationary magnet (2) and the movable magnet (1) and is used for limiting a gap between the movable magnet (1) and the stationary magnet (2); the magnetic sensor (3) is used for measuring the magnetic field strength of the movable magnet (1); when detecting that the magnetic field strength of the movable magnet (1) reaches a set value, the magnetic sensor (3) triggers a circuit between a heating wire and a battery to be conducted. The present invention solves the problem in existing electronic cigarettes that the contamination, by e-liquid, of a pressure-sensitive element of a pressure sensor affects normal operation of the electronic cigarettes.

Classes IPC  ?

  • A24F 47/00 - Articles pour fumeurs non prévus ailleurs

46.

MAGNETORESISTIVE INERTIAL SENSOR CHIP

      
Numéro d'application CN2020081618
Numéro de publication 2020/200076
Statut Délivré - en vigueur
Date de dépôt 2020-03-27
Date de publication 2020-10-08
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Qi, Bin
  • Feng, Lixian
  • Guo, Haiping
  • Shen, Weifeng
  • Xue, Songsheng

Abrégé

Disclosed is a magnetoresistive inertial sensor chip, comprising a substrate (101), a vibrating diaphragm (102, 102'), an inductive magnetoresistor (105) and at least one permanent magnetic thin film (108), wherein the vibrating diaphragm (102, 102') covers a side surface of the substrate (101); the inductive magnetoresistor (105) and the permanent magnetic thin film (108) are arranged on a surface of the vibrating diaphragm (102, 102') away from the substrate (101); a contact electrode (106) is also provided on the surface of the vibrating diaphragm (102, 102') away from the substrate (101); the inductive magnetoresistor (105) is connected to the contact electrode (106) through a connecting lead (104); the substrate (101) comprises a cavity (103) formed through etching; and either one or both of the inductive magnetoresistor (105) and the permanent magnetic thin film (108) are arranged in a vertical projection area of the cavity (103) in the vibrating diaphragm (102, 102'). A magnetic field generated by the permanent magnetic thin film (108) of the magnetoresistive inertial sensor chip changes in a sensitivity direction component of the inductive magnetoresistor (105), so that the resistance value of the inductive magnetoresistor (105) changes, thereby causing a change in an output electrical signal. The magnetoresistive inertial sensor chip uses the high-sensitivity and high-frequency response characteristics of a magnetoresistor to improve output signal strength and frequency response, thereby facilitating the detection of weak pressure, vibration or acceleration and high-frequency vibration.

Classes IPC  ?

  • G01D 5/16 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance

47.

MAGNETIC ISOLATOR

      
Numéro d'application CN2020078993
Numéro de publication 2020/187127
Statut Délivré - en vigueur
Date de dépôt 2020-03-12
Date de publication 2020-09-24
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Guo, Haiping
  • Shen, Weifeng
  • Xue, Songsheng

Abrégé

Disclosed is a magnetic isolator, comprising a substrate, a magnetic field generation unit, a magnetic field sensing unit, a shielding layer, and an isolation dielectric. The magnetic field generation unit comprises a current conductor, and the current conductor is arranged to extend along a first direction at one side of the substrate. The magnetic field sensing unit is arranged on the same side of the substrate as the current conductor and located at a lateral side of the current conductor, and a distance between the current conductor and the magnetic field sensing unit is greater than 0 along a second direction, wherein the first direction is perpendicular to the second direction. The isolation dielectric is arranged between the current conductor and the magnetic field sensing unit. Arranging the isolation dielectric between the current conductor and the magnetic field sensing unit at the distance in the second direction achieves an electrical isolation effect, thereby improving isolation strength, and simplifying a process. The shielding layer is capable of absorbing an external interference magnetic field, thereby further improving a signal-to-noise ratio.

Classes IPC  ?

  • G01R 15/20 - Adaptations fournissant une isolation en tension ou en courant, p.ex. adaptations pour les réseaux à haute tension ou à courant fort utilisant des dispositifs galvano-magnétiques, p.ex. des dispositifs à effet Hall

48.

DIGITAL LIQUID LEVEL SENSOR BASED ON MAGNETO-RESISTIVE SENSOR CROSS-POINT ARRAY

      
Numéro d'application CN2020076803
Numéro de publication 2020/177595
Statut Délivré - en vigueur
Date de dépôt 2020-02-26
Date de publication 2020-09-10
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James, Geza
  • Visvanathan, Elamparithi

Abrégé

Disclosed is a digital liquid level sensor based on a magneto-resistive sensor cross-point array, comprising: a plurality of TMR magnetic sensor chips, a microcontroller, a row decoder and a column decoder. The microcontroller is electrically connected to the row decoder and the column decoder; the TMR magnetic sensor chips comprise a plurality of MTJ elements, diodes are connected between each row of MTJ elements and a row lead or a column lead, and the TMR magnetic sensor chips are addressed by means of data decoded by the row decoder and the column decoder and on the basis of the equation Address = m + [Mx(n-1)], Address representing an address value, and m representing the value of a current row; and the microcontroller is used for scanning the addresses of the TMR magnetic sensor chips and finding the address of an MTJ element in the highest activation state, converting the address value into a liquid level value in a linear proportional relationship therewith, and transmitting the liquid level value to an output interface. The digital liquid level sensor further comprises a permanent magnet and a protective tube. The invention greatly minimizes the power consumption of a sensor element by supplying power only to one sensor chip element each time.

Classes IPC  ?

  • G01F 23/72 - Indication ou mesure du niveau des liquides ou des matériaux solides fluents, p.ex. indication en fonction du volume ou indication au moyen d'un signal d'alarme par des flotteurs du type à flotteur libre en utilisant des moyens d'indication actionnés magnétiquement
  • G01F 23/24 - Indication ou mesure du niveau des liquides ou des matériaux solides fluents, p.ex. indication en fonction du volume ou indication au moyen d'un signal d'alarme en mesurant des variables physiques autres que les dimensions linéaires, la pression ou le poids, selon le niveau à mesurer, p.ex. par la différence de transfert de chaleur de vapeur ou d'eau en mesurant les variations de résistance de résistances électriques produites par contact avec des fluides conducteurs

49.

Modulated magnetoresistive sensor

      
Numéro d'application 16500912
Numéro de brevet 11287491
Statut Délivré - en vigueur
Date de dépôt 2018-04-04
Date de la première publication 2020-07-09
Date d'octroi 2022-03-29
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A modulated magnetoresistive sensor consists of a substrate located on a substrate in an XY plane, magnetoresistive sensing elements, a modulator, electrical connectors, an electrical insulating layer, and bonding pads. The sensing direction of the magnetoresistive sensing elements is parallel to the X axis. The magnetoresistive sensing elements are connected in series into a magnetoresistive sensing element string. The modulator is comprised of multiple elongated modulating assemblies. The elongated modulating assemblies consist of three layers—FM1 layer, NM layer, and FM2 layer. The ends of the elongated modulating assemblies are electrically connected to form a serpentine current path. The electrical insulating layer is set between the elongated modulating assemblies and the magnetoresistive sensing elements to separate the elongated modulating assemblies from the magnetoresistive sensing elements. The current modulates the permeability of the elongated modulating assemblies, and it is regulated in order to keep the modulated signal in the linear range of the magnetoresistive sensors. This technique suppresses sensor noise.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

50.

MAGNETIC NAVIGATION SENSOR AND MAGNETIC NAVIGATION SYSTEM

      
Numéro d'application CN2019125807
Numéro de publication 2020/135137
Statut Délivré - en vigueur
Date de dépôt 2019-12-17
Date de publication 2020-07-02
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Chen, Jinliang
  • Li, Dongfeng
  • Qian, Chen
  • Guo, Haiping

Abrégé

Disclosed are a magnetic navigation sensor and a magnetic navigation system. The magnetic navigation sensor comprises a plurality of tunnel magnetoresistance (TMR) sensor elements (201) and a control processing system (400); the plurality of TMR sensor elements (201) being arranged along the width extension direction of a magnetic tape at equal vertical distances from the plane where the magnetic tape is located; an input end of the control processing system (400) is electrically connected with output ends of the plurality of TMR sensor elements (201), and the control processing system (400) is used for processing output signals of the plurality of TMR sensor elements (201). The described system has larger detection width, higher flight height, and extremely high absolute position accuracy and position resolution ratio, and is very suitable for industrial application.

Classes IPC  ?

  • G01C 21/00 - Navigation; Instruments de navigation non prévus dans les groupes
  • G01R 33/07 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs à effet Hall

51.

Single chip high-sensitivity magnetoresistive linear sensor

      
Numéro d'application 16610623
Numéro de brevet 11137452
Statut Délivré - en vigueur
Date de dépôt 2018-05-03
Date de la première publication 2020-06-04
Date d'octroi 2021-10-05
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

The present invention discloses a single-chip high-sensitivity magnetoresistive linear sensor, which comprises a substrate located in the X-Y plane and a soft ferromagnetic flux concentrator array located on the substrate. The soft ferromagnetic flux concentrator array comprises several soft ferromagnetic flux concentrators, wherein there is a gap between each two adjacent soft ferromagnetic flux concentrators. The +X and −X magnetoresistive sensing unit array respectively comprises +X and −X magnetoresistive sensing units located in the gaps. The +X and −X magnetoresistive sensing units are electrically interconnected to form a push pull X-axis magnetoresistive sensor. Each of the magnetoresistive sensing units that have the same magnetic field sensing direction are arranged in adjacent locations. The magnetoresistive sensing units are all MTJ magnetoresistive sensor elements, and each has the same magnetic multi-layer film structure. Laser magnetic annealing is used to scan and prepare the magnetic sensing array. The invention has the advantages of small size, high precision and low power consumption.

Classes IPC  ?

  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

52.

