Fisher-Rosemount Systems, Inc.

États‑Unis d’Amérique

Retour au propriétaire

1-100 de 952 pour Fisher-Rosemount Systems, Inc. et 3 filiales Trier par
Recheche Texte
Affiner par
Type PI
        Brevet 915
        Marque 37
Juridiction
        États-Unis 701
        International 179
        Canada 66
        Europe 6
Propriétaire / Filiale
[Owner] Fisher-Rosemount Systems, Inc. 816
Emerson Process Management Power & Water Solutions, Inc. 126
Emerson Process Management LLLP 9
Enardo LLC 1
Date
Nouveautés (dernières 4 semaines) 15
2024 avril (MACJ) 15
2024 mars 6
2024 février 6
2024 janvier 20
Voir plus
Classe IPC
G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM) 244
G05B 23/02 - Test ou contrôle électrique 126
G05B 19/042 - Commande à programme autre que la commande numérique, c.à d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques 124
G05B 13/02 - Systèmes de commande adaptatifs, c. à d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques 71
H04L 29/08 - Procédure de commande de la transmission, p.ex. procédure de commande du niveau de la liaison 66
Voir plus
Classe NICE
09 - Appareils et instruments scientifiques et électriques 27
42 - Services scientifiques, technologiques et industriels, recherche et conception 11
37 - Services de construction; extraction minière; installation et réparation 3
41 - Éducation, divertissements, activités sportives et culturelles 3
35 - Publicité; Affaires commerciales 2
Voir plus
Statut
En Instance 107
Enregistré / En vigueur 845
  1     2     3     ...     10        Prochaine page

1.

Automatic Plant Data Recorder Appliance on the Edge

      
Numéro d'application 18381957
Statut En instance
Date de dépôt 2023-10-18
Date de la première publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Dones, Jeph
  • Wang, Zhiyu
  • Ian Sarmiento, Cristopher
  • Nixon, Mark J.
  • Salvador, Mikhaila

Abrégé

To provide enhanced search capabilities in a process control system, a knowledge repository is generated that includes both contextual data and time series data. The contextual data organizes process plant-related data according to semantic relations between the process plant-related data and the process plant entities. When a user submits a process plant search query related to process plant entities within a process plant, search results are obtained by identifying a data set from the knowledge repository. The contextual data categorizes process parameters so that users can search for a particular process parameter category. Users can tag previous searches to execute them once again at a later time. Users can also execute queries for predicted or future states of process plant entities, batch queries regarding batch processes, soft sensor analytics and monitoring applications, parameter lifecycle applications, perturbation applications, step testing applications, or batch provisioning and scheduling applications using the knowledge repository.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

2.

Compute Fabric Functionalities for a Process Control or Automation System

      
Numéro d'application 18382288
Statut En instance
Date de dépôt 2023-10-19
Date de la première publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Law, Gary K.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Hartmann, Peter

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric performs various control, monitoring, diagnostics, simulation, and configuration activities with respect to a plurality of devices at the one or more specific sites.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

3.

ENTERPRISE ENGINEERING AND CONFIGURATION FRAMEWORK FOR ADVANCED PROCESS CONTROL AND MONITORING SYSTEMS

      
Numéro d'application US2023034351
Numéro de publication 2024/086019
Statut Délivré - en vigueur
Date de dépôt 2023-10-03
Date de publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Ubach, Antonio
  • Doraiswamy, Narayanan
  • Hernandez, Sean
  • Nixon, Mark, J.
  • Dakoju, Sireesha
  • Joshi, Krishna

Abrégé

An enterprise engineering and configuration system includes a common configuration database and support services stored in and executed in a compute fabric of an enterprise. The configuration database and support services use and implement a common configuration data schema to support the configuration of hardware and software in the compute fabric and at multiple different sites or physical locations of the enterprise even when different control and automation systems are used at these different sites or physical locations. The configuration system enables implementing hardware or software configuration changes to various different sites or locations of an enterprise either centrally from a configuration device connected directly to the compute fabric of the enterprise or locally from any physical location or site of the enterprise, while maintaining a single integrated enterprise configuration database that stores configuration data for each of the multiple sites of the enterprise. This configuration system is flexible as it enables engineering and configuration changes to be made by users anywhere in the enterprise for any of the sites of the enterprise and across different sites of the enterprise.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

4.

NEBULA FLEET MANAGEMENT

      
Numéro d'application US2023034272
Numéro de publication 2024/086015
Statut Délivré - en vigueur
Date de dépôt 2023-10-02
Date de publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark, J.
  • Jordan, Jason, A.
  • Lamothe, Brian
  • Law, Gary, K.
  • Doraiswamy, Narayanan
  • Lakhani, Ayub

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented. One or more applications, executing via the location-agnostic compute fabric, provide for access, management, and/or reconfiguration of various aspects of one or more process control systems across one or more physical sites operated by an enterprise. The one or more applications may, for example, provide for viewing of operational parameters and/or health statuses based upon information accessed from one, two, three four or more physical sites.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • G05B 19/18 - Commande numérique (CN), c.à d. machines fonctionnant automatiquement, en particulier machines-outils, p.ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'u
  • H04L 67/10 - Protocoles dans lesquels une application est distribuée parmi les nœuds du réseau

5.

COMPUTE FABRIC FUNCTIONALITIES FOR A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023035618
Numéro de publication 2024/086344
Statut Délivré - en vigueur
Date de dépôt 2023-10-20
Date de publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Law, Gary K.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Hartmann, Peter

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric performs various control, monitoring, diagnostics, simulation, and configuration activities with respect to a plurality of devices at the one or more specific sites.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • H04L 67/10 - Protocoles dans lesquels une application est distribuée parmi les nœuds du réseau

6.

CONFIGURATION SUPPORT FOR A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023035611
Numéro de publication 2024/086338
Statut Délivré - en vigueur
Date de dépôt 2023-10-20
Date de publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC (USA)
Inventeur(s)
  • Nixon, Mark, J.
  • Hartmann, Peter
  • Doraiswamy, Narayanan
  • Lamothe, Brian

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the software executing in the compute fabric by accessing and downloading new components for execution in the compute fabric from a centralized registry. The configuration system may provide feedback regarding the operation of the new component to a component developer to enable the developer to test and alter the component. The configuration system makes it possible for a user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • G05B 19/18 - Commande numérique (CN), c.à d. machines fonctionnant automatiquement, en particulier machines-outils, p.ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'u
  • H04L 67/10 - Protocoles dans lesquels une application est distribuée parmi les nœuds du réseau

7.

CONFIGURATION SUPPORT FOR A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application 18382292
Statut En instance
Date de dépôt 2023-10-19
Date de la première publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Hartmann, Peter
  • Doraiswamy, Narayanan
  • Lamothe, Brian

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the software executing in the compute fabric by accessing and downloading new components for execution in the compute fabric from a centralized registry. The configuration system may provide feedback regarding the operation of the new component to a component developer to enable the developer to test and alter the component. The configuration system makes it possible for a user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • H04L 9/40 - Protocoles réseaux de sécurité

8.

SPOKE AND HUB CONFIGURATION FOR A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application 18382296
Statut En instance
Date de dépôt 2023-10-19
Date de la première publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Vinyard, Brian
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Bartel, Wayne
  • Hartmann, Peter
  • Nixon, Mark J.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric is implemented in a spoke and hub configuration in which the compute fabric includes computing infrastructure organized into one or more hubs, with each hub disposed in a particular geographical region or area. Each hub of the compute fabric may include communication connections in the form of spokes to each of a plurality of geographical locations or areas, such as plants, and may store and process the data from each of the associated spokes in the hub. The various different hubs may be used to organize or control what enterprise data is processed or handled in particular geographical regions and where enterprise actions, such as control actions, take place in the enterprise.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • H04L 9/40 - Protocoles réseaux de sécurité

9.

