A cutting element (1) for a cutting tool has a sensor element (110), a body of super hard material (12) having a working surface (14), the sensor element (110) being attached to a portion of the working surface of the body of super hard material (12), a substrate (10) bonded to the body of super hard material (12) along an interface spaced from and opposing the working surface (14) and one or more conducting wires (114) extending from the sensor element (110) through one or more channels (102) in the body of super hard material (12) to a receiving socket (118), the receiving socket being located in a cavity in the substrate (20). The receiving socket (20) has an insulating layer (220) comprising a layer of ceramic adhesive and a receiving cavity defined by a wall, at least a portion of the wall including metal.
E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
E21B 47/01 - Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
A cutting element (1) for a cutting tool has a sensor element, a body of super hard material (12) having a working surface, the sensor element being attached to a portion of the super hard material (12), and one or more conducting wires extending from the sensor element through one or more channels extending through the body of super hard material. The sensor element is bonded to the body of superhard material through a layer of ceramic adhesive.
E21B 10/573 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts - characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
A milling tool for milling a material is provided, The milling tool comprises a tool shank having an axis of rotation, and further comprises a tool head at one end thereof. The tool head comprises at least two tiers, each tier comprising a plurality of flutes extending circumferentially around the tool head. The tool head comprises superhard material and the tiers are axially displaced from each other and separated by a non-cutting portion of the tool head.
B23C 5/10 - Shank-type cutters, i.e. with an integral shaft
B28D 1/18 - Working stone or stone-like materials, e.g. brick, concrete, not provided for elsewhere; Machines, devices, tools therefor by milling, e.g. channelling by means of milling tools
There is disclosed a carbon material having a face-centred cubic crystal lattice characterized by a space group Fm-3m, and containing at least 99.9 atomic % carbon, wherein the mean grain size of the carbon material is greater than 0.5 µm.
This disclosure relates to a rotary abrasive machining tool comprising a hub with a plurality of axially extending radial slots in an outer circumference thereof, and a plurality of abrasive segments, typically polycrystalline diamond, located in the radial slots.
B24D 5/06 - Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
B24D 5/10 - Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with cooling provisions, e.g. with radial slots
This disclosure relates to a disc cutter comprising a cutter body, a plurality of tool holders and a plurality of cutting elements. The tool holders and cutting elements are arranged in at least one set about the cutter body. Each set comprises tool holders and cutting elements in a predetermined sequence of configurations. In the pre-determined sequence of configurations, the quantity of cutting elements and/or the lateral spacing of the cutting elements varies.
B28D 1/12 - Saw blades specially adapted for working stone
B28D 1/18 - Working stone or stone-like materials, e.g. brick, concrete, not provided for elsewhere; Machines, devices, tools therefor by milling, e.g. channelling by means of milling tools
E02F 5/08 - Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with digging wheels turning round an axis
This disclosure relates to a disc cutter comprising PCD cutting elements mounted about a circular body via intermediate tool holders. The cutting elements and corresponding tool holders are arranged in sets of typically 4, 5 or 6 tool holders. The sets repeat along the 5 circumference of the body. A tool holder stabilising system is implemented to reduce the occurrence of vibrations, caused by the cutting operation in use, reaching the cutting elements and causing premature failure.
B28D 1/12 - Saw blades specially adapted for working stone
B28D 1/18 - Working stone or stone-like materials, e.g. brick, concrete, not provided for elsewhere; Machines, devices, tools therefor by milling, e.g. channelling by means of milling tools
E02F 5/08 - Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with digging wheels turning round an axis
This disclosure relates to a disc cutter comprising a cutter body, a plurality of tool holders and a plurality of cutting elements. The tool holders and cutting elements are arranged in at least one set about the cutter body. Each set comprises tool holders and cutting elements in a pre- determined sequence of configurations. At least one of the tool holders within each set is a prime tool holder that supports a tilt cutting element. A tilt cutting element is one that faces in a plane forming a non-zero tilt angle α with the plane of the cutter body.
B28D 1/12 - Saw blades specially adapted for working stone
B28D 1/18 - Working stone or stone-like materials, e.g. brick, concrete, not provided for elsewhere; Machines, devices, tools therefor by milling, e.g. channelling by means of milling tools
E02F 5/08 - Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with digging wheels turning round an axis
9.
METHOD OF MINING A ROCK FORMATION USING A DISC CUTTER AND A ROCK BREAKER TOOL
This disclosure relates to a method of mining a rock formation using a disc cutter and a rock breaker tool. Several examples of rock breaker tool are provided, including mini disc cutters and a form of hydraulic striker. The tool is inserted into slits cut into the rock by the disc cutter and activated, causing crack initiation and propagation in the rock.
E21C 27/12 - Machines which completely free the mineral from the seam by both slitting and breaking-down breaking-down effected by acting on the vertical face of the mineral, e.g. by percussive tools
E21C 37/04 - Other methods or devices for dislodging with or without loading by devices with parts pressed mechanically against the wall of a borehole
B28D 1/04 - Working stone or stone-like materials, e.g. brick, concrete, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular saw blades or saw discs
B28D 1/22 - Working stone or stone-like materials, e.g. brick, concrete, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
E21C 37/22 - Hand tools or hand-held power-operated tools specially adapted for dislodging minerals
This disclosure relates to a cutting assembly comprising a disc cutter and a dust reduction unit for reducing the transmission of dust generated by the disc cutter during use.
This disclosure relates to a computer-implemented method for estimating component wear. At least one clustering analysis may be applied to measurements taken during component use to identify clusters and generate alerts.
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
This disclosure relates to a method of making a shaped tool component from a precursor sintered body comprising polycrystalline diamond (PCD). The sintered body has a PCD table joined to a substrate, and the PCD table varies in depth. The resulting shaped tool component thus also has a PCD layer with varying depth. A method of making a shaped tool component comprising polycrystalline diamond (PCD), comprising the steps: h. Adding a diamond feed stock to a refractory cup; i. Adding a p re-shaped cemented carbide body to the refractory cup adjacent the diamond feed stock; j. Compacting the diamond feed stock and cemented carbide body to form a green body; k. Sintering the green body at a temperature between 1400 °C to 2100 °C and at a pressure of at least 7 GPa, for at least 30 seconds to form a sintered PCD precursor body that comprises a PCD table sinter-joined to the cemented carbide substrate at an interface;
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
This disclosure relates to a PCBN friction stir welding tool ideally suited for welding plate with a thickness of at least 12 mm, wherein the stirring pin has a pin height measured parallel to the longitudinal axis of rotation between a base of the stirring pin and a maximum point of extension of the stirring pin, and wherein the shoulder region has a largest linear dimension measured perpendicularly to the longitudinal axis of rotation, a ratio between the largest linear dimension of the shoulder region and the pin height being less than 4.5.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
This disclosure relates to a friction stir welding tool insert comprising polycrystalline cubic boron nitride. The tool insert comprises a stirring pin and a coaxial shoulder region, wherein the shoulder region comprises a shoulder surface for engaging with the workpiece during use. The shoulder surface comprises a spiral or set of concentric grooves with a depth, D, wherein the depth, D, varies with the radial distance between the stirring pin and a peripheral edge of the shoulder surface.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
17.