MAGNETORESISTANCE ELEMENT-BASED HYDROGEN SENSOR AND HYDROGEN DETECTING METHOD THEREOF

      
Numéro d'application CN2019118051
Numéro de publication 2020/103740
Statut Délivré - en vigueur
Date de dépôt 2019-11-13
Date de publication 2020-05-28
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Liu, Xuanzuo

Abrégé

A magnetoresistance element-based hydrogen sensor and a hydrogen detecting method thereof. The hydrogen sensor comprises a substrate (1) located in an X-Y plane, and magnetoresistance sensing units (2) and magnetoresistance reference units (3) located on the substrate (1); the magnetoresistance sensing units (2) are electrically connected to form a sensing arm (4), and the magnetoresistance reference units (3) are electrically connected to form a reference arm (5); the sensing arm (4) and the reference arm (5) are electrically connected to form a reference bridge structure (6); the magnetoresistance sensing units (2) and the magnetoresistance reference units (3) are AMR units having the same magnetic multilayer thin film structure, or GMR spin valves or GMR multilayer film stacks having the same magnetic multilayer thin film structure; Pd layers respectively cover the magnetoresistance sensing units (2) and the magnetoresistance reference units (3), and a passivation insulating layer (7) covers the Pd layer of the magnetoresistance reference unit (3); the magnetic multilayer thin film structure is made into a serpentine strip circuit by a semiconductor micromachining process. The hydrogen detecting method comprises: the hydrogen sensor is placed in a gas environment containing hydrogen, and the Pd layers covering the magnetoresistance sensing units (2) absorb hydrogen to change the perpendicular magnetic anisotropy of ferromagnetic layers (13) in the magnetic multilayer thin film structures of the magnetoresistance sensing units (2), so that the magnetic moment of the ferromagnetic layers (13) rotates to produce a change in the magnetoresistance value positively correlated to the hydrogen concentration; obtain a change in the output voltage value of the reference bridge structure (6) according to the change of the magnetoresistance value, and detect the hydrogen concentration according to the change in the output voltage value of the reference bridge structure (6).

Classes IPC  ?

  • G01N 27/12 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant l'impédance en recherchant la résistance d'un corps solide dépendant de la réaction avec un fluide

53.

Low-noise magnetoresistive sensor having multi-layer magnetic modulation structure

      
Numéro d'application 16608596
Numéro de brevet 11067647
Statut Délivré - en vigueur
Date de dépôt 2018-04-25
Date de la première publication 2020-05-07
Date d'octroi 2021-07-20
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A low-noise magnetoresistive sensor includes a substrate and an array of magnetic modulation structures on the substrate. The structure includes upper and lower soft ferromagnetic layers and a conductive metal layer in the middle. The two ends of the structure are connected to form a two-port excitation coil. Adjacent structures have opposite current directions. A magnetoresistive sensing unit is located above or below and is centered in the gap between the structures. The sensitive direction of the sensing units is perpendicular to a long direction of the structures. An array of sensing units is electrically connected to form a magnetoresistive sensor, and the sensor is connected to the sensor bond pads. When measuring an external magnetic field, an excitation current is applied to the excitation coil, and the output of the voltage or current signal of the magnetoresistive sensor is demodulated to produce a low-noise voltage signal.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

54.

NONDESTRUCTIVE DETECTION DEVICE FOR DETECTING DAMAGE TO STEEL WIRE ROPE

      
Numéro d'application CN2019106138
Numéro de publication 2020/057491
Statut Délivré - en vigueur
Date de dépôt 2019-09-17
Date de publication 2020-03-26
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Zheng, Kuohai
  • Li, Junyong

Abrégé

Disclosed is a nondestructive detection device for detecting damage to a steel wire rope. A bushing (3) limits a lower shell (1) and an upper shell (4) by means of a limiting groove, the lower shell (1) is connected to the upper shell (4) via an opening and closing structure, an air bag (9) is wrapped around the bushing (3), a PCB (10) is fixed on the upper shell (4) or the lower shell (1), and the PCB (10) is connected to a guide wheel (16) via an electrical connector (5). A magneto-resistance sensor array is arranged inside the air bag (9) and is uniformly arranged in a circumferential direction of the bushing (3), a steel wire rope (15) passes through the magneto-resistance sensor array, and the steel wire rope (15) moves to drive the guide wheel (16) to rotate and triggers the acquisition of a command. The guide wheel (16) is provided with a position coder, wherein same is used to calculate a relative position of movement of the steel wire rope. The PCB (10) is connected to a single chip microcomputer via a peripheral interface, and the single chip microcomputer is used to calculate a differential signal of N adjacent magneto-resistance sensors and to determine whether the steel wire rope is damaged. The nondestructive detection device improves the abilities of detecting a broken wire, a narrowed rope diameter and deep damage of the steel wire rope.

Classes IPC  ?

  • G01N 27/82 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant des variables magnétiques pour rechercher la présence des criques

55.

Single-chip double-axis magnetoresistive angle sensor

      
Numéro d'application 16488549
Numéro de brevet 11512939
Statut Délivré - en vigueur
Date de dépôt 2018-02-14
Date de la première publication 2019-12-05
Date d'octroi 2022-11-29
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A single-chip two-axis magnetoresistive angle sensor comprises a substrate located in an X-Y plane, a push-pull X-axis magnetoresistive angle sensor and a push-pull Y-axis magnetoresistive angle sensor located on the substrate. The push-pull X-axis magnetoresistive angle sensor comprises an X push arm and an X pull arm. The push-pull Y-axis magnetoresistive angle sensor comprises a Y push arm and a Y pull arm. Each of the X push, X pull, Y push arm, and Y pull arms comprises at least one magnetoresistive angle sensing array unit. The magnetic field sensing directions of the magnetoresistive angle sensing array units of the X push, X pull, Y push, and Y pull arms are along +X, −X, +Y and −Y directions respectively. Each magnetoresistive sensing unit comprises a TMR or GMR spin-valve having the same magnetic multi-layer film structure. A magnetization direction of an anti-ferromagnetic layer is set into a desired orientation through the use of a laser controlled magnetic annealing, and a magnetic field attenuation layer can be deposited in the surface of the magnetoresistance angle sensing unit.

Classes IPC  ?

  • G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

56.

Magnetoresistive sensor with compensating coil

      
Numéro d'application 16307524
Numéro de brevet 10845430
Statut Délivré - en vigueur
Date de dépôt 2017-06-07
Date de la première publication 2019-11-14
Date d'octroi 2020-11-24
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s) Deak, James Geza

Abrégé

A magnetoresistive sensor with a compensating coil comprising a silicon substrate, collection of MR sensor units disposed on the silicon substrate, collection of rectangular soft ferromagnetic flux concentrators, serpentine compensating coil, connecting circuit, and collection of bond pads used for electrical connections. The MR sensor units are interconnected to form a push-pull sensor bridge. The MR sensor units are disposed below the gap between two adjacent soft ferromagnetic flux concentrators. The serpentine compensating coil has a positive current strap over the MR sensor units and a negative current strap under the soft ferromagnetic flux concentrators. The MR sensor bridge and the serpentine compensating coil are connected through bond pads and covered with an encapsulation structure. The magnetoresistive sensor also comprises a spiral initialization coil placed on a substrate within the encapsulating structure. A sensor chip is disposed on the initialization coil, which is used for reducing magnetic hysteresis.

Classes IPC  ?

  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
  • H01L 43/08 - Résistances commandées par un champ magnétique
  • G01R 33/022 - Mesure du gradient
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

57.

Balanced magnetoresistive frequency mixer

      
Numéro d'application 16326342
Numéro de brevet 10873294
Statut Délivré - en vigueur
Date de dépôt 2017-08-17
Date de la première publication 2019-09-12
Date d'octroi 2020-12-22
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A balanced magnetoresistive frequency mixer comprises a first spiral coil, a second spiral coil, a balanced magnetoresistive sensor bridge, and a magnetic shielding layer. The coils are located between the magnetic shielding layer and the sensor bridge. The sensor bridge comprises a magnetoresistive full bridge consisting of four bridge arms and a balancing bridge arm connected to the power supply end of the full bridge. The four bridge arms contain pairs located in a first sub region and a second sub region above or below the first spiral coil, the balancing arm is located in a third sub region above or below the second spiral coil, a first frequency signal is input into the first spiral coil, a second frequency signal is input into the second spiral coil, and a frequency-mixed signal is output from a signal output end of the full bridge.

Classes IPC  ?

  • H03D 7/14 - Montages équilibrés
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

58.

RESETABLE BIPOLAR SWITCH SENSOR

      
Numéro d'application CN2019073730
Numéro de publication 2019/149194
Statut Délivré - en vigueur
Date de dépôt 2019-01-29
Date de publication 2019-08-08
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed is a resettable bipolar switch sensor, comprising: a bipolar hysteresis switch sensor, a reset coil, an ASIC switch circuit and a reset power circuit. The bipolar hysteresis switch sensor comprises: a substrate and a magnetoresistance sensing arm located on the substrate, wherein the magnetoresistance sensing arm is of a two-port structure formed from one or more magnetoresistance sensing unit strings arranged in series, parallel or series and parallel. The magnetization direction of a free layer of a TMR magnetoresistance sensing unit is only determined by an anisotropic field Hk, and together with the sensitive direction of a magnetic field and the magnetization direction of a reference layer can all be in an N or S direction. The reset coil is located between the substrate and the magnetoresistance sensing unit, or is located on a lead frame below the substrate. The direction of each reset magnetic field is one of the N or S direction. The ASIC switch circuit comprises a bias function module, a reading function module and an output function module. The reset power circuit is connected to the reset coil. The present invention has the characteristics of low power consumption, a small size and being able to preset the initial state of the switch sensor.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

59.

THREE-AXIS PRE-MODULATED LOW NOISE MAGNETORESISTIVE SENSOR

      
Numéro d'application CN2019073734
Numéro de publication 2019/149197
Statut Délivré - en vigueur
Date de dépôt 2019-01-29
Date de publication 2019-08-08
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A three-axis pre-modulated low noise magnetoresistive sensor, comprising an X-axis magnetoresistive sensor (100), a Y-axis magnetoresistive sensor (110), and a Z-axis magnetoresistive sensor (120), wherein the X, Y, and Z-axis magnetoresistive sensors comprise X, Y, and Z-axis magnetoresistive sensing unit arrays, X, Y, and Z-axis soft magnetic flux concentrator arrays, and X, Y, and Z-axis pre-modulated wire arrays respectively; the X, Y, and Z-axis magnetoresistive sensing unit arrays are separately electrically connected to X, Y and Z-axis magnetoresistive sensing bridges; the X, Y and Z-axis pre-modulated wire arrays are separately electrically connected to two-port X, Y and Z-axis excitation coils; and when measuring external magnetic fields, the two-port X, Y and Z-axis excitation coils separately traverse an f-frequency high-frequency alternating current excitation power supply, and the X-axis magnetoresistive sensor (100), the Y-axis magnetoresistive sensor (110) and the Z-axis magnetoresistive sensor (120) output harmonic signal components that have a frequency of 2f, which are demodulated to obtain X, Y and Z-axis low noise signals. The present invention has the advantages of a simple structure, a small size and low noise.