ENTERPRISE ENGINEERING AND CONFIGURATION FRAMEWORK FOR ADVANCED PROCESS CONTROL AND MONITORING SYSTEMS

      
Numéro d'application 18375735
Statut En instance
Date de dépôt 2023-10-01
Date de la première publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS INC (USA)
Inventeur(s)
  • Ubach, Antonio
  • Doraiswamy, Narayanan
  • Hernandez, Sean
  • Nixon, Mark J.
  • Dakoju, Sireesha
  • Joshi, Krishna

Abrégé

An enterprise engineering and configuration system includes a common configuration database and support services stored in and executed in a compute fabric of an enterprise. The configuration database and support services use and implement a common configuration data schema to support the configuration of hardware and software in the compute fabric and at multiple different sites or physical locations of the enterprise even when different control and automation systems are used at these different sites or physical locations. The configuration system enables implementing hardware or software configuration changes to various different sites or locations of an enterprise either centrally from a configuration device connected directly to the compute fabric of the enterprise or locally from any physical location or site of the enterprise, while maintaining a single integrated enterprise configuration database that stores configuration data for each of the multiple sites of the enterprise. This configuration system is flexible as it enables engineering and configuration changes to be made by users anywhere in the enterprise for any of the sites of the enterprise and across different sites of the enterprise.

Classes IPC  ?

  • G06F 16/23 - Mise à jour
  • G06F 16/21 - Conception, administration ou maintenance des bases de données
  • G06F 16/22 - Indexation; Structures de données à cet effet; Structures de stockage

10.

Gateway for Facilitating Control System Upgrades

      
Numéro d'application 18480036
Statut En instance
Date de dépôt 2023-10-02
Date de la première publication 2024-04-25
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Crews, Aaron
  • Schleiss, Duncan
  • William, Nobin
  • Troy, Marc

Abrégé

Gateway devices, systems, and methods for facilitating control system upgrades including hosting a web application via a gateway device that permits configuration of the gateway device via a web browser. A redundant gateway system can be implemented such that both a primary gateway device and a secondary gateway device are used in conjunction. The web application can provide significant advantages in terms of ease of configurability and integration of legacy input/output (I/O) systems to facilitate control system upgrades in a variety of applications.

Classes IPC  ?

  • H04L 12/66 - Dispositions pour la connexion entre des réseaux ayant différents types de systèmes de commutation, p.ex. passerelles
  • H04L 67/025 - Protocoles basés sur la technologie du Web, p.ex. protocole de transfert hypertexte [HTTP] pour la commande à distance ou la surveillance à distance des applications
  • H04L 67/10 - Protocoles dans lesquels une application est distribuée parmi les nœuds du réseau

11.

LOCATION SPECIFIC COMMUNICATIONS GATEWAY FOR MULTI-SITE ENTERPRISE

      
Numéro d'application US2023034349
Numéro de publication 2024/086018
Statut Délivré - en vigueur
Date de dépôt 2023-10-03
Date de publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark, J.
  • Hartmann, Peter

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific plant sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices using a communications gateway device at each plant site that provides secured communications between the compute fabric and the one or more physical control or field devices at each plant site. The communications gateway at each plant site implements one or more secured point-to-point or peer-to-peer communication networks between the compute fabric and the plant site using one or more virtual private networks.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 12/46 - Interconnexion de réseaux
  • H04L 67/10 - Protocoles dans lesquels une application est distribuée parmi les nœuds du réseau
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

12.

AUTHENTICATION/AUTHORIZATION FRAMEWORK FOR A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023033926
Numéro de publication 2024/086008
Statut Délivré - en vigueur
Date de dépôt 2023-09-28
Date de publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Ubach, Antonio
  • Doraiswamy, Narayanan
  • Hernandez, Sean
  • Nixon, Mark, J.
  • Dakoju, Sireesha
  • Joshi, Krishna
  • Villarrubia, Matthew

Abrégé

An architecture supporting a process control or automation system may include an authentication service which determines whether an entity (e.g., a human, automated, virtual, or physical entity) is the party the entity claims to be, and an authorization service which determines whether a request of the entity to access a resource is allowed. The authentication service provides unique identities of entities and respective security credentials, e.g. tokens utilized during authorization. The authorization service authorizes an entity to access a requested resource based on role-based permissions of a role to which the entity is assigned and resource access permissions protecting the requested resource. The role-based permissions and/ or the resource access permissions may be respectively scoped to limit or restrict actions, activities, operations, and/or resource access based on specified criteria. Each entity may be authenticated, and each request of an authenticated entity may be authorized.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p.ex. par clés ou règles de contrôle de l’accès
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

13.

SPOKE AND HUB CONFIGURATION FOR A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023035613
Numéro de publication 2024/086340
Statut Délivré - en vigueur
Date de dépôt 2023-10-20
Date de publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Vinyard, Brian
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Bartel, Wayne
  • Hartmann, Peter
  • Nixon, Mark, J.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric is implemented in a spoke and hub configuration in which the compute fabric includes computing infrastructure organized into one or more hubs, with each hub disposed in a particular geographical region or area. Each hub of the compute fabric may include communication connections in the form of spokes to each of a plurality of geographical locations or areas, such as plants, and may store and process the data from each of the associated spokes in the hub. The various different hubs may be used to organize or control what enterprise data is processed or handled in particular geographical regions and where enterprise actions, such as control actions, take place in the enterprise.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • H04L 12/66 - Dispositions pour la connexion entre des réseaux ayant différents types de systèmes de commutation, p.ex. passerelles

14.

GENERAL REINFORCEMENT LEARNING FRAMEWORK FOR PROCESS MONITORING AND ANOMALY/ FAULT DETECTION

      
Numéro d'application 17954307
Statut En instance
Date de dépôt 2022-09-27
Date de la première publication 2024-04-11
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Xu, Shu

Abrégé

A method includes receiving a metric-reward mapping; and using reinforcement machine learning to train a state-action mapping. A method includes receiving a set of metrics corresponding to an ongoing industrial control process; determining anomaly/fault and normal action values by reference to a reinforcement learning-determined state-action mapping; and causing a remedial action to occur. A process control system includes an anomaly/fault detection device, that receives metrics, determines anomaly/fault and normal action values; and causes a remedial action to occur.

Classes IPC  ?

15.

A GENERAL REINFORCEMENT LEARNING FRAMEWORK FOR PROCESS MONITORING AND ANOMALY/ FAULT DETECTION

      
Numéro d'application US2023033593
Numéro de publication 2024/072729
Statut Délivré - en vigueur
Date de dépôt 2023-09-25
Date de publication 2024-04-04
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark, J.
  • Xu, Shu

Abrégé

A method includes receiving a metric-reward mapping; and using reinforcement machine learning to train a state-action mapping. A method includes receiving a set of metrics corresponding to an ongoing industrial control process; determining anomaly/fault and normal action values by reference to a reinforcement learning-determined state-action mapping; and causing a remedial action to occur. A process control system includes an anomaly/fault detection device, that receives metrics, determines anomaly/fault and normal action values; and causes a remedial action to occur.

Classes IPC  ?

  • G06N 3/006 - Vie artificielle, c. à d. agencements informatiques simulant la vie fondés sur des formes de vie individuelles ou collectives simulées et virtuelles, p.ex. simulations sociales ou optimisation par essaims particulaires [PSO]
  • G06N 3/092 - Apprentissage par renforcement
  • G06N 20/00 - Apprentissage automatique
  • G05B 13/00 - Systèmes de commande adaptatifs, c. à d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé
  • G05B 19/00 - Systèmes de commande à programme

16.

METHODS AND APPARATUS FOR EXECUTING RULES

      
Numéro d'application US2023074228
Numéro de publication 2024/059732
Statut Délivré - en vigueur
Date de dépôt 2023-09-14
Date de publication 2024-03-21
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • De Guzman, Francis
  • Tjiong, Ching Lung
  • Serapio Fos, Paul Oliver
  • Samson, Dashene Aren

Abrégé

Methods, apparatus, systems, and articles of manufacture are disclosed. An apparatus for executing a rule includes at least one memory, machine readable instructions, and processor circuitry to at least one of instantiate or execute the machine readable instructions to access a property value from a data collector, the property value including an operational value of a workstation within a process control system, create a data model instance representing the workstation, apply the property value to the data model instance, identify a rule associated with the data model instance, cause execution of an executable package associated with the rule using the data model instance; and record a result of the execution of the executable package.

Classes IPC  ?