A POLYCRYSTALLINE SUPERHARD CONSTRUCTION AND A METHOD OF MAKING SAME
A polycrystalline super hard construction has a body of polycrystalline super hard material bonded to a substrate along an interface surface. The substrate includes a first material and the body of polycrystalline super hard material includes a second material, wherein the first material differing from the second material in any one or more of average grain size of super hard material, coefficient of thermal expansion, super hard material grain size distribution, hardness. The substrate also includes indicia on at least a portion of the interface surface, the indicia comprising any one or more of letters, numbers, graphical symbols and/or combinations thereof. Also disclosed is a method of using the indicia on the interface surface to distinguish between superhard constructions and a method of generating indicia within a polycrystalline superhard construction.
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
C22C 29/08 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
B22F 3/14 - Both compacting and sintering simultaneously
E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
B41M 5/00 - Duplicating or marking methods; Sheet materials for use therein
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
B22F 3/16 - Both compacting and sintering in successive or repeated steps
This disclosure relates to a friction stir welding (FSW) tool assembly comprising a retention mechanism to mechanically engage both a tool insert and a tool holder, thereby preventing relative separation. The retention mechanism comprises an annular locking collar mounted about the tool insert and/or the tool holder that couples with the tool insert and/or the tool holder, in mating engagement.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
C22C 19/05 - Alloys based on nickel or cobalt based on nickel with chromium
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
This disclosure relates to a friction stir welding (FSW) tool assembly comprising a bonding layer to bond the tool insert and the tool holder together, wherein the bonding layer is a layer of braze with a melting temperature of at least 900°C.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
This disclosure relates to a two-piece friction stir welding (FSW) tool insert. The tool insert has a longitudinal axis of rotation and comprises a stirring pin and an annular shoulder coaxially mounted about the stirring pin. The stirring pin and annular shoulder each comprise polycrystalline cubic boron nitride. The annular shoulder is a thin disc with a thickness of 1 to 12 mm and the shoulder comprises a tapered, central aperture, through which the stirring pin protrudes.
B23K 35/22 - Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
This disclosure relates to a disk cutter (100) for a cutting assembly of a rock excavation machine. The disk cutter comprising a cutter body (102) including at least one light-weighting aperture (110).
This disclosure relates to a high cBN content polycrystalline cubic boron nitride, PCBN, material. The binder matrix material comprises 2 to 15 wt.% titanium diboride (TiB2).
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
C04B 35/626 - Preparing or treating the powders individually or as batches
This disclosure relates to a high cBN content polycrystalline cubic boron nitride, PCBN, material. The binder matrix material comprises 19 to 50 wt.% chromium, or a compound thereof.
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
C04B 35/626 - Preparing or treating the powders individually or as batches
This disclosure relates to a polycrystalline cubic boron nitride, PCBN, material that includes a binder matrix material containing nitride compounds. The nitride compounds are selected from HfN, VN, and/or NbN.
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
C04B 35/626 - Preparing or treating the powders individually or as batches
A sensor element for a cutting tool, the sensor element having a hard portion having a working surface and at least one diamond crystal at least partially embedded in the hard portion, the at least one diamond crystal being arranged to generate a piezoresistive signal in response to the working surface engaging external material in use.
E21B 47/01 - Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
27.
POLYCRYSTALLINE DIAMOND CONSTRUCTIONS & METHODS OF MAKING SAME
A polycrystalline diamond construction has a body of polycrystalline diamond (PCD) material; and a cemented carbide substrate bonded to the body of polycrystalline material along an interface. The cemented carbide substrate includes tungsten carbide particles bonded together by a binder material, the binder material comprising an alloy of Co, Ni and Cr; and the tungsten carbide particles form at least around 70 weight percent and at most around 95 weight percent of the substrate. The cemented carbide substrate has a bulk volume, the bulk volume of the cemented carbide substrate has at least around 0.1 vol.% of inclusions of free carbon having a largest average size in any one or more dimensions of less than around 40 microns.
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
B24D 18/00 - Manufacture of grinding tools, e.g. wheels, not otherwise provided for
C22C 29/06 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
C22C 29/08 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
E21B 10/573 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts - characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element
A polycrystalline diamond construction has a body of polycrystalline diamond (PCD) material; and a cemented carbide substrate bonded to the body of polycrystalline material along an interface. The cemented carbide substrate has tungsten carbide particles bonded together by a binder material, the binder material comprising Co; and the tungsten carbide particles form at least around 70 weight percent and at most around 95 weight percent of the substrate. The cemented carbide substrate has a bulk volume, the bulk volume of the cemented carbide substrate having at least around 0.1 vol.% of inclusions of free carbon having a largest average size in any one or more dimensions of less than around 40 microns.
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
C22C 29/06 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
C22C 29/08 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
B24D 18/00 - Manufacture of grinding tools, e.g. wheels, not otherwise provided for
E21B 10/573 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts - characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element
B22F 1/00 - Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
A method of processing a polycrystalline diamond (PCD) material having a non- diamond phase with a catalyst/solvent material includes leaching an amount of the catalyst/solvent from the PCD material by exposing at least a portion of the PCD material to a leaching mixture, the leaching mixture comprising hydrofluoric acid at a molar concentration of between 12M to around 28M, nitric acid at a molar concentration of between around 3M to around 10M; and water.
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
C23F 1/28 - Acidic compositions for etching iron group metals
E21B 10/573 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts - characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element
30.
FRICTION STIR WELDING USING A PCBN-BASED TOOL CONTAINING SUPERALLOYS
This disclosure relates to a polycrystalline cubic boron nitride, PCBN, composite material comprising cubic boron nitride, cBN, particles and a binder matrix material in which the cBN particles are dispersed. The binder matrix material comprises one or more superalloys.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
B23K 20/22 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
B24D 3/06 - Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic
C22C 19/05 - Alloys based on nickel or cobalt based on nickel with chromium
C22C 27/04 - Alloys based on tungsten or molybdenum
C22C 32/00 - Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
The present application relates to a friction stir welding tool insert comprising a polycrystalline cubic boron nitride, PCBN, composite material with a textured surface layer. The textured surface layer comprises a p re-defined repeating pattern.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
B23K 20/22 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
32.