Classes IPC  ?

  • G01D 5/16 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

60.

Magnetoresistive sensor wafer layout used for a laser writing system, and corresponding laser scanning method

      
Numéro d'application 16333121
Numéro de brevet 10663536
Statut Délivré - en vigueur
Date de dépôt 2017-09-13
Date de la première publication 2019-07-25
Date d'octroi 2020-05-26
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A magnetoresistive sensor wafer layout scheme used for a laser writing system and laser scanning method are disclosed. The layout scheme comprises a magnetoresistive multilayer film including an antiferromagnetic pinning layer arranged into a rectangular array of sensor dice on the wafer surface. Pinning layers of magnetoresistive sensing units are magnetically oriented and directionally aligned by the laser writing system. Sensing units are electrically connected into bridge arms electrically connected into a magnetoresistive sensor. Magnetoresistive sensing units in the dice are arranged into at least two spatially-isolated magnetoresistive orientation groups. In the magnetoresistive orientation groups, pinning layers of the sensing units have an angle of magnetic orientation of 0-360 degrees. Angles of magnetic orientation of two adjacent magnetoresistive orientation groups are different. Each orientation group is adjacent to an orientation group with the same angle of magnetic orientation in at least one adjacent die.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
  • G06F 30/392 - Conception de plans ou d’agencements, p.ex. partitionnement ou positionnement

61.

MAGNETIC HYSTERESIS LASER PROGRAMMED SINGLE SLICE TMR SWITCH SENSOR

      
Numéro d'application CN2018120902
Numéro de publication 2019/114790
Statut Délivré - en vigueur
Date de dépôt 2018-12-13
Date de publication 2019-06-20
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A magnetic hysteresis laser programmed single slice tunnel magneto resistance (TMR) switch sensor, comprising: a magnetic hysteresis switch sensor (1), comprising: a substrate (5), and a magneto resistance sensor arm (6) that is located on the substrate (5), wherein a magneto resistance sensor unit (8) is a TMR sensor unit, and the magnetization direction and the magnetic-field sensitive direction of a free layer (170) and the magnetization direction of a reference layer (150) are all along the N or S direction; when the magnetization intensity of the free layer (170) is determined by only an anisotropic field Hk, a bipolar magnetic hysteresis switch sensor is formed, or when determined jointly by the anisotropic field Hk and a bias field Hb in the N or S direction, an S or N unipolar magnetic hysteresis switch sensor or an omni-polar magnetic hysteresis switch sensor is formed, the magnetization direction of an anti-ferromagnetic layer (140) being written by using a laser programming process; and an application-specific integrated circuit (ASIC) (2), comprising a bias function module, a read function module, and an output function module, the bias function module being connected to a power source end, and the read function module being connected to a signal output end, while the output function module is connected to the read function module. The described single slice TMR switch sensor has advantages of low power consumption, a small size, and easy operations.

Classes IPC  ?

  • H03K 17/95 - Commutateurs de proximité utilisant un détecteur magnétique

62.

Magnetoresistive sensor package with encapsulated initialization coil

      
Numéro d'application 16093064
Numéro de brevet 10948554
Statut Délivré - en vigueur
Date de dépôt 2017-04-10
Date de la première publication 2019-04-25
Date d'octroi 2021-03-16
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhang, Xiaojun

Abrégé

A magnetoresistive sensor with encapsulated initialization coil comprises a packaging structure, at least one pair of sensor chips, a spiral initialization coil, a set of wire bonding pads, an ASIC specific integrated circuit and an encapsulation layer. The spiral initialization coil is located on a PCB substrate of the encapsulation structure. Each set of sensor chips comprises two sensor chips, wherein each of the sensor chips comprises two groups of magnetoresistive sensing unit strings. The magnetoresistive sensing unit strings located on the sensor chip are connected to form a magnetoresistive sensor bridge. The application specific integrated circuit, ASIC and the magnetoresistive sensor bridge are electrically interconnected. The sensor chips are located above the spiral initialization coil placed circumferentially along the surface of the spiral initialization coil. The wire bonding pad and the ASIC are electrically interconnected. This sensor design reduces the sensor hysteresis and offset generated by magnetic domains in flux concentrators. It is easy to manufacture at low cost.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • H01L 43/02 - Dispositifs utilisant les effets galvanomagnétiques ou des effets magnétiques analogues; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives - Détails
  • H01L 43/08 - Résistances commandées par un champ magnétique
  • H01L 23/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide
  • H01L 23/31 - Capsulations, p.ex. couches de capsulation, revêtements caractérisées par leur disposition

63.

Anisotropic magnetoresistive (AMR) sensor without set and reset device

      
Numéro d'application 16091930
Numéro de brevet 11346901
Statut Délivré - en vigueur
Date de dépôt 2017-04-05
Date de la première publication 2019-04-25
Date d'octroi 2022-05-31
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Xue, Songsheng
  • Lei, Xiaofeng
  • Shen, Weifeng
  • Feng, Lixian

Abrégé

An anisotropic magnetoresistive (AMR) sensor without a set and reset device may include a substrate, an exchange bias layer, an AMR layer and a collection of barber-pole electrodes. The exchange bias layer may be deposited on the substrate and the AMR layer may be deposited on the exchange bias layer. The AMR layer may include multiple groups of AMR strips, and each group may include several AMR strips. The barber-pole electrodes may be arranged on each AMR strip. The AMR sensor achieves coupling by using the exchange bias layer, without requiring a reset/set coil. Because a coil is not used, the power consumption of the chip is reduced greatly, and the manufacturing process is simpler, providing improved yield and lower cost.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

64.

TMR high-sensitivity single-chip push-pull bridge magnetic field sensor

      
Numéro d'application 15773368
Numéro de brevet 11169225
Statut Délivré - en vigueur
Date de dépôt 2016-10-31
Date de la première publication 2018-11-08
Date d'octroi 2021-11-09
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A magnetic field sensor comprises a substrate and two comb-shaped soft ferromagnetic flux concentrators with an interdigitated structure formed on the substrate. The concentrators comprise N and N−1 rectangular comb teeth and corresponding comb seats wherein N is an integer greater than 1. Gaps are formed between the comb teeth of one concentrator and the comb seat of the other concentrator in an X direction. Adjacent comb teeth in a +Y direction form 2m−1 odd space gaps and 2m even space gaps. Here, m is an integer greater than zero and less than N. Push and pull magnetoresistive sensing element strings are located respectively in the odd space gaps and the even space gaps, and are electrically interconnected into a push-pull bridge. The magnetization alignment directions of the ferromagnetic pinned layer of the magnetic sensing element strings are Y direction.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/02 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

65.

MONOLITHIC-CHIP AND HIGH-SENSITIVITY TYPE MAGNETO-RESISTOR LINEAR TRANSDUCER

      
Numéro d'application CN2018085479
Numéro de publication 2018/202085
Statut Délivré - en vigueur
Date de dépôt 2018-05-03
Date de publication 2018-11-08
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

The present invention discloses a monolithic-chip and high-sensitivity type magneto-resistor linear transducer, which comprises a substrate located in the X-Y plane, a soft magnetic flux concentrator array located on the substrate, and +X and- X magneto-resistor sensing unit arrays located above or below the soft magnetic flux concentrator array, wherein, the soft magnetic flux concentrator array comprises a plurality of soft magnetic flux concentrators, and a gap is formed between two adjacent soft magnetic flux concentrators. Each of the +X and- X magneto-resistor sensing unit arrays respectively comprises +X and- X magneto-resistor sensing units located in the gap. The +X and- X magneto-resistor sensing units are electrically connected to form a push-pull type X-axis magnetic resistor sensor, and the magneto-resistor sensing units, having the same magnetic field sensitive direction, are arranged adjacently. The magneto-resistor sensing units are all MTJ magneto-resistor units and have the same magnetic multi-layer film structure. The laser-programmed magnetic annealing is conducted, and laser spots scan the magneto-resistor sensing unit arrays along the long axis direction of the gap. The invention has the advantages of small size, high precision and low power consumption.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

66.

LOW-NOISE MAGNETORESISTIVE SENSOR HAVING MULTI-LAYER MAGNETIC MODULATION STRUCTURE

      
Numéro d'application CN2018084439
Numéro de publication 2018/196785
Statut Délivré - en vigueur
Date de dépôt 2018-04-25
Date de publication 2018-11-01
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A low-noise magnetoresistive sensor having a multi-layer magnetic modulation structure, comprising: a substrate (1) and a multi-layer magnetic modulation structure array which is located on the substrate (1); a multi-layer magnetic modulation structure comprises an upper layer and lower layer of a soft magnetic material as well as an intermediate metal conductive layer; head and tail ends of multi-layer magnetic modulation structures (21, 22, ..., 2N) are sequentially connected by means of conductive strips (31, 32, ..., 3N-1) to form a two-port excitation coil, adjacent multi-layer magnetic modulation structures having opposite current directions; a magnetoresistive sensing unit is located directly above or directly below a multi-layer magnetic modulation structure and between a center of a gap, the sensitive direction of the magnetoresistive sensing unit being perpendicular to the long-axis direction of the multi-layer magnetic modulation structure; an array of magnetoresistive sensing units (41, 42, ..., 4N-2) is electrically connected to form a magnetoresistive sensor, and is connected to a sensor pad (7, 8); when measuring an external magnetic field, an excitation current is inputted into the excitation coil, and the voltage or current signal of the magnetoresistive sensor is demodulated and output as a low-noise voltage signal. The low-noise magnetoresistive sensor has the advantages of a compact structure, high sensitivity, low noise, and a small size.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

67.