  • G05B 17/02 - Systèmes impliquant l'usage de modèles ou de simulateurs desdits systèmes électriques
  • G06Q 10/0633 - Analyse du flux de travail
  • G07C 3/08 - Enregistrement ou indication de la production de la machine avec ou sans enregistrement du temps de fonctionnement ou d'arrêt
  • H04L 41/0663 - Gestion des fautes, des événements, des alarmes ou des notifications en utilisant la reprise sur incident de réseau en réalisant des actions prédéfinies par la planification du basculement, p.ex. en passant à des éléments de réseau de secours
  • H04L 41/0681 - Configuration des conditions de déclenchement
  • H04L 43/02 - Capture des données de surveillance
  • H04L 43/10 - Surveillance active, p.ex. battement de cœur, utilitaire Ping ou trace-route
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • G05B 23/02 - Test ou contrôle électrique
  • G06F 8/20 - Conception de logiciels
  • G06F 11/22 - Détection ou localisation du matériel d'ordinateur défectueux en effectuant des tests pendant les opérations d'attente ou pendant les temps morts, p.ex. essais de mise en route
  • G06F 11/26 - Tests fonctionnels

17.

METHODS AND APPARATUS FOR EXECUTING RULES

      
Numéro d'application 17945624
Statut En instance
Date de dépôt 2022-09-15
Date de la première publication 2024-03-21
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • De Guzman, Francis
  • Tjiong, Ching Lung
  • Serapio Fos, Paul Oliver
  • Samson, Dashene Aren

Abrégé

Methods, apparatus, systems, and articles of manufacture are disclosed. An apparatus for executing a rule includes at least one memory, machine readable instructions, and processor circuitry to at least one of instantiate or execute the machine readable instructions to access a property value from a data collector, the property value including an operational value of a workstation within a process control system, create a data model instance representing the workstation, apply the property value to the data model instance, identify a rule associated with the data model instance, cause execution of an executable package associated with the rule using the data model instance; and record a result of the execution of the executable package.

Classes IPC  ?

  • G05B 13/04 - Systèmes de commande adaptatifs, c. à d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques impliquant l'usage de modèles ou de simulateurs

18.

INDUSTRIAL PROCESS CONTROL SYSTEM AS A DATA CENTER OF AN INDUSTRIAL PROCESS PLANT

      
Numéro d'application 18515927
Statut En instance
Date de dépôt 2023-11-21
Date de la première publication 2024-03-14
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Fayad, Claudio
  • Halgren, Iii, Robert G.
  • Amaro, Jr., Anthony
  • Hartmann, Peter
  • Schleiss, Trevor Duncan
  • Natarajan, Seshatre

Abrégé

A distributed control system (DCS) of an industrial process plant includes a data center storing a plant information model that includes a description of physical components, the control framework, and the control network of the plant using a modeling language. A set of exposed APIs provides DCS applications access to the model, and to an optional generic framework of the data center which stores basic structures and functions from which the DCS may automatically generate other structures and functions to populate the model and to automatically create various applications and routines utilized during run-time operations of the DCS and plant. Upon initialization, the DCS may automatically sense the I/O types of its interface ports, detect communicatively connected physical components within the plant, and automatically populate the plant information model accordingly. The DCS may optionally automatically generate related control routines and/or I/O data delivery mechanisms, HMI routines, and the like.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G05B 19/4155 - Commande numérique (CN), c.à d. machines fonctionnant automatiquement, en particulier machines-outils, p.ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'u caractérisée par le déroulement du programme, c.à d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p.ex. choix d'un programme
  • G06F 13/38 - Transfert d'informations, p.ex. sur un bus

19.

PUBLISH-SUBSCRIBE COMMUNICATION ARCHITECTURE FOR FIELD DEVICES IN CONTROL AND AUTOMATION SYSTEMS

      
Numéro d'application 18514543
Statut En instance
Date de dépôt 2023-11-20
Date de la première publication 2024-03-14
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Law, Gary K.

Abrégé

A method includes receiving at a field device, from a first client device or application, a message indicating a selection of a first one of a plurality of publish categories corresponding to a type of information desired by the first client device or application. The method further includes transmitting, from the field device to the first client device or application, an identification of each of a plurality of publish lists corresponding to the first one of the selected publish category. The publish lists are stored on the field device and each includes a set of parameters associated with the field device. The method includes receiving at the field device, from the first client device or application, a selection of a publish list identified by the field device, and transmitting, from the field device to the first client device or application, the set of parameters associated with the selected publish list.

Classes IPC  ?

  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • G05B 19/05 - Automates à logique programmables, p.ex. simulant les interconnexions logiques de signaux d'après des diagrammes en échelle ou des organigrammes
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

20.

INDUSTRIAL PROCESS CONTROL SYSTEM AS A DATA CENTER OF AN INDUSTRIAL PROCESS PLANT

      
Numéro d'application 18516533
Statut En instance
Date de dépôt 2023-11-21
Date de la première publication 2024-03-14
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Fayad, Claudio
  • Halgren, Iii, Robert G.
  • Amaro, Jr., Anthony
  • Hartmann, Peter
  • Schleiss, Trevor Duncan
  • Natarajan, Seshatre

Abrégé

A distributed control system (DCS) of an industrial process plant includes a data center storing a plant information model that includes a description of physical components, the control framework, and the control network of the plant using a modeling language. A set of exposed APIs provides DCS applications access to the model, and to an optional generic framework of the data center which stores basic structures and functions from which the DCS may automatically generate other structures and functions to populate the model and to automatically create various applications and routines utilized during run-time operations of the DCS and plant. Upon initialization, the DCS may automatically sense the I/O types of its interface ports, detect communicatively connected physical components within the plant, and automatically populate the plant information model accordingly. The DCS may optionally automatically generate related control routines and/or I/O data delivery mechanisms, HMI routines, and the like.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G05B 19/4155 - Commande numérique (CN), c.à d. machines fonctionnant automatiquement, en particulier machines-outils, p.ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'u caractérisée par le déroulement du programme, c.à d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p.ex. choix d'un programme
  • G06F 13/38 - Transfert d'informations, p.ex. sur un bus

21.

Quick Activation Techniques for Industrial Augmented Reality Applications

      
Numéro d'application 18506767
Statut En instance
Date de dépôt 2023-11-10
Date de la première publication 2024-03-07
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Pan, Yicheng Peter
  • Velena, Anna
  • Denison, David R.
  • Nambiar, Marikandan
  • Chin, Kuo-Lung
  • Re, Guido Maria

Abrégé

An augmented reality (AR) node location and activation technique for use in an AR system in a process plant or other field environment quickly and easily detects an AR node in a real-world environment and is then able to activate an AR scene within the AR system, which improves the usability and user experience of the AR system. The AR node location and activation system generally enables users to connect to and view an AR scene within an AR system or platform even when the user is not directly at an existing AR node, when the user is experiencing poor lighting conditions in the real-world environment and in situations in which the user is unfamiliar with the AR nodes that are in the AR system database. As a result, the user can quickly and easily activate the AR system and connect to an AR scene for an AR node close to the user in the field environment under varying weather and lighting conditions in the field and without requiring a large amount of image processing to locate the correct AR scene based on photographic images provided by the user.

Classes IPC  ?

  • G06V 20/20 - RECONNAISSANCE OU COMPRÉHENSION D’IMAGES OU DE VIDÉOS Éléments spécifiques à la scène dans les scènes de réalité augmentée
  • G06K 7/14 - Méthodes ou dispositions pour la lecture de supports d'enregistrement par radiation corpusculaire utilisant la lumière sans sélection des longueurs d'onde, p.ex. lecture de la lumière blanche réfléchie
  • G06N 20/00 - Apprentissage automatique
  • G06T 19/00 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie
  • G06V 20/00 - RECONNAISSANCE OU COMPRÉHENSION D’IMAGES OU DE VIDÉOS Éléments spécifiques à la scène

22.

SYSTEMS, APPARATUS, ARTICLES OF MANUFACTURE, AND METHODS FOR AN APPLICATION MARKETPLACE FOR PROCESS CONTROL SYSTEMS

      
Numéro d'application 17819532
Statut En instance
Date de dépôt 2022-08-12
Date de la première publication 2024-02-15
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark
  • Amaro, Jr., Anthony
  • Halgren, Iii, Robert Gustaf
  • Fayad, Claudio Aun
  • Hartmann, Peter

Abrégé

Methods, apparatus, systems, and articles of manufacture are disclosed for an application marketplace for process control systems. An example apparatus includes at least one memory, machine readable instructions, and processor circuitry to at least one of instantiate or execute the machine readable instructions to detect at least one of a configuration or a state of operation of a process control system based on telemetry data associated with the process control system, execute a machine learning model to generate an output based on the at least one of the configuration or the state of operation, the output to be representative of a recommendation to change a portion of the process control system, and cause a change of the portion of the process control system based on the recommendation.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques

23.