POLYCRYSTALLINE DIAMOND WITH IRON-CONTAINING BINDER
This disclosure relates to a polycrystalline diamond (PCD) body comprising a PCD material formed of intergrown diamond grains forming a diamond network, and an iron-containing binder.
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
C04B 37/02 - Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
This disclosure relates to a disk cutter (18) comprising a cutter body, a plurality of tool holders (24) and a plurality of cutting elements (22) mounted to the tool holders. The tool holders and cutting elements are provided in at least one set about the cutter body, each set comprising two or more tool holders and two or more cutting elements arranged in a p re-determined sequence of configurations.
This disclosure relates a polycrystalline cubic boron nitride, PCBN, composite material for use in friction stir welding. The PCBN composite material comprises tungsten (W), rhenium (Re) and aluminium (Al) in the binder matrix material.
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
C22C 1/05 - Mixtures of metal powder with non-metallic powder
C22C 27/00 - Alloys based on rhenium or a refractory metal not mentioned in groups or
C22C 27/04 - Alloys based on tungsten or molybdenum
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
A sensor element for a cutting tool has a hard portion having a first sensing surface, first and second electrodes, and first and second sets of thermocouple wires, and an electrically insulating portion. The second electrode has a second sensing surface, The hard portion comprises hard and/or super-hard material and the first and second electrodes comprise electrically conductive hard and/or super-hard material, the hard portion isolating the first sensing surface from the second sensing surface. The second electrode is attached to or forms part of an electrically conductive region of the hard portion or a region attached thereto. Electric current flows between the first and second electrodes through external material when the sensing surfaces contact the material in response to the cutting tool engaging the material. The first and second electrodes are operable to indicate any one or more of a temperature of the first and second electrodes, and conductivity between the electrodes.
E21B 47/13 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. of radio frequency range
E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
36.
SENSOR ELEMENTS AND ASSEMBLIES, CUTTING TOOLS COMPRISING SAME AND METHODS OF USING SAME
A sensor element for a cutting tool (100) has a hard portion (110) having a sensing surface (112), first and second electrodes (120, 130), first and second sets of thermocouple wires (122, 132) and an electrically insulating portion. The first and second electrodes (120, 130) are arranged to allow electric current to flow when the sensing surface (112) contacts external material in response to the cutting tool engaging the external material. A first thermocouple junction (124) is operable to indicate a temperature of the first electrode and a second thermocouple junction (134) is operable to measure temperature of the second electrode.
E21B 47/01 - Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
This disclosure relates to a cutting assembly (10) for a rock excavation machine. The cutting assembly comprises a base unit (12), one or more moveable support arms (14) extending from the base unit, a drive spindle (16) rotatably mounted to the or each moveable support arm, and a disk cutter (18) fixed about the drive spindle such that rotation of the drive spindle causes a corresponding rotation of the disk cutter. The disk cutter comprises a cutter body (20) and one or more cutting elements (22) arranged peripherally around the cutter body. The disk cutter further comprises a body protection element (44) on or in an axial surface of the cutter body to protect the cutter body from bodywash.
This disclosure relates to polycrystalline cubic boron nitride material with cBN particles in a metal matrix comprising zirconium nitride and/or vanadium nitride precipitates or grains.
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
C04B 35/626 - Preparing or treating the powders individually or as batches
A cutting element (30) includes a substrate (40); and a body of superhard polycrystalline material (34) bonded to the substrate (40) along an interface, the body of superhard polycrystalline material having a peripheral side edge (42). The body of superhard polycrystalline material has a cutting surface (34); a plurality of spaced apart cutting edges (36) extending to the cutting surface (34) through respective chamfer portions (38), the cutting edges being spaced around the peripheral side edge; a plurality of recesses/ regions (48) extending from the cutting surface (34) towards the substrate, adjacent cutting edges (36) being spaced apart by a respective one of said recesses/regions (48); and a protrusion or recessed region extending from the cutting surface about a central longitudinal axis of the cutting element. A method of making such a cutting element is also disclosed.
E21B 10/16 - Roller bits characterised by tooth form or arrangement
E21B 10/43 - Rotary drag type drill bits with teeth, blades or like cutting elements, e.g. fork-type bits, fish tail bits characterised by the arrangement of teeth or other cutting elements
E21B 10/52 - Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of roller type with chisel- or button-type inserts
A cutting element (30) includes a substrate (40) having a peripheral side edge, the peripheral side edge having an associated radius of curvature; and a body of superhard polycrystalline material bonded to the substrate along an interface, the body of superhard polycrystalline material (39) having a peripheral side edge and a longitudinal axis. The body of superhard polycrystalline material (39) has a working surface (54); and a plurality of spaced apart cutting edges extending to the working surface (54) through respective chamfer portions (62), the cutting edges (61, 76) being spaced around the working surface by a further region. The cutting edges (61, 76) have an associated radius of curvature, the radius of curvature of one or more of the cutting edges being less than the radius of curvature of the substrate. A method of making such a cutting element is also disclosed.
E21B 10/16 - Roller bits characterised by tooth form or arrangement
E21B 10/43 - Rotary drag type drill bits with teeth, blades or like cutting elements, e.g. fork-type bits, fish tail bits characterised by the arrangement of teeth or other cutting elements
E21B 10/52 - Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of roller type with chisel- or button-type inserts
A sensor system has a cutter element for a cutting tool, an interrogation transceiver operable to transmit a radio-frequency (RF) interrogation signal; and a sensor transceiver system operable to receive the RF interrogation signal and to transmit an RF response signal. The sensor transceiver system includes a signal guide medium configured to transduce between the RF interrogation signal, a guided signal in the signal guide medium, and the RF response signal. A characteristic of the RF response signal is dependent upon a condition of the signal guide medium. The cutter element includes the signal guide medium to allow the condition of the signal guide medium to depend upon a condition of the cutter element proximate the signal guide medium. A method of using the sensor system is also disclosed.
E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
B23Q 17/09 - Arrangements for indicating or measuring on machine tools for indicating or measuring cutting pressure or cutting-tool condition, e.g. cutting ability, load on tool
A cutter assembly for a cutting tool has a super-hard volume of super-hard material having a proximal end and a distal end and including a cavity; and a cover member. The super- hard volume has a super-hard surface at the distal end including a cutting edge. The cavity has a cavity open end at the distal end. The super-hard surface includes a cavity peripheral area coterminous with the cavity open end and the cover member has a cover peripheral area configured to mate with the cavity peripheral area to allow the cover member to cover the cavity at the cavity open end, the covered cavity providing a housing chamber within the super-hard volume. A method of making a cutter assembly is also disclosed.