MAGNETORESISTIVE LINEAR POSITION SENSOR

      
Numéro d'application CN2018084750
Numéro de publication 2018/196835
Statut Délivré - en vigueur
Date de dépôt 2018-04-27
Date de publication 2018-11-01
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Liu, Mingfeng
  • Xue, Songsheng

Abrégé

A magnetoresistive linear position sensor, comprising a permanent magnet (1) and a magnetoresistive sensor chip (2); one of the permanent magnet (1) and the magnetoresistive sensor chip (2) is fixed; the permanent magnet (1) and the magnetoresistive sensor chip (2) are in relative motion along a fixed motion path; the sensitive direction of the magnetoresistive sensor chip (2) is a direction perpendicular to the fixed motion path; the magnetoresistive sensor chip (2) senses the change in the magnetic field caused by the change in the relative positions of the magnetoresistive sensor chip (2) and the permanent magnet (1), outputs a voltage signal changing with the position, and converts same into position information by means of signal processing.

Classes IPC  ?

  • G01D 5/16 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/022 - Mesure du gradient
  • G01B 7/14 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour mesurer la distance ou la marge entre des objets ou des ouvertures espacés

68.

PREMODULATED MAGNETORESISTIVE SENSOR

      
Numéro d'application CN2018081914
Numéro de publication 2018/184565
Statut Délivré - en vigueur
Date de dépôt 2018-04-04
Date de publication 2018-10-11
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A premodulated magnetoresistive sensor provided with a substrate (1) on plane XY. Magnetoresistive sensing elements (3), a modulator, electrical connectors (4), an electrically insulating layer (13), and bonding solder pads (6, 7, 8, and 9) are deposited on the substrate (1). The sensing direction of the magnetoresistive sensing elements (3) is parallel to the X axis. The magnetoresistive sensing elements (3) are connected in series into a magnetoresistive sensing element string. The modulator is constituted by multiple modulator rods (2). The modulator rods (2) are constituted by a three-layered structure of an FM1 layer (21), an NM layer (22), and an FM2 layer (23). The extremities of the modulator rods (2) are electrically connected therebetween to form zig-zagging current paths. The electrically insulating layer (13) is provided between the modulator rods (2) and the magnetoresistive sensing elements (3). The electrically insulating layer (13) separates the modulator rods (2) from the magnetoresistive sensing elements (3). By modulating a current, a modulated signal is ensured to be working in a linear area of the magnetoresistive sensor; furthermore, the magnetic permeability is altered by modulating a magnetic field, thus implementing noise suppression.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

69.

MAGNETIC SENSOR PACKAGING STRUCTURE WITH HYSTERESIS COIL

      
Numéro d'application CN2018079920
Numéro de publication 2018/171648
Statut Délivré - en vigueur
Date de dépôt 2018-03-22
Date de publication 2018-09-27
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Visvanathan, Elamparithi

Abrégé

Disclosed is a magnetic sensor packaging structure with a hysteresis coil, the structure comprising: a substrate (1), a sensor slice, a spiral hysteresis coil (2) arranged on the substrate (1), and wire bonding pads (4). Sensor bridge arms (3) are composed of magneto-resistance sensing elements; the sensor bridge arms (3) are deposited on the sensor slice; the sensor bridge arms (3) are electrically connected to form a magneto-resistance sensor bridge; the magneto-resistance sensor bridge is arranged on the hysteresis coil (2); a magnetic field generated by the spiral hysteresis coil (2) is collinear with a sensitive axis of the sensor bridge; and a magneto-resistance sensor bridge circuit is packaged on the substrate (1). By arranging the spiral hysteresis coil (2), larger currents can be borne thereby, a resistance value is smaller, and the hysteresis generated by a sensor in a hysteresis period is eliminated. In addition, the manufacturing process of the packaging structure is simple and the manufacturing cost thereof is low.

Classes IPC  ?

  • G01R 33/02 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques

70.

SINGLE-CHIP DOUBLE-AXIS MAGNETO-RESISTANCE ANGLE SENSOR

      
Numéro d'application CN2018076783
Numéro de publication 2018/153335
Statut Délivré - en vigueur
Date de dépôt 2018-02-14
Date de publication 2018-08-30
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A single-chip double-axis magneto-resistance angle sensor comprises a substrate (1) on an X-Y plane, and a magneto-resistance angle sensor (2) in a push-pull X axis and a magneto-resistance angle sensor (3) in a push-pull Y axis both located on the substrate. The magneto-resistance angle sensor (2) in a push-pull X axis comprises an X push arm and an X pull arm, and the magneto-resistance angle sensor (3) in a push-pull Y axis comprises a Y push arm and a Y pull arm, each of the X push arm, the X pull arm, the Y push arm and Y pull arm comprises at least one magneto-resistance angle sensing unit array. Magnetic field sensing directions of the magneto-resistance angle sensing unit arrays of the X push arm, the X pull arm, the Y push arm and the Y pull arm are along +X, -X, +Y and -Y directions respectively. Each magneto-resistance angle sensing unit (20) comprises a TMR/GMR spin valve of the same magnetic multi-layer film structure, a magnetization direction of an anti-ferromagnetic layer is obtained by laser program-control heating magnetic annealing, and a magnetic field attenuation layer can be deposited in the surface of the magneto-resistance angle sensing unit (20).

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/04 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant le principe du déclenchement périodique de flux

71.

Single-chip high-magnetic-field X-axis linear magnetoresistive sensor with calibration and initialization coil

      
Numéro d'application 15549098
Numéro de brevet 10379176
Statut Délivré - en vigueur
Date de dépôt 2016-02-03
Date de la première publication 2018-08-30
Date d'octroi 2019-08-13
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A single-chip high-magnetic-field X-axis linear magnetoresistive sensor with a calibration and an initialization coil, comprising a high magnetic field single-chip referenced bridge X-axis magnetoresistive sensor, a calibration coil, and an initialization coil, wherein the calibration coils are planar coils, and the initialization coils are planar or three-dimensional coils. The planar calibration coils and the planar initialization coils can be placed above a substrate and below the magnetoresistive sensor units, between the magnetoresistive sensor units and the soft ferromagnetic flux guides, above the soft ferromagnetic flux guides, or at gaps between the soft ferromagnetic flux guides. The three-dimensional initialization coil is wound around the soft ferromagnetic flux guides and magnetoresistive sensor units. The calibration coils and the initialization coils generate a calibration magnetic field paralleled the direction of pinned layer and a uniform initialization magnetic field in the direction of the free layer respectively at the location of the magnetoresistive sensor units. Through controlling the current of the calibration coils and the initialization coils, the calibration and initialization of the magnetic state of the single-chip X-axis linear magnetoresistive sensor can be performed.

Classes IPC  ?

  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

72.

Magnetoresistive relay

      
Numéro d'application 15749666
Numéro de brevet 10459042
Statut Délivré - en vigueur
Date de dépôt 2016-08-11
Date de la première publication 2018-08-09
Date d'octroi 2019-10-29
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Zhou, Zhimin
  • Deak, James Geza

Abrégé

A magnetoresistive relay, comprising a substrate, a magnetic excitation coil, a magnetoresistive sensor, and switch integrated circuit which are placed on a substrate, which further includes an excitation signal input electrode, an excitation signal output electrode, a switch circuit positive output electrode, a switch circuit negative output electrode, a power input electrode, and a ground electrode. The ends of the magnetic excitation coil are each connected with the excitation signal input electrode and the excitation signal output electrodes. The signal from the magnetoresistive sensor is sent to the switch integrated circuit. The positive switch circuit output electrode and the switch circuit negative electrode are respectively connected with the switch integrated circuit. The power input ends and the ground ends of the switch integrated circuit and the magnetoresistive sensor are respectively connected with the power input electrode and the ground electrode. During operation, the magnetic field from the excitation coil provides an on/off signal, and this signal is used to change the magnetoresistance of the magnetoresistive sensor, the switch integrated circuit receives the signal from the magnetoresistive sensor, and from this the external output switching action is realized. This magnetoresistive relay is easy to operate, and it has low power consumption, small size, and long life span.

Classes IPC  ?

  • H03K 17/90 - Commutation ou ouverture de porte électronique, c. à d. par d'autres moyens que la fermeture et l'ouverture de contacts caractérisée par l'utilisation de composants spécifiés par l'utilisation, comme éléments actifs, de dispositifs galvano-magnétiques, p.ex. des dispositifs à effet Hall
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • H01H 47/02 - Circuits autres que ceux appropriés à une application particulière du relais et prévue pour obtenir une caractéristique de fonctionnement donnée ou pour assurer un courant d'excitation donné en vue de modifier le fonctionnement du relais
  • H01L 43/08 - Résistances commandées par un champ magnétique
  • H03K 17/689 - Commutation ou ouverture de porte électronique, c. à d. par d'autres moyens que la fermeture et l'ouverture de contacts caractérisée par l'utilisation de composants spécifiés par l'utilisation, comme éléments actifs, de dispositifs à semi-conducteurs les dispositifs étant des transistors à effet de champ avec une isolation galvanique entre le circuit de commande et le circuit de sortie

73.

Interdigitated y-axis magnetoresistive sensor

      
Numéro d'application 15580944
Numéro de brevet 10393828
Statut Délivré - en vigueur
Date de dépôt 2016-06-01
Date de la première publication 2018-06-14
Date d'octroi 2019-08-27
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

An interdigitated Y-axis magnetoresistive sensor, comprising a substrate, and located on the substrate is a first comb-shaped soft ferromagnetic flux guide, a second comb-shaped soft ferromagnetic flux guide, and a push-pull magnetoresistive bridge sensing unit. It also may include a calibration and/or an initialization coil. The first and the second comb-shaped soft ferromagnetic flux guides are formed into an interdigitated shape. The gaps between a second comb tooth and two adjacent the first comb teeth are the first gap and the second gap. Furthermore, a pair of gaps are formed between the second come tooth and the base of the first comb as well as between the first comb tooth and the second comb tooth base. A push magnetoresistive unit string and a pull magnetoresistive unit string are alternately placed in the first gap and the second gap, respectively. The resulting magnetoresistive sensing unit senses the magnetic field along the X-axis. The calibration coil comprises straight calibration conductors that are parallel to the magnetoresistive sensing unit string. The initialization coil is comprised of straight initialization conductors that are perpendicular to the magnetoresistive sensing unit string. As a result of the interdigitated soft ferromagnetic flux guides, Y-axis magnetic field measurement is enabled. The present design is easy to implement, has high-gain, and low power consumption.

Classes IPC  ?