METHODS AND APPARATUS TO PERFORM PROCESS ANALYSES IN A DISTRIBUTED CONTROL SYSTEM

      
Numéro d'application 17886420
Statut En instance
Date de dépôt 2022-08-11
Date de la première publication 2024-02-15
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Caldwell, John M.
  • Nixon, Mark
  • Hernandez, Cheyenne

Abrégé

Methods, apparatus, systems, and articles of manufacture are disclosed. An example system to modify an industrial control system includes: at least one memory; programmable circuitry; and instructions to cause the programmable circuitry to: configure a device driver based on a first command, the first command to configure the device driver to initiate a device-specific communication protocol to collect input data from a publisher device coupled to the device driver; access a second command from a subscriber device, the second command to include a device identifier of the publisher device and to specify at least one of a communication mode, a device calibration configuration, or a fault detection configuration, the second command based on a product quality prediction, the product quality prediction generated using a spectral data model; and provide the second command to the device driver.

Classes IPC  ?

  • G05B 23/02 - Test ou contrôle électrique
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

24.

METHODS AND APPARATUS TO PERFORM PROCESS ANALYSES IN A DISTRIBUTED CONTROL SYSTEM

      
Numéro d'application US2023072039
Numéro de publication 2024/036283
Statut Délivré - en vigueur
Date de dépôt 2023-08-10
Date de publication 2024-02-15
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Anthony
  • Caldwell, John M.
  • Nixon, Mark
  • Hernandez, Cheyenne

Abrégé

Methods, apparatus, systems, and articles of manufacture are disclosed. An example system to modify an industrial control system includes: at least one memory; programmable circuitry; and instructions to cause the programmable circuitry to: configure a device driver based on a first command, the first command to configure the device driver to initiate a device-specific communication protocol to collect input data from a publisher device coupled to the device driver; access a second command from a subscriber device, the second command to include a device identifier of the publisher device and to specify at least one of a communication mode, a device calibration configuration, or a fault detection configuration, the second command based on a product quality prediction, the product quality prediction generated using a spectral data model; and provide the second command to the device driver.

Classes IPC  ?

  • G06F 9/44 - Dispositions pour exécuter des programmes spécifiques
  • G06F 15/177 - Commande d'initialisation ou de configuration

25.

SYSTEMS, APPARATUS, ARTICLES OF MANUFACTURE, AND METHODS FOR AN APPLICATION MARKETPLACE FOR PROCESS CONTROL SYSTEMS

      
Numéro d'application US2023027374
Numéro de publication 2024/035506
Statut Délivré - en vigueur
Date de dépôt 2023-07-11
Date de publication 2024-02-15
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark
  • Amaro, Anthony
  • Halgren, Robert Gustaf
  • Fayad, Claudio Aun
  • Hartmann, Peter

Abrégé

Methods, apparatus, systems, and articles of manufacture are disclosed for an application marketplace for process control systems. An example apparatus includes at least one memory, machine readable instructions, and processor circuitry to at least one of instantiate or execute the machine readable instructions to detect at least one of a configuration or a state of operation of a process control system based on telemetry data associated with the process control system, execute a machine learning model to generate an output based on the at least one of the configuration or the state of operation, the output to be representative of a recommendation to change a portion of the process control system, and cause a change of the portion of the process control system based on the recommendation.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • G06N 20/00 - Apprentissage automatique
  • G05B 19/042 - Commande à programme autre que la commande numérique, c.à d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques

26.

I/O Server Services for Selecting and Utilizing Active Controller Outputs from Containerized Controller Services in a Process Control Environment

      
Numéro d'application 18375708
Statut En instance
Date de dépôt 2023-10-02
Date de la première publication 2024-02-01
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

An I/O server service interacts with multiple containerized controller services each implementing the same control routine to control the same portion of the same plant. The I/O server service may provide the same controller inputs to each of the containerized controller services (e.g., representing measurements obtained by field devices and transmitted by the field devices to the I/O server service). Each containerized controller service executes the same control routine to generate a set of controller outputs. The I/O server service receives each set of controller outputs and forwards an “active” set to the appropriate field devices. The I/O server service and other services, such as an orchestrator service, may continuously evaluate performance and resource utilization in the control system, and may dynamically activate and deactivate controller services as appropriate.

Classes IPC  ?

  • G05B 19/4155 - Commande numérique (CN), c.à d. machines fonctionnant automatiquement, en particulier machines-outils, p.ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'u caractérisée par le déroulement du programme, c.à d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p.ex. choix d'un programme

27.

LOCATION SPECIFIC COMMUNICATIONS GATEWAY FOR MULTI-SITE ENTERPRISE

      
Numéro d'application 18375818
Statut En instance
Date de dépôt 2023-10-02
Date de la première publication 2024-02-01
Propriétaire FISHER-ROSEMOUNT SYSTEMS INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Hartmann, Peter

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific plant sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices using a communications gateway device at each plant site that provides secured communications between the compute fabric and the one or more physical control or field devices at each plant site. The communications gateway at each plant site implements one or more secured point-to-point or peer-to-peer communication networks between the compute fabric and the plant site using one or more virtual private networks.

Classes IPC  ?

  • H04L 49/253 - Routage ou recherche de route dans une matrice de commutation en utilisant l'établissement ou la libération de connexions entre les ports
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • H04L 12/46 - Interconnexion de réseaux

28.

Field Device Digital Twins in Process Control and Automation Systems

      
Numéro d'application 18223359
Statut En instance
Date de dépôt 2023-07-18
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Capoccia, Brian M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark J.
  • Fayad, Claudio
  • Nanda, Mickey
  • Jones, Aaron C.
  • Hartmann, Peter
  • Law, Gary K.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

29.

Securing Access of a Process Control or Automation System

      
Numéro d'application 18223395
Statut En instance
Date de dépôt 2023-07-18
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark J.
  • Jones, Aaron C.
  • Ubach, Antonio
  • Hernandez, Sean
  • Dakoju, Sireesha
  • Joshi, Krishna
  • Villarrubia, Matthew

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 9/40 - Protocoles réseaux de sécurité

30.

Module Interface

      
Numéro d'application 17872954
Statut En instance
Date de dépôt 2022-07-25
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Strinden, Daniel R.
  • Uy, Cristopher Lan Sarmiento
  • Joshi, Prashant
  • Naidoo, Julian K.
  • Ramachandran, Ram
  • Cutchin, Andrew E.

Abrégé

A process control system includes one or more field devices positioned in a process control plant and a control module configured to generate control signals for controlling the one or more field devices. The control module may be configured to operate on one or more internal parameters to execute a control strategy. A control module software interface may be configured to define a set of interface parameters based on a strategy type associated with the control strategy of the control module. Each interface parameter of the set of interface parameters may be linked to one of the one or more internal parameters of the control module. Additionally, each interface parameter may be accessible by other control modules and/or other external applications.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

31.

SYSTEMS, APPARATUS, ARTICLES OF MANUFACTURE, AND METHODS FOR SEQUENCE OF EVENT GENERATION FOR A PROCESS CONTROL SYSTEM

      
Numéro d'application US2022037876
Numéro de publication 2024/019724
Statut Délivré - en vigueur
Date de dépôt 2022-07-21
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Diaz, Sergio
  • Law, Gary Keith
  • Nixon, Mark
  • Peterson, Neil J.

Abrégé

Methods, apparatus, systems, and articles of manufacture are disclosed for sequence of event generation for a process control system. An example apparatus includes at least one memory, machine readable instructions, and processor circuitry to at least one of execute or instantiate the machine readable instructions to obtain a first digital signal from a first field device representative of a first sensor data value labeled with a first timestamp generated by the first field device, obtain a second digital signal from a second field device representative of a second sensor data value labeled with a second timestamp generated by the second field device, and store a data association of the first and second sensor data values in a datastore, the data association representative of a sequence of events including an ordering of the first sensor data value and the second sensor data value based on the first and second timestamps.

Classes IPC  ?