A composite product has a body of polycrystalline diamond (PCD) material having a PCD proximal end and a PCD distal end, an electronic device including an electronic component, and a connection portion joining the electronic device to the body at the PCD distal end, and comprising metallic join material having a liquidus temperature of 600°C to 950°C at atmospheric pressure. At least one of the electronic device and the body includes an electrically insulating portion between the electronic component and the PCD proximal boundary establishing an electrical open circuit condition between the electronic component and the PCD proximal boundary. A method of making the composite product is also disclosed.
This disclosure relates to a cutting assembly for a rock excavation machine with integrated sensors. The rock excavation machine comprises a base unit, one or more moveable support arms extending from the base unit, a drive spindle rotatably mounted to the or each moveable support arm, and a disk cutter fixed about the drive spindle such that rotation of the drive spindle causes a corresponding rotation of the disk cutter.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
C04B 37/00 - Joining burned ceramic articles with other burned ceramic articles or other articles by heating
E21C 35/183 - Mining picks; Holders therefor with inserts or layers of wear-resisting material
A bearing element for a bearing assembly has a body of polycrystalline diamond (PCD) material having a bearing contact surface, and a substrate bonded to the body of PCD material along an interface and having a free end surface. The substrate has a through-bore extending longitudinally therethrough, the body of PCD material having a portion extending through the through-bore in the substrate to at least the free end surface thereof, the substrate extending around the peripheral side edge of the portion of PCD material extending therethrough.
A cutting element for an earth-boring tool, the cutting element has a substrate; anda body of superhard polycrystalline material bonded to the substrate along an interface. Any one or both of the substrate or the body of superhard polycrystalline material has one or more sealed channels or regions therein, one or more of the regions or channels being arranged to retain a tracer element to provide data relating to a condition of the cutting element.
This disclosure relates to a tool assembly for friction stir welding. The tool assembly comprises a tool holder and a puck each having an axis of rotation. The tool holder comprises a tool post and the puck comprises a pin. The puck is coupled to the tool post. The tool assembly is adapted such that during friction stir welding, run-out of the tool holder, measured as the run-out between the axis of rotation of the tool holder and the axis of rotation of the pin, does not exceed 10µm.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
49.
A MAGNESIUM DIBORIDE CONSTRUCTION AND A METHOD FOR FORMING THE SAME
A cutter element for an earth-boring tool, comprising a polycrystalline diamond (PCD) volume joined at an interface boundary to a cemented carbide substrate. The PCD volume includes a rake face opposite the interface boundary, an edge of the rake face being suitable as a cutting edge of the cutter element. The PCD volume comprises a plurality of strata directly joined to each other at inter-strata boundaries, in which each of a first plurality of the strata comprises PCD material having a first diamond content; each of a second plurality of the strata comprises PCD material having a second diamond content; the second diamond content being greater than the first diamond content; and the strata of the first and second pluralities disposed in an alternating arrangement with respect to each other. The strata are configured and arranged such that a radial line through the edge and a centroid of the interface boundary intersects, within 1,000 microns from the edge, each of the inter-strata boundaries, and the respective tangent plane to each inter-strata boundary at the respective intersection is disposed relative to the radial line at no less than a minimum angle of 30°.
A method of processing a body of polycrystalline super hard material having a first phase including grains of super hard material and a second phase of non- super hard material includes the steps of applying a cover layer to at least a portion of the surface of the body of super hard material to be treated and applying a laser shock wave peening treatment to the surface through the cover layer.
A polycrystalline diamond (PCD) construction has a first region of a first grade of PCD material; and a second region of a second grade of PCD material, the first region being at least partially peripherally surrounded by the second region, the first and second regions being bonded to each other by direct inter-growth of diamond grains to form an integral PCD structure and a substrate bonded to the first and/or second region(s) along an interface. The first grade of PCD differs from the second grade in one or more of diamond and metal network compositional ratio, metal elemental composition, or average diamond grain size, the first grade of PCD material having a larger average diamond grain size than the second grade of PCD material, and/or a smaller volume percentage of residual catalyst and/or binder in interstitial spaces between interbonded diamond grains than the PCD material of the second region.
B22F 3/14 - Both compacting and sintering simultaneously
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
DE BEERS GROUP SERVICES PROPRIETARY LIMITED (Saudi Arabia)
Inventor
Leeming, Matthew John Ian
Kanyanta, Valentine
Saridikmen, Habib
Vermeulen, Adriaan
Abstract
This disclose relates to a cutting assembly (10) for mining comprising a disk cutter (18), which is moveable between horizontal and vertical cutting orientations.
This disclosure relates to a cutting assembly for mining or extraction. The cutting assembly comprises a circular disk cutter (18). Cutting elements are arranged around a circumferential surface of the disk cutter, each seated in a tool holder (24). The orientation of the seat is such that the cutting element (22) points tangentially in or towards the intended direction of rotation.
This disclosure relates to a cutting assembly comprising a circular disk cutter (18). A plurality of cutting elements (22) and a corresponding quantity of tool holders (24) are arranged around a circumferential surface of the disk cutter. Each tool holder is at least partially laterally offset with respect to the circular body.
Turning or milling tool cutting element (1) with an electrically conductive wear sensor (6, 7) formed at the surface region. The cutting element (1) comprises a HPHT polycrystalline diamond body in which the conductive wear sensor (6, 7) comprises graphite.
B23C 5/20 - Milling-cutters characterised by physical features other than shape with removable cutter-bits or teeth
B23Q 17/09 - Arrangements for indicating or measuring on machine tools for indicating or measuring cutting pressure or cutting-tool condition, e.g. cutting ability, load on tool
A cutting element (1) for a tool with an electrically conductive track (6) formed at a surface region. The cutting element (1) comprises a HPHT produced polycrystalline diamond body. The conductive track (6) comprises graphite such that the electrically conductive track (6) has an electrical resistance substantially lower than that of the surface region.
B23Q 17/09 - Arrangements for indicating or measuring on machine tools for indicating or measuring cutting pressure or cutting-tool condition, e.g. cutting ability, load on tool
B23B 27/14 - Cutting tools of which the bits or tips are of special material
This disclosure relates to a percussive drill bit comprising PCD studs and a drill bit body protector to limit erosion of the drill bit body near the PCD studs. The drill bit body protector may take various forms such as a continuous hard facing layer, a plurality of cemented carbide studs, a wear resistant plate, a plurality of individual wear resistant washers, and a carbide support post attached to at least some of the PCD studs.
A super hard polycrystalline construction has a first region having a body of thermally stable polycrystalline super hard material with an exposed surface forming a working surface, and a peripheral side edge, a second region forming a substrate to the first region and a third region interposed between the first and second regions. The third region extends across a surface of the second region along an interface and has a composite material having a first phase comprising a plurality of non-intergrown diamond grains, the majority of the diamond grains having a coating comprising nano-sized BN particles. There is also disclosed a method of making such a construction.