  • B82Y 25/00 - Nanomagnétisme, p.ex. magnéto-impédance, magnétorésistance anisotropique, magnétorésistance géante ou magnétorésistance à effet tunnel
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • H01L 43/08 - Résistances commandées par un champ magnétique

74.

Rapid thermal processing method and apparatus for programming the pinned layer of spintronic devices

      
Numéro d'application 15570093
Numéro de brevet 11069544
Statut Délivré - en vigueur
Date de dépôt 2016-04-26
Date de la première publication 2018-06-07
Date d'octroi 2021-07-20
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s) Deak, James Geza

Abrégé

A rapid thermal processing method and apparatus used for programming the pinned layer of spintronic devices, the apparatus comprising a rapid thermal annealing light source, a reflective cover, a magnet, a wafer, and a substrate. The light source is used for heating the substrate. The reflective cover at least comprises a transparent insulating layer and a reflective layer. The magnet is used to produce a constant magnetic field. An antiferromagnetic layer on a wafer may be locally programmed by controlling the exposure time, for heating a specific area on the wafer to a temperature above the blocking temperature of the antiferromagnetic layer, and then turning off the magnetic field after the heating area has cooled in the presence of the applied magnetic field. This rapid thermal processing method is used to improve the spatial resolution of laser annealing. It provides excellent performance, and it is suitable for mass production.

Classes IPC  ?

  • H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • H01L 43/12 - Procédés ou appareils spécialement adaptés à la fabrication ou le traitement de ces dispositifs ou de leurs parties constitutives
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
  • H01L 21/677 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le transport, p.ex. entre différents postes de travail
  • H05B 3/00 - Chauffage par résistance ohmique

75.

Push-pull X-axis magnetoresistive sensor

      
Numéro d'application 15578508
Numéro de brevet 10330748
Statut Délivré - en vigueur
Date de dépôt 2016-06-01
Date de la première publication 2018-05-31
Date d'octroi 2019-06-25
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A push-pull X-axis magnetoresistive sensor, comprising: a substrate upon which an interlocked array of soft ferromagnetic flux concentrators and a push-pull magnetoresistive sensor bridge unit are placed. It further may comprise calibration coils and/or initialization coils. At least one of each of the soft ferromagnetic flux concentrators is present such that an interlocking structure may be formed such that there are alternately interlocked and non-interlocked gaps along the X direction. Push/pull magnetoresistive sensing unit strings are respectively located in the interlocked and non-interlocked gaps and are electrically connected to form a push-pull magnetoresistive bridge sensing unit. This magnetoresistive sensing unit is sensitive to magnetic field along the X direction. The calibration coils and initialization coils are respectively compromised of straight calibration conductors and straight initialization conductors that run parallel and perpendicular to the push-pull magnetoresistive sensing unit strings. The structure of this push-pull X-axis magnetoresistive sensor is simple to implement. It has the advantages of high magnetic field sensitivity comparing to a referenced bridge X-axis magnetoresistive sensor as well as low power consumption.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

76.

Integrated current sensor using Z-axis magnetoresistive gradiometer and lead frame current

      
Numéro d'application 15570104
Numéro de brevet 10564227
Statut Délivré - en vigueur
Date de dépôt 2016-04-21
Date de la première publication 2018-05-24
Date d'octroi 2020-02-18
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

An integrated current sensor comprising a Z axis gradiometer and a lead frame primary coil, wherein the Z-axis gradiometer is a magnetoresistive Z-axis gradient sensor, comprising a substrate, with two elongated soft magnetic flux concentrators placed upon the substrate. The soft ferromagnetic flux concentrators are located above or below but displaced from a long-axis centerline equidistant from the magnetoresistive sensor strings, such that the combined magnetoresistive sensing unit detects the magnetic field perpendicular to the long-axis center line, and it is configured as a gradiometer sensor bridge. The lead frame serves as the primary coil, and the Z-axis gradiometer is placed above or below a cross-section of the current carrying portion of the lead frame, such that the current detection direction is parallel to the long-axis centerline. This sensor can detect currents of up to 5 to 50 A, it has low power consumption, small size, and fully integrated.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 15/12 - Circuits pour appareils de test à usage multiple, p.ex. pour mesurer, au choix, tension, courant ou impédance
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
  • G01R 33/07 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs à effet Hall

77.

Single-package high-field magnetoresistive angle sensor

      
Numéro d'application 15566019
Numéro de brevet 10401440
Statut Délivré - en vigueur
Date de dépôt 2016-04-07
Date de la première publication 2018-04-26
Date d'octroi 2019-09-03
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A single-package high-field magnetoresistive angle sensor, comprising at least one push-pull magnetoresistive bridge and soft magnetic flux attenuators located on the push-pull magnetoresistive bridge. The push-pull magnetoresistive bridge comprises a plurality of magnetoresistive sensor units. The magnetoresistive sensor units are of an MTJ or GMR type. Each magnetoresistive sensor unit comprises at least one pinned layer, one ferromagnetic reference layer, a nonmagnetic spacer layer, and a ferromagnetic free layer. The ferromagnetic free layer is a low aspect ratio oval or circle, which can make the intensity of magnetization of the ferromagnetic free layer align along an external magnetic field in any direction. The soft magnetic flux attenuator covers the surface of all the magnetoresistive sensor units to attenuate the high intensity external magnetic field to be within a measurable range of the magnetoresistive sensor units; the push-pull magnetoresistive bridge has antiparallel or mutually-orthogonal magnetization directions of the reference layer. The magnetoresistive angle sensor can measure the rotation angle of a high-intensity magnetic field. It has the advantages of low power consumption and small size.

Classes IPC  ?

  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
  • G01R 33/10 - Tracé par points de la répartition de champ
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 31/28 - Test de circuits électroniques, p.ex. à l'aide d'un traceur de signaux
  • G01R 33/06 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques
  • G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes
  • G01D 5/14 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension

78.

Single chip Z-axis linear magnetoresistive sensor with calibration/initialization coil

      
Numéro d'application 15542324
Numéro de brevet 10228426
Statut Délivré - en vigueur
Date de dépôt 2016-01-05
Date de la première publication 2018-03-22
Date d'octroi 2019-03-12
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A single chip Z-axis linear magnetoresistive sensor with a calibration/initialization coil comprises a single chip Z-axis linear magnetoresistive sensor, and a calibration coil and/or an initialization coil. The calibration coil and the initialization coil are planar coils or three-dimensional coils. The planar coils are located above a substrate and below a magnetoresistive sensing unit, between a magnetoresistive sensing unit and a soft ferromagnetic flux concentrator, above a soft ferromagnetic flux concentrator, or in a gap of the soft ferromagnetic flux concentrator. The three-dimensional coil is wound around the soft ferromagnetic flux concentrator and the magnetoresistive sensing unit. The calibration coil and the initialization coil respectively comprise straight wires which are parallel to a magnetization direction of a pinned layer/free layer, wherein the calibration coil generates an equivalent calibration magnetic field parallel/anti-parallel to the direction of the pinned layer of a push or a pull magnetoresistive unit string, and the initialization coil generates a uniform initializing magnetic field in the direction of the free layer at all magnetoresistive sensing units. By controlling the current in the calibration coil/initialization coil, calibration and magnetic state initialization of the single chip Z-axis linear magnetoresistive sensor can be achieved. The sensor has advantages of being highly efficient, quick, and convenient.

Classes IPC  ?

  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
  • G01R 33/02 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

79.

MAGNETORESISTIVE SENSOR WAFER LAYOUT USED FOR LASER WRITING SYSTEM, AND LASER SCANNING METHOD

      
Numéro d'application CN2017101663
Numéro de publication 2018/050082
Statut Délivré - en vigueur
Date de dépôt 2017-09-13
Date de publication 2018-03-22
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed are a magnetoresistive sensor wafer layout used for a laser writing system, and a laser scanning method. The layout comprises a magnetoresistive multilayer film (1) arranged on a surface of a rectangular slice array and including an antiferromagnetic pinning layer (4), wherein antiferromagnetic pinning layers (4) of magnetoresistive sensing units are magnetically oriented and are directionally aligned by means of the laser writing system; the magnetoresistive sensing units are electrically connected into bridge arms; the bridge arms are electrically connected into a magnetoresistive sensor; magnetoresistive sensing units in slices are arranged into magnetoresistive orientation groups isolated by at least two spaces; in the magnetoresistive orientation groups, the antiferromagnetic pinning layers (4) of the magnetoresistive sensing units have the same angle of magnetic orientation; the angle of magnetic orientation is 0-360 degrees; the angles of magnetic orientation of two adjacent magnetoresistive orientation groups are different, and each magnetoresistive orientation group is adjacent to a magnetoresistive orientation group with the same angle of magnetic orientation in at least one adjacent slice. The layout can shorten a laser scanning process, and realize characteristics of in-situ single chip production of a push-pull type magnetoresistive sensor.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

80.

Direct-read meter capable of eliminating magnetic interference of adjacent rotating wheels

      
Numéro d'application 15543356
Numéro de brevet 10794752
Statut Délivré - en vigueur
Date de dépôt 2016-01-11
Date de la première publication 2018-03-15
Date d'octroi 2020-10-06
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

raw}, thus eliminating the interfering magnetic field and permitting calculation of the rotation angle of the rotating wheel permanent magnets. This direct-read meter has the advantages of simple calculation, high precision, and elimination of the need for magnetic shielding.

Classes IPC  ?

  • G01F 25/00 - Test ou étalonnage des appareils pour la mesure du volume, du débit volumétrique ou du niveau des liquides, ou des appareils pour compter par volume
  • G01F 15/00 - MESURE DES VOLUMES, DES DÉBITS VOLUMÉTRIQUES, DES DÉBITS MASSIQUES OU DU NIVEAU DES LIQUIDES; COMPTAGE VOLUMÉTRIQUE - Détails des appareils des groupes ou accessoires pour ces derniers, dans la mesure où de tels accessoires ou détails ne sont pas adaptés à ces types particuliers d'appareils, p.ex. pour l'indication à distance
  • G01F 15/06 - Dispositifs d'indication ou d'enregistrement
  • G01F 1/58 - Mesure du débit volumétrique ou du débit massique d'un fluide ou d'un matériau solide fluent, dans laquelle le fluide passe à travers un compteur par un écoulement continu en utilisant des effets électriques ou magnétiques par débitmètres électromagnétiques
  • G01F 1/60 - Circuits appropriés

81.