  • G05B 19/04 - Commande à programme autre que la commande numérique, c.à d. dans des automatismes à séquence ou dans des automates à logique
  • H04L 67/125 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance en impliquant la commande des applications des terminaux par un réseau
  • G05B 19/414 - Structure du système de commande, p.ex. automate commun ou systèmes à multiprocesseur, interface vers le servo-contrôleur, contrôleur à interface programmable
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • G16Y 40/35 - Gestion des objets, c. à d. commande selon une stratégie ou dans le but d'atteindre des objectifs déterminés
  • H04L 43/02 - Capture des données de surveillance
  • H04L 43/12 - Sondes de surveillance de réseau
  • H04L 67/2869 - Terminaux spécialement adaptés à la communication

32.

FIELD DEVICE DIGITAL TWINS IN PROCESS CONTROL AND AUTOMATION SYSTEMS

      
Numéro d'application US2023027976
Numéro de publication 2024/019996
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Capoccia, Brian, M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark, J.
  • Fayad, Claudio
  • Nanda, Mickey
  • Jones, Aaron, C.
  • Hartmann, Peter
  • Law, Gary, K.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

33.

PROCESS CONTROL OR AUTOMATION SYSTEM ARCHITECTURE

      
Numéro d'application US2023027988
Numéro de publication 2024/020004
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Capoccia, Brian, M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark, J.
  • Fayad, Claudio
  • Nanda, Mickey
  • Jones, Aaron, C.
  • Hartmann, Peter
  • Law, Gary, K.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually- exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

34.

MONITORING AND OPERATIONAL FUNCTIONALITIES FOR AN ENTERPRISE USING PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023028029
Numéro de publication 2024/020031
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Capoccia, Brian, M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark, J.
  • Hartmann, Peter

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

35.

Securing Connections of a Process Control or Automation System

      
Numéro d'application 18223407
Statut En instance
Date de dépôt 2023-07-18
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark J.
  • Jones, Aaron C.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 9/40 - Protocoles réseaux de sécurité

36.

Monitoring and Operational Functionalities for an Enterprise Using Process Control or Automation System

      
Numéro d'application 18223416
Statut En instance
Date de dépôt 2023-07-18
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Capoccia, Brian M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark J.
  • Hartmann, Peter

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • H04L 9/40 - Protocoles réseaux de sécurité

37.

COMPUTE FABRIC ENABLED PROCESS CONTROL

      
Numéro d'application 18370691
Statut En instance
Date de dépôt 2023-09-20
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC (USA)
Inventeur(s)
  • Capoccia, Brian M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark J.
  • Fayad, Claudio
  • Nanda, Mickey
  • Jones, Aaron C.
  • Hartmann, Peter
  • Law, Gary K.

Abrégé

An industrial process control system includes a compute fabric having a first portion operating on-premises at an industrial process plant controlled by the industrial process control system and a second portion operating remotely from the industrial process plant controlled by the industrial process control system. The system also includes one or more transmitters in the process plant measuring or sensing physical parameters and includes one or more physical control elements in the process plant, each physical control element responsive to a respective setpoint parameter. The system further includes a plurality of micro-encapsulated execution environments instantiated in the compute fabric, each executing at least a portion of a control module that receives data from the one or more transmitters and transmits at least one setpoint parameter to each of the one or more physical control elements to cause the physical control elements to control a process in the industrial process plant.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • H04L 9/40 - Protocoles réseaux de sécurité

38.

AUTHENTICATION/AUTHORIZATION FRAMEWORK FOR A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application 18374557
Statut En instance
Date de dépôt 2023-09-28
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Ubach, Antonio
  • Doraiswamy, Narayanan
  • Hernandez, Sean
  • Nixon, Mark J.
  • Dakoju, Sireesha
  • Joshi, Krishna
  • Villarrubia, Matthew

Abrégé

An architecture supporting a process control or automation system may include an authentication service which determines whether an entity (e.g., a human, automated, virtual, or physical entity) is the party that/who the entity claims to be, and an authorization service which determines whether a request of the entity to access a resource is allowed or denied. The authentication service provides unique identities of entities and respective security credentials, which may include tokens utilized during authorization. The authorization service authorizes an entity to access a requested resource based on role-based permissions of a role to which the entity is assigned and resource access permissions protecting the requested resource. The role-based permissions and/or the resource access permissions may be respectively scoped to limit or restrict actions, activities, operations, and/or resource access based on specified criteria. Each entity may be authenticated, and each request of an authenticated entity may be respectively authorized.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/042 - Commande à programme autre que la commande numérique, c.à d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques

39.

Nebula Fleet Management

      
Numéro d'application 18479277
Statut En instance
Date de dépôt 2023-10-02
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Jordan, Jason A.
  • Lamothe, Brian
  • Law, Gary K.
  • Doraiswamy, Narayanan
  • Lakhani, Ayub

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented. One or more applications, executing via the location-agnostic compute fabric, provide for access, management, and/or reconfiguration of various aspects of one or more process control systems across one or more physical sites operated by an enterprise. The one or more applications may, for example, provide for viewing of operational parameters and/or health statuses based upon information accessed from one, two, three four or more physical sites.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

40.

EMBEDDED DEVICE IDENTIFICATION IN PROCESS CONTROL DEVICES

      
Numéro d'application US2023027978
Numéro de publication 2024/019998
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Capoccia, Brian M.
  • Lamothe, Brian
  • Hartmann, Peter
  • Doraiswamy, Narayanan
  • Law, Gary K.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually- exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

41.

SECURING ACCESS OF A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023028003
Numéro de publication 2024/020015
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark, J.
  • Jones, Aaron, C.
  • Ubach, Antonio
  • Hernandez, Sean
  • Dakoju, Sireesha
  • Joshi, Krishna
  • Villarrubia, Matthew

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

42.

SECURING CONNECTIONS OF A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023028005
Numéro de publication 2024/020016
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark, J.
  • Jones, Aaron, C.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

43.

MANAGEMENT FUNCTIONALITIES AND OPERATIONS FOR PROVIDER OF PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023028027
Numéro de publication 2024/020030
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Capoccia, Brian, M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark, J.
  • Hartmann, Peter

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually- exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

44.

Embedded Device Identification in Process Control Devices

      
Numéro d'application 18223373
Statut En instance
Date de dépôt 2023-07-18
Date de la première publication 2024-01-18
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Capoccia, Brian M.
  • Lamothe, Brian
  • Hartmann, Peter
  • Doraiswamy, Narayanan
  • Law, Gary K.

Abrégé

A process control device for use in an industrial process control or automation system of an industrial process plant includes a sensor configured to measure a parameter of a process in the industrial process plant and to output to a controller in the industrial process plant the parameter measured. The process control device also or alternatively includes a control element configured to perform an action in the industrial process plant according to an input received from the controller in the industrial process plant. The process control device also includes an embedded device identifier, unique to the process control field device and associated with one or more of an owner of the process control field device, a plant location of the process control field device, a country or geographical or geopolitical region, and a device tag.

Classes IPC  ?

  • G05B 19/414 - Structure du système de commande, p.ex. automate commun ou systèmes à multiprocesseur, interface vers le servo-contrôleur, contrôleur à interface programmable

45.

Process Control or Automation System Architecture

      
Numéro d'application 18223384
Statut En instance
Date de dépôt 2023-07-18
Date de la première publication 2024-01-18
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Capoccia, Brian M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark J.
  • Fayad, Claudio
  • Nanda, Mickey
  • Jones, Aaron C.
  • Hartmann, Peter
  • Law, Gary K.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • H04L 9/40 - Protocoles réseaux de sécurité

46.

Management Functionalities and Operations for Provider of Process Control or Automation System

      
Numéro d'application 18223405
Statut En instance
Date de dépôt 2023-07-18
Date de la première publication 2024-01-18
Propriétaire FISHER-ROSEMOUNT SYSTEMS,INC. (USA)
Inventeur(s)
  • Capoccia, Brian M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark J.
  • Hartmann, Peter

Abrégé

A process control or automation system comprising a plurality of instantiated micro-encapsulated execution environments (MEEEs) includes a first one or more instantiated MEEEs communicatively connecting a provider of the plurality of instantiated MEEEs to a first enterprise operating a first one or more industrial or automation processes at a first one or more physical locations or sites. The system also includes a second one or more instantiated MEEEs communicatively connecting the provider to a second enterprise operating a second one or more industrial or automation processes at a second one or more physical locations or sites.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

47.