B22F 3/14 - Both compacting and sintering simultaneously
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
C04B 35/63 - Preparing or treating the powders individually or as batches using additives specially adapted for forming the products
E21B 10/55 - Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits with preformed cutting elements
E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
B22F 3/24 - After-treatment of workpieces or articles
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
E21B 10/573 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts - characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element
A polycrystalline diamond (PCD) construction has a first region with a first set of one or more strata comprising a first grade of PCD material and a second set of strata comprising a second grade of PCD material. The first set is arranged in an alternating configuration with the second set, the alternating strata being bonded to each other by direct inter-growth of diamond grains. The strata in the first set have a greater average thickness than the strata in the second set. The first grade of PCD material differs from the second in one or more of diamond and metal network compositional ratio, metal elemental composition, or average diamond grain size. One or more of the strata in the first set may have a smaller average diamond grain size than strata in the second region and/or a greater volume percentage of residual catalyst/binder than one or more strata in the second region.
B22F 3/14 - Both compacting and sintering simultaneously
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
E21B 10/55 - Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits with preformed cutting elements
E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
A super hard polycrystalline construction includes a first region having a body of thermally stable polycrystalline super hard material with an exposed surface forming a working surface, and a peripheral side edge. The polycrystalline super hard material has a plurality of intergrown grains of super hard material, a second region forming a substrate to the first region, and a third region interposed between the first and second regions. The third region extends across a surface of the second region along an interface, the third region having a composite material having a first phase comprising a plurality of non-intergrown diamond grains, the majority of said diamond grains having a coating comprising nano-sized cBN particles. There is also disclosed a method of forming such a construction.
B22F 3/14 - Both compacting and sintering simultaneously
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
C04B 35/63 - Preparing or treating the powders individually or as batches using additives specially adapted for forming the products
E21B 10/55 - Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits with preformed cutting elements
E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
B22F 3/24 - After-treatment of workpieces or articles
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
E21B 10/573 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts - characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element
A polycrystalline super hard construction has a body of polycrystalline diamond material with a working surface, a first region substantially free of a solvent/catalysing material extending a depth from the working surface into the body of PCD material, and a second region remote from the working surface that includes solvent/catalysing material. The first and second regions are joined along a boundary. A chamfer extends between the working surface and a peripheral side surface of the body of PCD material. The distance from the midpoint of the chamfer to the boundary of the first and second regions along a plane substantially perpendicular to the plane in which the chamfer extends is at least X divided by two, where X is 0.8 times the thickness of the body of PCD material.
B22F 3/14 - Both compacting and sintering simultaneously
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
C04B 35/63 - Preparing or treating the powders individually or as batches using additives specially adapted for forming the products
E21B 10/55 - Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits with preformed cutting elements
E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
A polycrystalline diamond construction has a first region having a first grade of PCD material and a second region having a second grade of PCD material, the first region being arranged to divide the second region into a plurality of segments. The first and second regions are bonded to each other by direct inter-growth of diamond grains to form an integral PCD structure. The first grade of PCD material differs from the second grade in one or more of diamond and metal network compositional ratio, metal elemental composition, or average diamond grain size, the first grade of PCD material having a larger average diamond grain size than the average diamond grain size of the second grade of PCD material, and/or a smaller volume percentage of residual catalyst/binder in interstitial spaces between interbonded diamond grains than the in the PCD material of the second region.
B22F 3/14 - Both compacting and sintering simultaneously
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
E21B 10/55 - Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits with preformed cutting elements
E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
This disclosure relates to a striking tool for use in a high velocity, high impact energy comminution mill. The tool comprises an elongate body attachable at a first end to the comminution mill, and further comprises a wear resistant element for improving the wear resistance of the striking tool. The wear resistant element comprises a plurality of individual units.
B02C 13/16 - Disintegrating by mills having rotary beater elements with vertical rotor shaft, e.g. combined with sifting devices with beaters hinged to the rotor
B02C 13/28 - Shape or construction of beater elements
This disclosure relate to a pick tool for road milling or mining. The pick tool comprises a tip assembly coupled to a tool body. The tip assembly comprises a shaped cutter supported by a bolster, a first end of the bolster being connected to the tool body. The shaped cutter is disposed at a second opposing end of the bolster. The shaped cutter comprises a superhard strike tip joined to a substrate at an interface, and a refractory cap covering the strike tip.
A bearing assembly includes a roller bearing unit, an inner race and an outer race. The roller bearing unit is formed of polycrystalline super-hard material having a mean mass density of at most 4.5 g/cm3and a volume-weighted arithmetic mean thermal conductivity of at least 100 W/m.K.
A translucent polycrystalline cubic boron nitride body is provided. It comprises no more than 2 weight % hexagonal boron nitride grains and has an absorption coefficient of less than 100 cm-1 at a wavelength of 1064 nm.
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
C04B 35/626 - Preparing or treating the powders individually or as batches
A super-hard tip for a super-hard bit comprises a super-hard volume (102) and a substrate (112). The super-hard volume is sinter-joined to a distal end of the substrate at a join boundary (105), opposite a proximal end of the substrate configured for joining to a support body (120). A substrate side (113) connects the proximal and distal ends of the substrate. The distal end defines a distal circumscribing circle, and the proximal end defines a proximal circumscribing circle. The side of the substrate may include a divergent area, configured such that the diameter of the proximal circumscribing circle (D2) is greater than the diameter of the distal circumscribing circle (D1).
B23B 27/20 - Cutting tools of which the bits or tips are of special material with diamond bits
C22C 29/08 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
70.
SINTERED POLYCRYSTALLINE CUBIC BORON NITRIDE MATERIAL
A method of making a polycrystalline cubic boron nitride (PCBN), material is provided. The matrix precursor powder comprises an aluminium compound. The method comprises mixing matrix precursor powder comprising particles having an average particle size no greater than 250 nm, with between 30 and 40 volume per cent of cubic boron nitride (cBN) particles having an average particle size of at least 4 µm, and then spark plasma sintering the mixed particles. The spark plasma sintering occurs at a pressure of at least 500 MPa, a temperature of no less than 1050°C and no more than 1500°C and a time of no less than 1 minute and no more than 3 minutes.
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
B22F 3/14 - Both compacting and sintering simultaneously
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
71.
SINTERED POLYCRYSTALLINE CUBIC BORON NITRIDE MATERIAL
A polycrystalline cubic boron nitride, PCBN, material is provided. The material comprises between 30 and 90 weight per cent cubic boron nitride (cBN) and a matrix material in which the cBN particles are dispersed. The matrix material comprises particles of an aluminium compound; the matrix material particles having a d50 when measured using a linear intercept technique of no more than 100 nm.