Non-contact linear potentiometer

      
Numéro d'application 15106127
Numéro de brevet 09978485
Statut Délivré - en vigueur
Date de dépôt 2014-12-17
Date de la première publication 2018-02-22
Date d'octroi 2018-05-22
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Wang, Feng
  • Wang, Junyun
  • Ji, Xiaochun

Abrégé

This invention discloses a type of noncontact linear potentiometer; the potentiometer comprises a slider, a rotating shaft, a guide rod, a tunneling magnetoresistive sensor, a permanent magnet, a printed circuit board, and two support structures. In this configuration the slider moves along the guide rod and the rotating shaft, causing the rotation of the rotating shaft; the permanent magnet is attached to an end of the rotating shaft, and it therefore rotates as the shaft rotates. A tunneling magnetoresistive sensor is located adjacent to the permanent magnet, soldered onto a printed circuit board, and it is used to measure the angle of rotation of the permanent magnet. The guide rod constrains the sliding direction of the slider, and the two support structures are located at the opposite ends of the guide rod and rotating shaft, and they are used to support the rotating shaft and guide rod. Located between the slider and rotating shaft is a ball bearing, a pin and a leaf spring assembly. This potentiometer has several advantages, including a compact structure, easy fabrication, long service life, in addition to providing smooth slider motion that provides a pleasing user experience.

Classes IPC  ?

  • H01C 10/30 - Résistances variables le contact glissant le long de l'élément résistif
  • H01C 10/14 - Résistances variables variables par moyens de commande auxiliaires

82.

Copper thermal resistance thin film temperature sensor chip, and preparation method therefor

      
Numéro d'application 15555965
Numéro de brevet 10564049
Statut Délivré - en vigueur
Date de dépôt 2016-02-29
Date de la première publication 2018-02-22
Date d'octroi 2020-02-18
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Xue, Songsheng
  • Shen, Weifeng
  • Feng, Lixian

Abrégé

A copper thermal resistance thin-film temperature sensor chip comprises a substrate, a temperature sensor, and two electrode plates, the temperature sensor which has a plurality of electrically connected resistance elements is placed on the substrate, a portion of the resistance elements form a resistance adjustment circuit. Integrated circuit elements are deposited by thin-film technology. It consists seed layer, copper thermal resistance thin-film layer above the seed layer and passivation layer above the copper thermal resistance thin-film layer. Through semiconductor manufacturing and processing technology, the thermistor layer of this structure is to be fabricated into a serious of thermistor wires and then to form the temperature sensor, furthermore this temperature sensor has a resistance adjustment circuit which is used to adjust resistance value precisely. The preparation method of the sensor chip comprises depositing thin-film on the surface of the substrate, and then a final sensor chip can be obtained through the processing of magnetron sputtering, schematize, peeling, and etching. This sensor chip has the advantages of high impedance, excellent thermal stability, good linearity and low cost.

Classes IPC  ?

  • G01K 7/00 - Mesure de la température basée sur l'utilisation d'éléments électriques ou magnétiques directement sensibles à la chaleur
  • G01K 7/18 - Mesure de la température basée sur l'utilisation d'éléments électriques ou magnétiques directement sensibles à la chaleur utilisant des éléments résistifs l'élément étant une résistance linéaire, p.ex. un thermomètre à résistance de platine
  • G01K 1/12 - Dispositifs de protection, p.ex. étuis pour prévenir les dommages dus aux surcharges thermiques

83.

BALANCED MAGNETORESISTANCE FREQUENCY MIXER

      
Numéro d'application CN2017097933
Numéro de publication 2018/033125
Statut Délivré - en vigueur
Date de dépôt 2017-08-17
Date de publication 2018-02-22
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed in the present invention is a balanced magnetoresistance frequency mixer. The balanced magnetoresistance frequency mixer comprises a first spiral coil, a second spiral coil, a balanced bridge type magnetoresistance sensor, and a magnetic shielding layer. The first spiral coil and the second spiral coil are respectively located between the magnetic shielding layer and the balanced bridge type magnetoresistance sensor, the balanced bridge type magnetoresistance sensor comprises a magnetoresistance full bridge consisting of four magnetoresistance bridge arms and a magnetoresistance balanced arm connected to a power supply end of the magnetoresistance full bridge, the four magnetoresistance bridge arms in pairs are located in a first sub region and a second sub region having reverse current directions above or below the first spiral coil, the magnetoresistance balanced arm is located in a third sub region having the same current direction above or below the second spiral coil, a first frequency signal source is inputted through the first spiral coil, a second frequency signal source is inputted through the second spiral coil, and a frequency-mixing signal is outputted through a signal output end of the magnetoresistance full bridge. The frequency mixer has the characteristics: input signals and a power supply are mutually isolated, the linearity is good, and the structure is simple.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

84.

Automatic magnetic flow recording device

      
Numéro d'application 15549108
Numéro de brevet 11636889
Statut Délivré - en vigueur
Date de dépôt 2016-02-02
Date de la première publication 2018-02-01
Date d'octroi 2023-04-25
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Guo, Haiping
  • Cheng, Xiaofeng
  • Zhou, Zhimin

Abrégé

An automatic magnetic flow recording device, comprises a multitude of coaxially disposed hard magnetic rotating wheels wherein the hard magnetic rotating wheels are circular, and rotate with respect to each other by a predetermined transmission ratio. Each hard magnetic rotating wheel has at least one corresponding biaxial magnetoresistive angle sensor. The biaxial magnetoresistive angle sensors measure the angular positions of the hard magnetic rotating wheels within the range of 0-360 degrees. The biaxial magnetoresistive angle sensors comprise two single-axis linear magnetoresistive sensors, wherein the single-axis linear magnetoresistive sensors are an X-axis magnetoresistive sensor or a Z-axis magnetoresistive sensor. The X-axis magnetoresistive sensor of the hard magnetic rotating wheel measures a magnetic field component parallel to the tangent of the circumference of the hard magnetic rotating wheel. The Z-axis magnetoresistive sensor of the hard magnetic rotating wheel measures a magnetic field component along the radial direction of the hard magnetic rotating wheel. This flow meter recording device has several advantages compared to electronic flow meters with X, Y biaxial angle sensor. These include flexibility of the mounting position, small adjacent hard magnetic rotating wheel interference, and low power consumption.

Classes IPC  ?

  • G11C 11/02 - Mémoires numériques caractérisées par l'utilisation d'éléments d'emmagasinage électriques ou magnétiques particuliers; Eléments d'emmagasinage correspondants utilisant des éléments magnétiques
  • G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes
  • G01D 5/14 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01F 15/06 - Dispositifs d'indication ou d'enregistrement

85.

Magnetoresistive angle sensor and corresponding strong magnetic field error correction and calibration methods

      
Numéro d'application 15545125
Numéro de brevet 11022468
Statut Délivré - en vigueur
Date de dépôt 2016-01-13
Date de la première publication 2018-01-18
Date d'octroi 2021-06-01
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s) Deak, James Geza

Abrégé

A biaxial magnetoresistive angle sensor with a corresponding calibration method for magnetic field error correction, comprising two single-axis magnetoresistive angle sensors for detecting an external magnetic field in an X-axis direction and a Y-axis direction that are perpendicular to each other, a unit for calculating a vector magnitude of the voltage outputs of the single-axis magnetoresistive angle sensors along the X axis and the Y axis in real time, a unit for calculating a difference between a known calibration vector magnitude and the measured vector magnitude, a unit for dividing the difference by the square root of 2 in order to calculate an error signal, a unit for adding the error signal to the X-axis output and the Y-axis output respectively or subtracting the error signal from the X-axis output and the Y-axis output in order to calculate the calibrated output signals of the X-axis and the Y-axis angle sensors, a unit for calculating an arc tangent of a factor obtained by dividing the calibrated Y-axis output signal by the calibrated X-axis output signal to provide a rotation angle of the external magnetic field. This method for applying the magnetic field error calibration to the biaxial magnetoresistive angle sensor reduces the measurement error and expands the magnetic field application range in addition to improving the measurement precision in a high magnetic field.

Classes IPC  ?

  • G01D 18/00 - Test ou étalonnage des appareils ou des dispositions prévus dans les groupes
  • G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes
  • G01D 5/16 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance
  • G01D 5/165 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance par mouvement relatif d'un point de contact et d'une piste résistante

86.

ANISOTROPIC MAGNETIC RESISTANCE AND CURRENT SENSOR WITHOUT SETTING AND RESETTING APPARATUS

      
Numéro d'application CN2017092284
Numéro de publication 2018/006879
Statut Délivré - en vigueur
Date de dépôt 2017-07-07
Date de publication 2018-01-11
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Shen, Weifeng
  • Xue, Songsheng
  • Feng, Lixian

Abrégé

An anisotropic magnetic resistance and current sensor without a setting and resetting apparatus, comprising a substrate (170). An exchange bias layer (160) is deposited on the substrate (170); the exchange bias layer (160) is constituted by an antiferromagnetic material; an AMR magnetic resistance layer (150) is deposited on the exchange bias layer (160); Barbey electrodes (140) are provided on the magnetic resistance layer (150); the exchange bias layer (160) and the AMR magnetic resistance layer (150) form a plurality of AMR magnetic resistance bars through a semi-conductor processing process; the Barbey electrodes (140) are arranged on each AMR magnetic resistance bar regularly; the AMR magnetic resistance bars are connected in series into an AMR magnetic resistor element; the AMR magnetic resistor element constitutes a Wheatstone bridge; an insulating layer (130) is deposited on the magnetic resistor element; a current conductor layer (120) is provided on the insulating layer (130); and an insulating protective layer (100) is deposited on the current conductor layer (120). The current sensor improves the sensitivity under a weak magnetic field, enlarges the linear operation range, and cancels a setting/resetting apparatus by utilizing the exchange coupling property between an antiferromagnetic layer and a magnetic resistance layer, thus reducing power consumption and costs.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • H01L 43/08 - Résistances commandées par un champ magnétique

87.