SMART SEARCH CAPABILITIES IN A PROCESS CONTROL SYSTEM

      
Numéro d'application 18373443
Statut En instance
Date de dépôt 2023-09-27
Date de la première publication 2024-01-18
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Hartmann, Peter
  • Fabros, Richard Clarence Dayo
  • Amaro, Jr., Anthony
  • Caldwell, John M.

Abrégé

To provide search capabilities in a process control system, a contextual knowledge repository is generated that organizes process plant-related data according to semantic relations between the process plant-related data and the process plant entities. When a user submits a process plant search query related to process plant entities within a process plant, search results are obtained by identifying a data set from the contextual knowledge repository which is responsive to the process plant search query. The search results are then presented on a user interface device based on the identified data set. To allow for searches to be performed by user interface devices external to the process plant, a data diode is disposed between a field-facing component and an edge-facing component of the process plant so that data flows from the field-facing component to the edge-facing component without flowing from the edge-facing component to the field-facing component.

Classes IPC  ?

  • G06F 16/903 - Requêtes
  • G06F 16/9035 - Filtrage basé sur des données supplémentaires, p.ex. sur des profils d'utilisateurs ou de groupes
  • G06F 16/9038 - Présentation des résultats des requêtes
  • G06F 16/908 - Recherche caractérisée par l’utilisation de métadonnées, p.ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des métadonnées provenant automatiquement du contenu
  • G06F 16/909 - Recherche caractérisée par l’utilisation de métadonnées, p.ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p.ex. la localisation

48.

FRAMEWORK FOR PRIVACY-PRESERVING BIG-DATA SHARING USING DISTRIBUTED LEDGER

      
Numéro d'application 18233055
Statut En instance
Date de dépôt 2023-08-11
Date de la première publication 2023-12-14
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Wang, Gang
  • Nixon, Mark J.
  • Amaro, Jr., Anthony

Abrégé

To provide a trusted, secure, and immutable record of storage operations executed by a storage center for storing measurement data provided by a process plant, techniques are described for utilizing a distributed ledger. When a data contributor such as a process plant generates measurement data, an encrypted version of a set of measurement data is transmitted to a storage center for secure storage of the measurement data. In some instances, the data contributor divides the set of measurement data into several subsets and transmits each subset of encrypted measurement data to a different storage center. Furthermore, the storage center generates a transaction for the storage operation which is recorded in a distributed ledger. When a data subscriber retrieves the encrypted measurement data from a storage center, the data subscriber can verify the authenticity of the data based on the information recorded in the distributed ledger.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 9/06 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité l'appareil de chiffrement utilisant des registres à décalage ou des mémoires pour le codage par blocs, p.ex. système DES
  • H04L 9/32 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité comprenant des moyens pour vérifier l'identité ou l'autorisation d'un utilisateur du système
  • H04L 9/40 - Protocoles réseaux de sécurité

49.

APPARATUSES AND METHODS FOR NON-DISRUPTIVE REPLACEMENT OF SIMPLEX I/O COMPONENTS

      
Numéro d'application 17837264
Statut En instance
Date de dépôt 2022-06-10
Date de la première publication 2023-12-14
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Diaz, Sergio
  • Law, Gary K.
  • Schleiss, Trevor Duncan

Abrégé

Techniques for physically removing and replacing a simplex I/O component include plant personnel placing the component into a “REPLACEABLE” state via a user interface of the component. In response, the simplex I/O component informs the I/O subsystem thereof. The I/O subsystem stores a record of the component's REPLACEABLE state and begins to hold data values (e.g., field device values) most recently received from the component. When the I/O subsystem detects that the simplex I/O component is uncommunicative (e.g., due to being removed and replaced), based on the stored record of the “REPLACEABLE” state, the I/O subsystem retrieves the most recently received held data value and transmits it to a controller, thereby maintaining controlled (e.g., non-disruptive) execution of a control loop. When the replacement simplex I/O component initializes to an “IN-SERVICE” state, the I/O subsystem updates its state record accordingly, and resumes forwarding live field data values to the controller.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

50.

Operator Interactions with a Runtime Process Control System Via Enhanced Smart Search

      
Numéro d'application 18326146
Statut En instance
Date de dépôt 2023-05-31
Date de la première publication 2023-12-07
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Hartmann, Peter
  • Amaro, Jr., Anthony
  • Francisco, Mary Grace

Abrégé

To provide enhanced search capabilities in a process control system, a knowledge repository is generated that includes both contextual data and time series data. The contextual data organizes process plant-related data according to semantic relations between the process plant-related data and the process plant entities. When a user submits a process plant search query related to process plant entities within a process plant, search results are obtained by identifying a data set from the knowledge repository. The contextual data categorizes process parameters so that users can search for a particular process parameter category. Users can tag previous searches to execute them once again at a later time. Users can also execute queries for predicted or future states of process plant entities, batch queries regarding batch processes, soft sensor analytics and monitoring applications, parameter lifecycle applications, perturbation applications, step testing applications, or batch provisioning and scheduling applications using the knowledge repository.

Classes IPC  ?

51.

Smart Search UI

      
Numéro d'application 18326227
Statut En instance
Date de dépôt 2023-05-31
Date de la première publication 2023-12-07
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Hartmann, Peter
  • Amaro, Jr., Anthony
  • Francisco, Mary Grace

Abrégé

To provide enhanced search capabilities in a process control system, a knowledge repository is generated that includes both contextual data and time series data. The contextual data organizes process plant-related data according to semantic relations between the process plant-related data and the process plant entities. When a user submits a process plant search query related to process plant entities within a process plant, search results are obtained by identifying a data set from the knowledge repository. The contextual data categorizes process parameters so that users can search for a particular process parameter category. Users can tag previous searches to execute them once again at a later time. Users can also execute queries for predicted or future states of process plant entities, batch queries regarding batch processes, soft sensor analytics and monitoring applications, parameter lifecycle applications, perturbation applications, step testing applications, or batch provisioning and scheduling applications using the knowledge repository.

Classes IPC  ?

52.

Enhanced Smart Search for Batch Provisioning, Scheduling, and Control

      
Numéro d'application 18326260
Statut En instance
Date de dépôt 2023-05-31
Date de la première publication 2023-12-07
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Hartmann, Peter
  • Amaro, Jr., Anthony
  • Francisco, Mary Grace

Abrégé

To provide enhanced search capabilities in a process control system, a knowledge repository is generated that includes both contextual data and time series data. The contextual data organizes process plant-related data according to semantic relations between the process plant-related data and the process plant entities. When a user submits a process plant search query related to process plant entities within a process plant, search results are obtained by identifying a data set from the knowledge repository. The contextual data categorizes process parameters so that users can search for a particular process parameter category. Users can tag previous searches to execute them once again at a later time. Users can also execute queries for predicted or future states of process plant entities, batch queries regarding batch processes, soft sensor analytics and monitoring applications, parameter lifecycle applications, perturbation applications, step testing applications, or batch provisioning and scheduling applications using the knowledge repository.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

53.

Methods and apparatus to generate and display trends associated with a process control system

      
Numéro d'application 17824439
Numéro de brevet 11922546
Statut Délivré - en vigueur
Date de dépôt 2022-05-25
Date de la première publication 2023-11-30
Date d'octroi 2024-03-05
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • David, Denis
  • Lajoie, Monja
  • Siu Liu, Jessica
  • Johnson, Karen Chau
  • Troyer, Cody
  • Nadas, Ian
  • Harnish, Duane L.
  • Ahuja, Simran
  • Mcconville, Amanda
  • Vallery, Jr., Terry P.

Abrégé

Methods and apparatus to generate and display trends associated with a process control system are disclosed. An example apparatus includes memory, machine readable instructions, and processor circuitry to execute the instructions to generate a first graphical user interface. The first graphical user interface to include a graphical representation of a component in a process control system. The processor circuitry to generate a second graphical user interface. The second graphical user interface to include a chart region with a trend represented therein. The trend indicative of values of a process parameter of the process control system over a period of time. The processor circuitry to automatically generate the trend in the chart region in response to a graphical element being dragged and dropped from the first graphical user interface to the second graphical user interface.