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
B22F 3/14 - Both compacting and sintering simultaneously
A strike tip for a pick tool is provided. The strike tip comprises a strike structure comprising a super-hard material and a substrate comprising cemented carbide material, the substrate being joined to the strike structure at an interface. The strike tip has rotational symmetry about a main central axis. The strike structure has a planar apex area and, on a plane on which the main central axis lies, a convex curved side wall extends between the planar apex area and the substrate.
A method and apparatus for characterizing a cutting tool edge from an image of the cutting tool edge. Chips, cracks and other tool edge defects are measured, providing an indication of the condition of a cutting tool edge.
B23Q 17/24 - Arrangements for indicating or measuring on machine tools using optics
G01B 11/24 - Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
B23Q 17/09 - Arrangements for indicating or measuring on machine tools for indicating or measuring cutting pressure or cutting-tool condition, e.g. cutting ability, load on tool
A super hard polycrystalline construction is disclosed as comprising a first region comprising a body of thermally stable polycrystalline diamond material comprising a plurality of intergrown grains of diamond material; a second region forming a substrate to the first region; and a third region interposed between the first and second regions. The third region extends across a surface of the second region along an interface. The interface comprises at least a portion having an uneven topology, and the third region comprises a diamond composite material including a first phase comprising a plurality of non-intergrown super hard grains, said super hard grains comprising diamond grains; and a matrix material. The superhard material and matrix material of the third region form a diamond composite material which is more acid resistant than polycrystalline diamond material having a binder- catalyst phase comprising cobalt, and/or more acid resistant than cemented tungsten carbide material.
B22F 3/14 - Both compacting and sintering simultaneously
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
C22C 29/06 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
C22C 29/08 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
B22F 3/24 - After-treatment of workpieces or articles
A polycrystalline super hard construction is disclosed having a first region comprising a body of thermally stable polycrystalline super hard material having an exposed surface forming a working surface, and a peripheral side edge, the polycrystalline super hard material comprising a plurality of grains of super hard material; a second region forming a substrate to the first region; and a third region interposed between the first and second regions. The third region extends across a surface of the second region along an interface, the interface comprising a portion having an uneven topology and a substantially planar portion, the third region comprising a composite material including a first phase comprising a plurality of non-intergrown diamond grains, and a matrix material.
B22F 3/14 - Both compacting and sintering simultaneously
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
C22C 29/06 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
C22C 29/08 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
B22F 3/24 - After-treatment of workpieces or articles
A super hard polycrystalline construction has a first region comprising a body of thermally stable polycrystalline super hard material having an exposed surface forming a working surface, and a peripheral side edge, said polycrystalline super hard material comprising a plurality of intergrown grains of super hard material; a second region forming a substrate to the first region; and a third region interposed between the first and second regions. The third region extends across a surface of the second region along an interface, the interface comprising at least a portion having an uneven topology, the third region comprising a composite material having a first phase comprising a plurality of non-intergrown grains of super hard material, and a matrix material, the third region having a wear resistance at least three times less than sintered polycrystalline diamond material having the same average grain size of diamond grains as the super hard grains in the third region.
B22F 3/14 - Both compacting and sintering simultaneously
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
C22C 29/06 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
C22C 29/08 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
B22F 3/24 - After-treatment of workpieces or articles
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
77.
A METHOD OF MAKING A POLYCRYSTALLINE SUPER HARD CONSTRUCTIONS
A method of forming polycrystalline diamond comprised placing a plurality of graphene nano-platelets into a capsule; and subjecting the platelets to a pressure of around 10 GPa to around 20 GPa and a temperature of around 1600 degrees Celsius to around 3000 degrees Celcius to convert the graphene platelets to nano-polycrystalline diamond. There is also disclosed a polycrystalline super hard construction comprising a polycrystalline diamond region comprising polycrystalline diamond material formed according to said method.
A super hard polycrystalline construction is disclosed as comprising a body of super hard material having a first fraction of super hard grains in a matrix of a second fraction of super hard grains. The average grain size of the first fraction is between around 1.5 to around 10 times the average grain size of the second fraction and the first fraction comprises around 5 vol% to around 30 vol% of the grains of super hard material in the body.
B22F 3/14 - Both compacting and sintering simultaneously
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
C22C 29/06 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
C22C 29/08 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
A method of forming a super hard polycrystalline construction is disclosed as comprising placing a pre-formed structure of a first material into a canister, introducing a plurality of grains or particles of super hard material into the canister to locate the grains or particles in and/or around the pre-formed structure to form a pre-sinter assembly and treating the pre-sinter assembly at an ultra-high pressure of around 5 GPa or greater and a temperature to sinter together the grains of super hard material in the presence of a binder material to form the super hard polycrystalline construction comprising a body of polycrystalline super hard material having a first region of super hard grains in a binder material, and an embedded second region.
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
C22C 29/06 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
C22C 29/08 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
B22F 3/14 - Both compacting and sintering simultaneously
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
B22F 3/24 - After-treatment of workpieces or articles
A super hard polycrystalline construction is disclosed as comprising a body of super hard material bonded to a substrate. The body of super hard material comprises an outer peripheral region formed of interbonded grains of super hard material extending peripherally around one or more inner regions, the outer peripheral region having a radial thickness proportional to the square of the ratio of the fracture toughness of the material forming said outer peripheral region to the transverse rupture strength of the material forming said outer peripheral region (I) where TRS is the transverse rupture strength and KIC is the fracture toughness.
B22F 3/14 - Both compacting and sintering simultaneously
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
C22C 29/06 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
C22C 29/08 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
B22F 3/24 - After-treatment of workpieces or articles
A polycrystalline super hard construction has a first region comprising a body of thermally stable polycrystalline super hard material having an exposed surface forming a working surface, and a peripheral side edge, said polycrystalline super hard material comprising a plurality of intergrown grains of super hard material; a second region forming a substrate to the first region, the second region comprising a hard phase and a binder phase; and a third region interposed between the first and second regions, the third region extending across a surface of the second region along an interface. The third region comprises a composite material having a first phase comprising a plurality of non-intergrown grains of super hard material, and a matrix material. The super hard polycrystalline construction further has a fourth region interposed between the second region and the third region, a major proportion of the fourth region comprising one or more components of the binder material of the second region, the fourth region further comprising one or more reaction products between the binder material of the second region and one or more components of the third region.
B22F 3/14 - Both compacting and sintering simultaneously
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
C22C 29/06 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
C22C 29/08 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
B22F 3/24 - After-treatment of workpieces or articles
A degradation tool and a method of manufacturing the degradation tool is provided. The degradation tool (301) includes a holder body (302) to receive a support body (303) within a bore (304). A load transferring entity (306), such as a plurality of deformable balls, located at the base (305) of the bore (304) transfers load from the support body (303) to the holder body (302) during use, thereby preventing cracking at the base (305) of the support body (303).