Magnetoresistive audio pickup

      
Numéro d'application 15127663
Numéro de brevet 10187731
Statut Délivré - en vigueur
Date de dépôt 2015-03-19
Date de la première publication 2017-12-28
Date d'octroi 2019-01-22
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Zhou, Zhimin
  • Deak, James Geza
  • Guo, Haiping

Abrégé

A magnetoresistive audio pickup comprises an audio detection circuit. The audio detection circuit comprises at least one linear magnetoresistive sensor, a coupling capacitance, an AC amplifier, and a signal processing circuit comprising an additional amplifier. The linear magnetoresistive sensor comprises at least one single-axis linear magnetoresistive sensor unit. The linear magnetoresistive sensors are placed in a measurement plane above a speaker's voice coil, the signal output end of each single-axis linear magnetoresistive sensor unit is capacitively coupled to the AC amplifier which provides AC signals through electrical connection to the amplifier, these signals are combined within the signal processing unit into an audio signal, and the audio signal is output from the circuit; each single-axis linear sensor unit is located in the linear response area of the measurement plane. The present invention detects a speaker's audio signals via magnetic field coupling between a speaker and a linear magnetoresistive sensor. The magnetoresistive audio pickup's structure is simple and it also provides low power consumption.

Classes IPC  ?

  • H04R 29/00 - Dispositifs de contrôle; Dispositifs de tests
  • H04R 15/00 - Transducteurs magnétostrictifs
  • H04R 23/00 - Transducteurs autres que ceux compris dans les groupes
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • H04B 5/00 - Systèmes de transmission à induction directe, p.ex. du type à boucle inductive

88.

Magnetoresistive magnetic imaging sensor

      
Numéro d'application 15128821
Numéro de brevet 10598743
Statut Délivré - en vigueur
Date de dépôt 2015-03-24
Date de la première publication 2017-12-28
Date d'octroi 2020-03-24
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD (Chine)
Inventeur(s)
  • Xue, Songsheng
  • Lei, Xiaofeng
  • Zhang, Xiaojun

Abrégé

A magnetoresistive magnetic imaging sensor for identifying a magnetic image comprises a PCB and several magnetoresistive sensor chips, wherein the several magnetoresistive sensor chips are located on the PCB, and the PCB is perpendicular or parallel to the magnetic image detection surface. It has a lateral detection mode and front detection mode. In the lateral detection mode, each side face of the several magnetoresistive sensor chips is parallel or coplanar with the side of the PCB, and parallel to the magnetic image detection surface. The several magnetoresistive sensor chips have the same magnetic sensing direction. In the lateral detection mode, the adjacent magnetoresistive sensor chips are stacked, while in the front detection mode, the adjacent magnetoresistive sensor chips are arranged in a staggered manner, in order to achieve continuity of the detection area in the magnetic image detection surface. The magnetoresistive magnetic imaging sensor may also comprise a permanent magnet assembly and a housing. The sensor has several advantages, including continuity across the detection area, good signal reproduction, high sensitivity, and low power consumption.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G07D 7/04 - Test des propriétés magnétiques des matériaux de ces papiers, p.ex. par détection d’empreinte magnétique
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

89.

Dual Z-axis magnetoresistive angle sensor

      
Numéro d'application 15504981
Numéro de brevet 10690515
Statut Délivré - en vigueur
Date de dépôt 2015-08-17
Date de la première publication 2017-12-14
Date d'octroi 2020-06-23
Propriétaire MultiDimension Technology Co. Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A dual Z-axis magnetoresistive angle sensor comprising a circular permanent magnet encoding disc, two Z-axis magnetoresistive sensor chips, and a PCB, two Z-axis magnetoresistive sensors are placed on the PCB. The magnetic sensing directions of the Z-axis magnetoresistive sensors are orthogonal to the substrate. Each Z-axis magnetoresistive sensor chip comprises a substrate and at least one magnetoresistive sensor located on the substrate. The magnetic field sensitive direction of the magnetoresistive sensor is perpendicular to the substrate. The magnetoresistive sensor comprises a flux concentrator and a magnetoresistive sensor unit. The magnetoresistive sensor unit is connected electrically into a push-pull structure. The push arm and pull arm of the magnetoresistive sensor are respectively located at two side positions equidistant from Y-axis central line and above or below the flux concentrator. The circular permanent magnet encoding disc has a magnetization direction parallel to the diameter direction. When the circular permanent encoding disc rotates, a magnetic field measurement angle is calculated via orthogonal magnetic fields measured by the two z-axis magnetoresistive sensor chip. The magnetic field measurement angle can be used for representing a rotation angle of the circular permanent magnetic encoding disc. This dual Z-axis magnetoresistive angle sensor's structure is simple, and it also has the characteristics of high sensitivity and high spatial flexibility.

Classes IPC  ?

  • G01D 5/16 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la résistance
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes

90.

MAGNETORESISTIVE SENSOR HAVING COMPENSATING COIL

      
Numéro d'application CN2017087365
Numéro de publication 2017/211279
Statut Délivré - en vigueur
Date de dépôt 2017-06-07
Date de publication 2017-12-14
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s) Deak, James Geza

Abrégé

A magnetoresistive sensor having a compensating coil, comprising: a silicon substrate (1), a sequence of MR sensor units (6) disposed on the silicon substrate (1), a rectangular soft iron magnetic flux concentrator (4), a serpentine compensating coil (7), a connection circuit, and a pad (16); the sequence of MR sensor units (6) is connected to one another, forming a push-pull sensor bridge; the sequence of MR sensor units (6) is provided below the gap between any two adjacent soft iron magnetic flux concentrators (4); the serpentine compensating coil (7) has a positive electrode current area that passes through the sequence of MR sensor units (6) and a negative electrode current area that passes through the rectangular soft iron magnetic flux concentrator (4); the pad (16) connects the sensor bridge arm and the serpentine compensating coil (7) to an encapsulation structure. The magnetoresistive sensor also comprises a helix initialization coil; the helix initialization coil is disposed on an encapsulation substrate, and a sensor chip is disposed on the initialization coil for decreasing magnetic hysteresis. The magnetoresistive sensor is small in dimension and low in cost, enhances the dynamic range and linearity of the sensor, decreases magnetic hysteresis, and enables easier operation of magnetic field sensors in a closed loop mode.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

91.

MAGNETO-RESISTANCE SENSOR WITH ENCAPSULATION OF INITIALIZATION COIL

      
Numéro d'application CN2017079948
Numéro de publication 2017/177877
Statut Délivré - en vigueur
Date de dépôt 2017-04-10
Date de publication 2017-10-19
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhang, Xiaojun

Abrégé

A magneto-resistance sensor with encapsulation of an initialization coil, comprising an encapsulation structure, at least one set of sensor slices (5), a spiral initialization coil (4), a lead bonding pad (2), an ASIC-specific integrated circuit (3) and an encapsulation layer, wherein the spiral initialization coil (4) is arranged on a PCB substrate (1) of the encapsulation structure; each set of sensor slices (5) comprises two sensor slices (5); each sensor slice (5) comprises two sets of magneto-resistance sensing unit series, and the magneto-resistance sensing unit series located on the sensor slice (5) is connected to form a magneto-resistance sensing unit electrical bridge; the ASIC-specific integrated circuit (3) and the magneto-resistance sensing unit electrical bridge are electrically connected; the sensor slices (5) are located above the spiral initialization coil (4), and are respectively arranged surrounding the spiral initialization coil (4); and the lead bonding pad (2) and the ASIC-specific integrated circuit (3) are electrically connected. The sensor reduces the sensor hysteresis lag and offset generated due to the magnetic domain of a flux concentrator, is low in cost, and is easy to manufacture.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

92.

ANISOTROPIC MAGNETORESISTANCE (AMR) SENSOR NOT REQUIRING SET/RESET DEVICE

      
Numéro d'application CN2017079493
Numéro de publication 2017/173992
Statut Délivré - en vigueur
Date de dépôt 2017-04-05
Date de publication 2017-10-12
Propriétaire MULTIDIMENSION TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Xue, Songsheng
  • Lei, Xiaofeng
  • Shen, Weifeng
  • Feng, Lixian

Abrégé

An anisotropic magnetoresistance (AMR) sensor (100) not requiring a set/reset device comprises a substrate (140), an exchange bias layer (130), an AMR layer (110), and barber-pole electrodes (122). The exchange bias layer (130) is deposited on the substrate (140), and the AMR layer (110) is deposited on the exchange bias layer (130). The AMR layer (110) is composed of multiple groups of AMR strips, and each group of AMR strips is composed of multiple AMR strips. The barber-pole electrodes (122) are arranged on each AMR strip in a regular pattern. The AMR sensor (100) of the present invention achieves coupling by using the exchange bias layer (130), without requiring a reset/set coil, thereby greatly reducing chip power consumption, simplifying the manufacturing process, increasing product yield, and reducing production costs.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

93.

Single-chip off-axis magnetoresistive Z-X angle sensor and measuring instrument

      
Numéro d'application 15505236
Numéro de brevet 10473449
Statut Délivré - en vigueur
Date de dépôt 2015-08-18
Date de la première publication 2017-09-21
Date d'octroi 2019-11-12
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A single-chip off-axis magnetoresistive Z-X angle sensor and measuring instrument. The single-chip off-axis magnetoresistive Z-X angle sensor comprises a substrate located on an X-Y plane, at least one X-axis magnetoresistive sensor and at least one Z-axis magnetoresistive sensor, the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor being located on the substrate. The X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor each comprise magnetoresistive sensing units and a flux concentrator, the magnetoresistive sensing units being electrically connected into a magnetoresistive bridge comprising at least two bridge arms. The Z-axis magnetoresistive sensor is a push-pull bridge structure, a push arm and a pull arm of the push-pull bridge structure being respectively located at positions equidistant from a Y-axis central line of the flux concentrator. The X-axis magnetoresistive sensor is a reference bridge structure, a reference arm and a sensitive arm of the reference bridge structure being respectively located on the Y-axis central line of the flux concentrator and a position more than half of the width of the flux concentrator away from the Y-axis central line. The single-chip off-axis magnetoresistive Z-X angle sensor is placed at an edge of a circular permanent magnet encoding disc and forms an angle measuring instrument. Angle measurement is achieved by measuring X-axis and Z-axis magnetic field components, the structure is compact and sensitivity is high.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
  • G01D 5/14 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensible; Moyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminé; Transducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension

94.