Classes IPC  ?

  • G06T 11/20 - Traçage à partir d'éléments de base, p.ex. de lignes ou de cercles
  • G06F 3/0486 - Glisser-déposer

54.

METHODS AND APPARATUS TO GENERATE AND DISPLAY TRENDS ASSOCIATED WITH A PROCESS CONTROL SYSTEM

      
Numéro d'application US2023014827
Numéro de publication 2023/229700
Statut Délivré - en vigueur
Date de dépôt 2023-03-08
Date de publication 2023-11-30
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • David, Denis
  • Lajoie, Monja
  • Siu Liu, Jessica
  • Johnson, Karen Chau
  • Troyer, Cody
  • Nadas, Ian
  • Harnish, Duane L.
  • Ahuja, Simran
  • Mcconville, Amanda
  • Vallery, Terry P.

Abrégé

Methods and apparatus to generate and display trends associated with a process control system are disclosed. An example apparatus includes memory, machine readable instructions, and processor circuitry to execute the instructions to generate a first graphical user interface. The first graphical user interface to include a graphical representation of a component in a process control system. The processor circuitry to generate a second graphical user interface. The second graphical user interface to include a chart region with a trend represented therein. The trend indicative of values of a process parameter of the process control system over a period of time. The processor circuitry to automatically generate the trend in the chart region in response to a graphical element being dragged and dropped from the first graphical user interface to the second graphical user interface.

Classes IPC  ?

  • G05B 23/00 - Test ou contrôle des systèmes de commande ou de leurs éléments
  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p.ex. des menus
  • G06F 3/04842 - Sélection des objets affichés ou des éléments de texte affichés
  • G06F 3/13 - Sortie numérique vers un traceur
  • G06F 7/02 - Comparaison de valeurs numériques
  • G06F 7/16 - Interclassement et tri conjugués
  • G06T 11/20 - Traçage à partir d'éléments de base, p.ex. de lignes ou de cercles
  • G05B 15/00 - Systèmes commandés par un calculateur
  • G06F 3/04845 - Techniques d’interaction fondées sur les interfaces utilisateur graphiques [GUI] pour la commande de fonctions ou d’opérations spécifiques, p.ex. sélection ou transformation d’un objet, d’une image ou d’un élément de texte affiché, détermination d’une valeur de paramètre ou sélection d’une plage de valeurs pour la transformation d’images, p.ex. glissement, rotation, agrandissement ou changement de couleur
  • G06F 3/04847 - Techniques d’interaction pour la commande des valeurs des paramètres, p.ex. interaction avec des règles ou des cadrans
  • G06Q 10/0639 - Analyse des performances des employés; Analyse des performances des opérations d’une entreprise ou d’une organisation

55.

SUSPICIOUS CONTROL VALVE PERFORMANCE DETECTION

      
Numéro d'application 17824152
Statut En instance
Date de dépôt 2022-05-25
Date de la première publication 2023-11-30
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Xu, Shu
  • Beall, James
  • Nixon, Mark J.

Abrégé

Techniques for detecting suspicious performance of a throttling control valve (also referred to herein as a “valve”) in a process plant are described herein. For each of N time periods, a computing device determines and analyzes process parameter values for process parameters related to a valve to determine a status of the valve for the time period. The computing device compares the valve statuses over the N time periods to determine whether the valve is operating well for at least a threshold portion of at least a subset of the N time periods. In response to determining that the valve is not operating well for at least the threshold portion of at least the subset of the N time periods, the computing device determines that the valve is suspected of performing poorly, and provides an indication of the suspect valve to a user interface for display to a user.

Classes IPC  ?

  • G05B 19/4063 - Contrôle du système de commande général
  • G05B 19/4065 - Contrôle du bris, de la vie ou de l'état d'un outil
  • G05B 19/408 - Commande numérique (CN), c.à d. machines fonctionnant automatiquement, en particulier machines-outils, p.ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'u caractérisée par le maniement de données ou le format de données, p.ex. lecture, mise en mémoire tampon ou conversion de données

56.

I/O SERVER SERVICES CONFIGURED TO FACILITATE CONTROL IN A PROCESS CONTROL ENVIRONMENT BY CONTAINERIZED CONTROLLER SERVICES

      
Numéro d'application 18224229
Statut En instance
Date de dépôt 2023-07-20
Date de la première publication 2023-11-23
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony,
  • Nixon, Mark J.

Abrégé

An I/O server service interacts with multiple containerized controller services each implementing the same control routine to control the same portion of the same plant. The I/O server service may provide the same controller inputs to each of the containerized controller services (e.g., representing measurements obtained by field devices and transmitted by the field devices to the I/O server service). Each containerized controller service executes the same control routine to generate a set of controller outputs. The I/O server service receives each set of controller outputs and forwards an “active” set to the appropriate field devices. The I/O server service and other services, such as an orchestrator service, may continuously evaluate performance and resource utilization in the control system, and may dynamically activate and deactivate controller services as appropriate.

Classes IPC  ?

  • G06F 13/20 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus d'entrée/sortie

57.

VIRTUALIZED REAL-TIME I/O IN PROCESS CONTROL SYSTEMS

      
Numéro d'application 18226234
Statut En instance
Date de dépôt 2023-07-25
Date de la première publication 2023-11-23
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Amaro, Jr., Anthony
  • Bell, Brandon Wayne
  • Caldwell, John M.
  • Law, Gary K.

Abrégé

A Multi-Purpose Dynamic Simulation and run-time Control platform includes a virtual process environment coupled to a physical process environment, where components/nodes of the virtual and physical process environments cooperate to dynamically perform run-time process control of an industrial process plant and/or simulations thereof. Virtual components may include virtual run-time nodes and/or simulated nodes. The MPDSC includes an I/O Switch which delivers I/O data between virtual and/or physical nodes, e.g., by using publish/subscribe mechanisms, thereby virtualizing physical I/O process data delivery. Nodes serviced by the I/O Switch may include respective component behavior modules that are unaware as to whether or not they are being utilized on a virtual or physical node. Simulations may be performed in real-time and even in conjunction with run-time operations of the plant, and/or simulations may be manipulated as desired (speed, values, administration, etc.). The platform simultaneously supports simulation and run-time operations and interactions/intersections therebetween.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • G06F 13/40 - Structure du bus
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

58.

PUBLISH/SUBSCRIBE PROTOCOL FOR REAL-TIME PROCESS CONTROL

      
Numéro d'application 18223374
Statut En instance
Date de dépôt 2023-07-18
Date de la première publication 2023-11-09
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Amaro, Jr., Anthony
  • Bell, Noel Howard
  • Caldwell, John M.
  • Law, Gary K.

Abrégé

A Multi-Purpose Dynamic Simulation and run-time Control platform includes a virtual process environment coupled to a physical process environment, where components/nodes of the virtual and physical process environments cooperate to dynamically perform run-time process control of an industrial process plant and/or simulations thereof. Virtual components may include virtual run-time nodes and/or simulated nodes. The MPDSC includes an I/O Switch which delivers I/O data between virtual and/or physical nodes, e.g., by using publish/subscribe mechanisms, thereby virtualizing physical I/O process data delivery. Nodes serviced by the I/O Switch may include respective component behavior modules that are unaware as to whether or not they are being utilized on a virtual or physical node. Simulations may be performed in real-time and even in conjunction with run-time operations of the plant, and/or simulations may be manipulated as desired (speed, values, administration, etc.). The platform simultaneously supports simulation and run-time operations and interactions/intersections therebetween.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • G06F 9/30 - Dispositions pour exécuter des instructions machines, p.ex. décodage d'instructions
  • G06F 13/40 - Structure du bus
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

59.

INDUSTRIAL CONTROL SYSTEM ARCHITECTURE FOR REAL-TIME SIMULATION AND PROCESS CONTROL

      
Numéro d'application 18219262
Statut En instance
Date de dépôt 2023-07-07
Date de la première publication 2023-11-02
Propriétaire Fisher-Rosemount Systems Inc. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Amaro, Jr., Anthony
  • Bell, Noel Howard
  • Caldwell, John M.
  • Law, Gary K.