Polycrystalline cubic boron nitride, PCBN, material and methods of making PCBN. A method includes providing a matrix precursor powder comprising particles having an average particle size no greater than 250 nm, providing a cubic boron nitride, cBN, powder comprising particles of cBN having an average particle size of at least 0.2 µm, intimately mixing the matrix precursor powder and the cBN powder,and sintering the intimately mixed powders at a temperature of at least 1100°C and a pressure of at least 3.5GPa to form the PCBN material comprising particles of cubic boron nitride, cBN dispersed in a matrix material.
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
C04B 35/626 - Preparing or treating the powders individually or as batches
A high-pressure high-temperature, HPHT, diamond tool piece and a method of producing an HPHT diamond tool piece. At least a portion of the HPHT diamond tool piece comprises an aggregated nitrogen centre to C-nitrogen centre ratio of greater than 30%. The method includes irradiating an HPHTdiamond material to introduce vacancies in the diamond crystal lattice,annealing the HPHT diamond material such that at least a portion of the HPHT diamond material comprises an aggregated nitrogen centre to C-nitrogen centre ratio of greater than 30%,andprocessing the HPHT diamond material to form an HPHT diamond tool piece.
An assembly for High Pressure High Temperature (HPHT) synthesis of a superhard material. The assembly comprises a container comprising a first metal. A closure also comprising the first metal is sealed to the container using a sealant material. The sealant material comprises a second metal, the seal comprising a composition of the first and second metals formable below the melting point of the second metal. The container contains superhard material.
A method of forming a super hard polycrystalline construction comprises forming a pre-composite assembly comprising a skeleton formed of a first material, and a region of super hard particles or grains, the skeleton having one or more voids therein, the super hard particles being located in one or more of said voids in the skeleton and treating the pre-composite assembly in the presence of a catalyst/solvent material for the super hard particles or grains at an ultra-high pressure of around 5 GPa or greater and a temperature to sinter together the super hard particles or grains to form a body of polycrystalline super hard material comprising a first region of super hard particles or grains, and an interpenetrating second region of a second material, the second material forming a coating on at least a portion of the first region, the second material comprising any one or more of the first material, or an oxide, a carbide, or a nitride of the first material.
C22C 29/00 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides
B24D 5/08 - Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental with reinforcing means
B24D 7/08 - Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental with reinforcing means
B24D 18/00 - Manufacture of grinding tools, e.g. wheels, not otherwise provided for
B24D 99/00 - Subject matter not provided for in other groups of this subclass
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
A superhard polycrystalline construction comprises a body of polycrystalline superhard material formed of a mass of superhard grains exhibiting inter-granular bonding and defining a plurality of interstitial regions therebetween, and a non-superhard phase at least partially filling a plurality of the interstitial regions and having an associated shape factor of greater than around 0.65 and a substrate bonded to the body of superhard material along an interface, the substrate having a region adjacent the interface comprising binder material in an amount at least 5% less than the remainder of the substrate.
A medical implant comprises a structure formed of super hard material having porosity greater than 20% by volume and up to around 80% by volume. A method of forming a medical implant comprises forming a skeleton structure of a first material, the skeleton structure having a plurality of voids; at least partially filling some or all of the voids in the skeleton structure with a second material to form a pre-sinter assembly; wherein one or other of the first material or the second material comprises grains of super hard material; and treating the pre-sinter assembly at an ultra-high pressure of around 5 GPa or greater and a temperature to sinter together the grains of super hard material to form a body of polycrystalline super hard material. The body of polycrystalline super hard material comprises a first region of super hard grains, and an interpenetrating second region; the second region being formed of the other of the first or second material that does not comprise the super hard grains; the super hard grains forming a sintered medical implant structure of super hard material having a porosity greater than 20% by volume and up to around 80% by volume.
A61L 27/42 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material having an inorganic matrix
C04B 35/52 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite
A superhard polycrystalline construction comprises a body of polycrystalline superhard material comprising a structure comprising superhard material, the structure having porosity greater than 20% by volume and up to around 80% by volume. A method of forming such a superhard polycrystalline construction comprises forming a skeleton structure of a first material having a plurality of voids, at least partially filling some or all of the voids with a second material to form a pre-sinter assembly, and treating the pre-sinter assembly to sinter together grains of superhard material to form a body of polycrystalline superhard material comprising a first region of superhard grains, and an interpenetrating second region; the second region being formed of the other of the first or second material that does not comprise the superhard grains; the superhard grains forming a sintered structure having a porosity greater than 20% by volume and up to around 80% by volume.
C04B 35/52 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
C04B 35/532 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
C04B 35/56 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbides
C04B 35/58 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides
C04B 38/00 - Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
C22C 29/00 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides
B24D 3/10 - Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic for porous or cellular structure, e.g. for use with diamonds as abrasives
B24D 3/18 - Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings for porous or cellular structure
B24D 3/26 - Rubbers for porous or cellular structure
B24D 3/32 - Resins for porous or cellular structure
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
A super hard construction comprises a substrate comprising a peripheral surface, an interface surface and a longitudinal axis extending in a plane and a super hard material layer formed over the substrate and having an exposed outer surface, a peripheral surface extending therefrom and an interface surface. One of the interface surface of the substrate or the interface surface of the super hard material layer comprises one or more projections arranged to project from the interface surface, the one or more projections being spaced from the peripheral surface of the substrate and a peripheral flange extending between the peripheral side edge and the interface surface. The peripheral flange is inclined at an angle of between around 5 degrees to around 30 degrees to a plane substantially perpendicular to the plane through which the longitudinal axis extends.
E21B 10/573 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts - characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element
E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
91.
A METHOD FOR THE PREPARATION OF A DELIVERY DRUG DELIVERY SYSTEM AND A COMPOSITION THEREFOR
A method for the preparation of a delivery drug delivery system, the drug having one or more active pharmaceutical ingredients having solubility in water of less than 1 g in 30 ml of water and nano-diamond, comprises the steps of dissolving the active pharmaceutical ingredient(s) into a polar non-aqueous solvent to form a first mixture, dissolving a surfactant in deionized water to form a surfactant solution, adding a plurality of nano-diamond particles to the surfactant solution to disperse the nano-diamond particles in the surfactant solution thereby forming a nano- diamond dispersion, adding the first mixture to the nano-diamond dispersion whilst agitating the dispersion to form a second mixture; and drying the second mixture to produce a dry powder for use as a drug delivery system.