TMR near-field magnetic communication system

      
Numéro d'application 15326587
Numéro de brevet 10277992
Statut Délivré - en vigueur
Date de dépôt 2015-07-07
Date de la première publication 2017-07-27
Date d'octroi 2019-04-30
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Guo, Haiping
  • Xue, Songsheng

Abrégé

This invention discloses a TMR near-field magnetic communication system, which is used for detecting AC and DC magnetic fields generated by a near-field magnetic communication system, and inputting AC and DC magnetic field signal to an audio electroacoustic taking the same as input signals thereof. The audio electroacoustic device comprises a hearing aid, an earphone of a home entertainment system, a public hearing loop system with an embedded hearing device, etc. The TMR near-field magnetic communication system comprises one or more TMR sensor bridges for detecting AC and DC magnetic field signals, an analog-signal circuit containing a filter which is used for separating components of AC and DC signals output by a TMR sensor, an amplifier which is used for amplifying an AC electrical signal, and an analog output used for transmitting the AC electrical signal to the audio electroacoustic device. The TMR sensor can be a linear or nonlinear TMR sensor, and the TMR sensor is designed to have an optimal signal to noise ratio in a specific DC magnetic field.

Classes IPC  ?

  • H04R 25/00 - Appareils pour sourds
  • H04W 4/80 - Services utilisant la communication de courte portée, p.ex. la communication en champ proche, l'identification par radiofréquence ou la communication à faible consommation d’énergie
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

95.

Single-chip differential free layer push-pull magnetic field sensor bridge and preparation method

      
Numéro d'application 15514952
Numéro de brevet 10066940
Statut Délivré - en vigueur
Date de dépôt 2015-09-25
Date de la première publication 2017-07-27
Date d'octroi 2018-09-04
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Provided are a single-chip differential free layer push-pull magnetic field sensor bridge and preparation method, the magnetic field sensor bridge comprising: a substrate, a staggered soft magnetic flux concentrator array, and a GMR spin valve or a TMR magnetoresistance sensing unit array having a magnetic sensing axis in an X-direction on the substrate. A soft magnetic flux concentrator comprises sides parallel to an X-axis and a Y-axis, and four corners sequentially labeled as A, B, C and D clockwise from an upper left position. Magnetoresistive sensing units are located at gaps between the soft magnetic flux concentrators. Additionally, the magnetoresistive sensing units corresponding to the A and C corner positions and B and D corner positions of the soft flux concentrators are defined as push magnetoresistive sensing units and pull magnetoresistive sensing units, respectively. The push magnetoresistive sensing units are electrically interconnected into one or more push arms, and the pull magnetoresistive sensing units are electrically interconnected into one or more pull arms. The push arms and the pull arms are electrically interconnected to form a push-pull sensor bridge. The present invention has low power consumption, high magnetic field sensitivity, and can measure a magnetic field in the Y-direction.

Classes IPC  ?

  • G01R 33/02 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques
  • G01C 17/28 - Compas électromagnétiques
  • G01R 3/00 - Appareils ou procédés spécialement adaptés à la fabrication des appareils de mesure
  • G01R 17/00 - Dispositions pour procéder aux mesures impliquant une comparaison avec une valeur de référence, p.ex. pont
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs

96.

Magnetoresistive Z-axis gradient sensor chip

      
Numéro d'application 15315329
Numéro de brevet 11536779
Statut Délivré - en vigueur
Date de dépôt 2015-05-14
Date de la première publication 2017-07-20
Date d'octroi 2022-12-27
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

A magnetoresistive Z-axis gradient sensor chip, which is used to detect the gradient in the XY plane of a Z-axis magnetic field component generated by a magnetic medium; the sensor chip comprises a Si substrate, a collection of two or two groups of flux guide devices separated a distance Lg and an arrangement of electrically interconnected magnetoresistive sensor units. The magnetoresistive sensor units are located on the Si substrate and located above or below the edge of the flux guide devices as well; the flux guide devices convert the component of the Z-axis magnetic field into the direction parallel to the surface of the Si substrate along the sensing axis direction of the magnetoresistive sensing units. The magnetoresistive sensor units are electrically interconnected into a half bridge or a full bridge gradiometer arrangement, wherein the opposite bridge arms are separated by distance Lg. This sensor chip can be utilized with a PCB or in combination with a PCB plus back-bias magnet with casing. The sensor measures the Z-axis magnetic field gradient by using magnetoresistive sensors with in-plane sensing axes. This sensor chip has several advantages relative to a Hall Effect sensor device, including smaller size, lower power consumption, and higher magnetic field sensitivity.

Classes IPC  ?

  • G01R 33/022 - Mesure du gradient
  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques

97.

Magnetic anti-counterfeit label and identification system thereof

      
Numéro d'application 15315336
Numéro de brevet 09805224
Statut Délivré - en vigueur
Date de dépôt 2015-05-14
Date de la première publication 2017-07-13
Date d'octroi 2017-10-31
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Cheng, Xiaofeng

Abrégé

A magnetic anti-counterfeit label and identification system thereof, wherein the magnetic anti-counterfeit label comprises a substrate, a magnetic ink layer, an opaque layer and a protective coating. The magnetic ink layer covers the substrate. The opaque layer covers the magnetic ink layer in order to visually hide the characters, bar code, and other patterns which are printed using magnetic ink. Additionally the protective coating is composed of a polymer or a metal layer, which covers opaque layer. This identification system comprises a magnetic sensor for sensing the magnitude of the magnetic field emitted by the magnetic anti-counterfeit label, a permanent magnet or an electromagnet for magnetizing the magnetic anti-counterfeit label, a digital processing circuit that is electrically connected to the magnetic sensor, and a frame that is used to hold the magnetic sensor and the digital processing circuit. The digital processing circuit outputs a code corresponding to the magnetic anti-counterfeit label.

Classes IPC  ?

  • G06K 7/08 - Méthodes ou dispositions pour la lecture de supports d'enregistrement avec des moyens de perception des modifications d'un champ électrostatique ou magnétique, p.ex. par perception des modifications de la capacité entre des électrodes
  • G06K 19/06 - Supports d'enregistrement pour utilisation avec des machines et avec au moins une partie prévue pour supporter des marques numériques caractérisés par le genre de marque numérique, p.ex. forme, nature, code

98.

Coin detection system

      
Numéro d'application 15321156
Numéro de brevet 10777031
Statut Délivré - en vigueur
Date de dépôt 2015-06-12
Date de la première publication 2017-07-06
Date d'octroi 2020-09-15
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Guo, Haiping

Abrégé

A coin detection system comprises an excitation coil, a radial magnetic gradiometer, an axial magnetic gradiometer, a signal excitation source, a drive circuit, an analog front-end circuit and a processor. After the excitation coil is excited by the signal excitation source and the drive circuit, the excitation coil generates an excitation magnetic field parallel to the axial direction of a coin, and under the influence of the excitation magnetic field, the coin generates an induced magnetic field through eddy currents induced in the coin; the radial magnetic gradiometer and the axial magnetic gradiometer detect the magnetic field components of the magnetic field in the radial direction and the axial direction of the coin, and the detected signal is transmitted to the analog front-end circuit for amplification; the processor processes and then outputs the amplified signal transmitted by the analog front-end circuit, and the material, design, denomination, etc. of the coin are obtained according to the amplitude, phase, and other information contained in the output signal.

Classes IPC  ?

  • G07D 5/08 - Test des propriétés magnétiques ou électriques

99.

Low fly height in-plane magnetic image sensor chip

      
Numéro d'application 15304956
Numéro de brevet 10168396
Statut Délivré - en vigueur
Date de dépôt 2015-04-14
Date de la première publication 2017-06-29
Date d'octroi 2019-01-01
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Zhou, Zhimin

Abrégé

Disclosed is a low fly height in-plane magnetic image sensor chip. This sensor chip comprises a silicon (Si) substrate with a pit on the surface, a magnetoresistive sensor, and an insulating layer. The magnetoresistive sensor is located on the bottom surface of the pit in the Si substrate. The insulating layer is located above the magnetoresistive sensor. The magnetic image surface detected during operation is coplanar or parallel with the surface of the Si substrate surface. The input and output ends of the magnetoresistive sensor are connected with leads directly, or bonded with leads through pads, or through a conducting post and pads to form connections. And the flying height of the leads is lower than the height of the surface of the Si substrate. This technical solution has several advantages, such as compact structure, high output signal, and direct contact with the magnetic image.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
  • G07D 7/04 - Test des propriétés magnétiques des matériaux de ces papiers, p.ex. par détection d’empreinte magnétique
  • H01L 43/08 - Résistances commandées par un champ magnétique
  • H01L 43/12 - Procédés ou appareils spécialement adaptés à la fabrication ou le traitement de ces dispositifs ou de leurs parties constitutives

100.

Monolithic three-axis magnetic field sensor and its manufacturing method

      
Numéro d'application 15300068
Numéro de brevet 10107871
Statut Délivré - en vigueur
Date de dépôt 2015-03-26
Date de la première publication 2017-06-22
Date d'octroi 2018-10-23
Propriétaire MultiDimension Technology Co., Ltd. (Chine)
Inventeur(s)
  • Deak, James Geza
  • Li, Dan

Abrégé

A monolithic three-axis magnetic field sensor comprises an X-axis sensor, a Y-axis sensor and a Z-axis sensor integrated into the same substrate. The X-axis sensor and the Y-axis are both referenced bridge structures. The magnetoresistive sensing elements of the reference arm are beneath the corresponding magnetic flux guides, and the magnetoresistive sensing elements are in the gaps between the corresponding magnetic flux guides. The magnetoresistive elements of these two sensors are aligned perpendicular to each other, and the magnetization directions of the pinned layer of these magnetoresistive elements are perpendicular to each other as well. The Z-axis sensor is a push-pull bridge structure. The push arms and pull arms of the magnetoresistive sensors are respectively aligned above or beneath the edges of the magnetic flux guides. The manufacturing method for this monolithic three-axis magnetic field sensor is also disclosed.

Classes IPC  ?

  • G01R 33/09 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs galvano-magnétiques des dispositifs magnéto-résistifs
  • G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
  • G01R 33/02 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques
  • H01L 43/08 - Résistances commandées par un champ magnétique
  • H01L 43/12 - Procédés ou appareils spécialement adaptés à la fabrication ou le traitement de ces dispositifs ou de leurs parties constitutives
  1     2     3        Prochaine page