A diamond powder comprising diamond particles having an average particle size of no more than 20 μm and a vacancy or impurity-vacancy point defect concentration of at least 1 ppm. At least 70% of the volume of diamond in the powder is formed from a single crystal growth sector. This leads to a substantially uniform concentration of vacancies or impurity-vacancy point defects in the diamond particles because the rate of impurity take-up during growth is heavily dependent on the growth sector, which in turn leads to a more uniform fluorescent response. There is also described a method for making such a powder.
C30B 29/60 - Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
C30B 30/00 - Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
G01N 33/58 - Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
93.
ASYMMETRIC PICK TOOL WITH AN ASPECT RATIO BETWEEN LEADING AND TRAILING EDGES
A pick tool comprising a strike tip and a pick tool body, the pick tool body including a non-rotating strike tip at a first end of the pick tool body. A shaft is provided at a second end of the pick tool body, the shaft being configured to pass through an opening in a surface of a pick tool holder, the shaft being configured in use to be non-rotationally attached to the pick tool holder. The shaft projects from a pick tool abutment surface such that, when the pick toolis attached to the pick tool holder, the abutment surface abuts the pick tool holder surface. The abutment surface has an aspect ratio between its length and width of between 1.5:1 and 3:1. The pick tool body comprises a leading edge and a trailing edge, the leading edge being, in use, the edge that first contacts a formation, the trailing edge having an angle of less than 18° between a main axis of the pick tool and an axis from the strike tip to the abutment surface at the trailing edge.
A composite material comprising 50to 95 mass % grains of primary material selected from the group consisting of talc, mica, graphite and hexagonal boron nitride, and 0.01 to 40 mass % fibres having a length of 0.05to 20 mm, and a ratio of length to diameter of at least 5. The grains of the primary material have a mean size of3to 50 microns.
C04B 35/16 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxides based on silicates other than clay
C04B 35/20 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxides based on silicates other than clay rich in magnesium oxide
C04B 35/52 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite
C04B 35/583 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride
C04B 35/76 - Fibres, filaments, whiskers, platelets, or the like
C04B 35/80 - Fibres, filaments, whiskers, platelets, or the like
A cutting bit assembly for a mining machine includes a holder having a first surface, a second surface, and a bore extending therebetween, and a bit having a first end and a second end. The bit further includes a tip, a shank, and a shoulder positioned between the tip and the shank. The shank is positioned in the bore of the holder and defines a shank axis. The shoulder engages the first surface of the holder. The shank includes a projection adjacent the second end. The cutting bit assembly also includes a retainer having a groove and a resilient member. The groove engages a portion of the projection. The resilient portion engages the second surface of the holder and biases the retainer along the shank axis and away from the holder.
E21C 35/193 - Means for fixing picks or holders using bolts as main fixing elements
B28D 1/18 - Working stone or stone-like materials, e.g. brick, concrete, not provided for elsewhere; Machines, devices, tools therefor by milling, e.g. channelling by means of milling tools
A capsule assembly for an ultra-high pressure furnace, comprising a containment tube having an interior side surface and defining a central longitudinal axis; a chamber suitable for accommodating a reaction assembly, a proximate and a distal end heater assembly, and a side heater assembly. When assembled, the chamber is contained within the containment tube and arranged longitudinally between the proximate and distal end heater assemblies. The side heater assembly is disposed adjacent the interior side surface and electrically connects the end heater assemblies with each other. Each end heater assembly has a respective peripheral side disposed adjacent the interior side surface. Heat is produced in the chamber in response to an electric current flowing through the end and side heater assemblies. At least a proximate side heater barrier spaces apart the side heater assembly from at least the proximate end heater assembly, adjacent its peripheral side, operative to prevent a portion of the side heater assembly from intruding between the peripheral side of the proximate end heater assembly and the containment tube and short-circuiting at least part of the proximate end heater assembly, when the end heater assemblies move towards each other in response to a force applied by the ultra-high pressure furnace onto the capsule assembly along the central longitudinal axis.
A capsule assembly for an ultra-high pressure furnace, comprising a containment tube defining a central longitudinal axis, a chamber suitable for accommodating a reaction assembly, a proximate and a distal end heater assembly, and a side heater assembly. When assembled, the chamber and the side heater assembly are contained within the containment tube and arranged longitudinally between the proximate and distal end heater assemblies. Each end heater assembly comprises a respective conduction volume forming a respective electrical path through the end heat assembly. The side heater assembly electrically connects the respective conducting volumes to each other, and heat is produced in the chamber in response to an electric current flowing through the side heater assembly and the conducting volumes. At least the proximate end heater assembly comprises a first insulation component including an outer insulation volume. The conducting volume of at least the proximate end heater assembly includes an inner conducting volume, and the inner conducting volume is laterally spaced apart from the containment tube by the outer insulation volume.
A superhard polycrystalline construction (30) comprises a first region (34) comprising a body of thermally stable polycrystalline superhard material having an exposed surface forming a working surface (4), and a peripheral side edge (6), a second region (32) forming a substrate to the first region; and a third region (36) at least partially interposed between the first and second regions. The third region comprises a material more acid resistant than polycrystalline diamond material having a binder-catalyst phase comprising cobalt, and/or more acid resistant than cemented carbide material.
C04B 35/528 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride
C04B 37/02 - Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
E21B 10/573 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts - characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element
E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
B01J 3/06 - Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
B32B 9/00 - Layered products essentially comprising a particular substance not covered by groups
A single crystal synthetic diamond tool precursor structure, a tool element and a tool are disclosed. The single crystal synthetic diamond has a first surface, wherein the first surface is arranged to align with a holder, and is crystallographically oriented more than 5° away from a major crystallographic plane such that when a chamfer is formed in the single crystal synthetic diamond tool precursor structure at a predetermined angle relative to the first surface to form a tool-working portion, the tool-working portion is oriented within 5° of a tool-working crystallographic geometry.
A sintered polycrystalline body and a method of forming the sintered polycrystalline body are disclosed. The sintered polycrystalline body comprises a plurality of particles cubic boron nitride dispersed in a matrix. The matrix includes materials selected from compounds of any of titanium and aluminium. The polycrystalline body further comprises 0.1 to 5.0 volume % of lubricating chalcogenide particles dispersed in the matrix. The chalcogenide particles have a coefficient of friction of less than 0.1 with respect to a workpiece material. Preferably sulfide particles are used as lubricant. Preferably 30-70 vol.-% cBN is contained. Sintering takes place at 1100-1600°C and 4-8 GPa.
B22F 3/14 - Both compacting and sintering simultaneously
C04B 35/56 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbides
C04B 35/58 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides
C04B 35/581 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on aluminium nitride
C04B 35/5831 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on borides, nitrides or silicides based on boron nitride based on cubic boron nitride