Abrégé

A Multi-Purpose Dynamic Simulation and run-time Control platform includes a virtual process environment coupled to a physical process environment, where components/nodes of the virtual and physical process environments cooperate to dynamically perform run-time process control of an industrial process plant and/or simulations thereof. Virtual components may include virtual run-time nodes and/or simulated nodes. The MPDSC includes an I/O Switch which delivers I/O data between virtual and/or physical nodes, e.g., by using publish/subscribe mechanisms, thereby virtualizing physical I/O process data delivery. Nodes serviced by the I/O Switch may include respective component behavior modules that are unaware as to whether or not they are being utilized on a virtual or physical node. Simulations may be performed in real-time and even in conjunction with run-time operations of the plant, and/or simulations may be manipulated as desired (speed, values, administration, etc.). The platform simultaneously supports simulation and run-time operations and interactions/intersections therebetween.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • G06F 9/30 - Dispositions pour exécuter des instructions machines, p.ex. décodage d'instructions
  • G06F 13/40 - Structure du bus
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

60.

MODULAR PROCESS CONTROL SYSTEM

      
Numéro d'application 18136052
Statut En instance
Date de dépôt 2023-04-18
Date de la première publication 2023-09-21
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Amaro, Jr., Anthony

Abrégé

In one aspect, a micro-service control architecture provides a modular, flexible platform for designing, diagnosing, updating and/or expanding process control systems. Each service is containerized to provide portability and isolation from other components of the process control system. In another aspect, a function block diagram includes a “shadow” block that acts as an interface to an external, custom calculation engine, thereby enabling the custom calculation engine to operate synchronously with respect to other function blocks of the function block diagram.

Classes IPC  ?

  • G06F 9/455 - Dispositions pour exécuter des programmes spécifiques Émulation; Interprétation; Simulation de logiciel, p.ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation
  • G06F 9/50 - Allocation de ressources, p.ex. de l'unité centrale de traitement [UCT]
  • G06F 9/54 - Communication interprogramme
  • G06F 8/61 - Installation

61.

FLEXRX

      
Numéro d'application 1745290
Statut Enregistrée
Date de dépôt 2023-07-19
Date d'enregistrement 2023-07-19
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Software as a service (SAAS), namely, hosting software for use by others for processing, recording, and printing data during pharmaceutical manufacturing processes.

62.

PROCESS LIFECYCLE MANAGEMENT METHODS AND SYSTEMS

      
Numéro d'application US2023011138
Numéro de publication 2023/141203
Statut Délivré - en vigueur
Date de dépôt 2023-01-19
Date de publication 2023-07-27
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Law, Gary K.
  • Lenich, Robert M.
  • Hill, Kelsey

Abrégé

Process knowledge creation, development, and management techniques allow for and enable the creation of a universal process definition (UPD) of an industrial process, the automatic conversion or transformation of the UPD into different site-specific process definitions, and the implementation of the site-specific process definitions at different manufacturing, production, and/or automation sites. Typically, the UPD is site- and equipment- agnostic, and the transformation may generate and provide a set of site-specific process definition implementation files or routines to configure and/or govern the behavior of various site-specific execution systems, e.g., as site-specific operational instances of the UPD. The techniques may utilize feedback and information generated by site-specific operational instances to generate learned knowledge and update the UPD accordingly so that subsequent instantiations of the UPD may incorporate (and reap the benefits of) the learned knowledge. The techniques may automatically select a most suitable site for a particular instantiation of the UPD.

Classes IPC  ?

  • G06Q 10/06 - Ressources, gestion de tâches, des ressources humaines ou de projets; Planification d’entreprise ou d’organisation; Modélisation d’entreprise ou d’organisation
  • G05B 19/042 - Commande à programme autre que la commande numérique, c.à d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques

63.

PROCESS LIFECYCLE MANAGEMENT METHODS AND SYSTEMS

      
Numéro d'application 18099054
Statut En instance
Date de dépôt 2023-01-19
Date de la première publication 2023-07-20
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Law, Gary K.
  • Lenich, Robert M.
  • Hill, Kelsey

Abrégé

Process knowledge creation, development, and management techniques allow for and enable the creation of a universal process definition (UPD) of an industrial process, the automatic conversion or transformation of the UPD into different site-specific process definitions, and the implementation of the site-specific process definitions at different manufacturing, production, and/or automation sites. Typically, the UPD is site- and equipment-agnostic, and the transformation may generate and provide a set of site-specific process definition implementation files or routines to configure and/or govern the behavior of various site-specific execution systems, e.g., as site-specific operational instances of the UPD. The techniques may utilize feedback and information generated by site-specific operational instances to generate learned knowledge and update the UPD accordingly so that subsequent instantiations of the UPD may incorporate (and reap the benefits of) the learned knowledge. The techniques may automatically select a most suitable site for a particular instantiation of the UPD.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

64.

EASE OF NODE SWITCHOVERS IN PROCESS CONTROL SYSTEMS

      
Numéro d'application 18116446
Statut En instance
Date de dépôt 2023-03-02
Date de la première publication 2023-06-29
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Amaro, Jr., Anthony
  • Bell, Noel Howard
  • Caldwell, John M.
  • Law, Gary K.

Abrégé

A Multi-Purpose Dynamic Simulation and run-time Control platform includes a virtual process environment coupled to a physical process environment, where components/nodes of the virtual and physical process environments cooperate to dynamically perform run-time process control of an industrial process plant and/or simulations thereof. Virtual components may include virtual run-time nodes and/or simulated nodes. The MPDSC includes an I/O Switch which delivers I/O data between virtual and/or physical nodes, e.g., by using publish/subscribe mechanisms, thereby virtualizing physical I/O process data delivery. Nodes serviced by the I/O Switch may include respective component behavior modules that are unaware as to whether or not they are being utilized on a virtual or physical node. Simulations may be performed in real-time and even in conjunction with run-time operations of the plant, and/or simulations may be manipulated as desired (speed, values, administration, etc.). The platform simultaneously supports simulation and run-time operations and interactions/intersections therebetween.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • G06F 13/40 - Structure du bus
  • G06F 9/30 - Dispositions pour exécuter des instructions machines, p.ex. décodage d'instructions

65.

SYSTEMS AND APPARATUS FOR DISTRIBUTION OF PROCESS CONTROL DATA TO REMOTE DEVICES

      
Numéro d'application 18086875
Statut En instance
Date de dépôt 2022-12-22
Date de la première publication 2023-06-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Denison, David R.
  • Lai, Hoa Van
  • Beoughter, Ken J.
  • Strinden, Daniel R.
  • Dionisio, Mariana C.
  • Van Camp, Kim Ordean
  • Poplawski, Matthew William

Abrégé

A system for securely disseminating information relating to a process control plant includes a process control node and a controller that is coupled to a plurality of process control devices. The process control node includes a communicator module operable to transmit, via a first network, information of the process plant received from the controller. The system also includes a data services module operable to receive from the communicator module, via the first network, the information of the process plant and to transmit some or all of that information via a second network, and a mobile server, coupled to the second network and to a third network, and operable to receive data from the data services module. The mobile server is operable to communicate with a plurality of mobile computing devices via the third network.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • G06F 16/248 - Présentation des résultats de requêtes
  • G06F 16/951 - Indexation; Techniques d’exploration du Web
  • G06F 16/242 - Formulation des requêtes
  • H04L 12/40 - Réseaux à ligne bus
  • H04L 12/46 - Interconnexion de réseaux
  • H04W 12/06 - Authentification
  • H04M 1/72472 - Interfaces utilisateur spécialement adaptées aux téléphones sans fil ou mobiles pour faire fonctionner le dispositif en sélectionnant des fonctions à partir de plusieurs éléments affichés, p.ex. des menus ou des icônes où les éléments sont triés selon des critères spécifiques, p.ex. fréquence d’utilisation
  • H04W 12/088 - Sécurité d'accès utilisant des filtres ou des pare-feu
  • H04L 65/70 - Mise en paquets adaptés au réseau des données multimédias
  • H04L 67/01 - Protocoles
  • H04L 67/75 - Services réseau en affichant sur l'écran de l'utilisateur les conditions du réseau ou d'utilisation
  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • H04L 41/0806 - Réglages de configuration pour la configuration initiale ou l’approvisionnement, p.ex. prêt à l’emploi [plug-and-play]
  • H04L 43/10 - Surveillance active, p.ex. battement de cœur, utilitaire Ping ou trace-route
  • H04L 67/125 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance en impliquant la commande des applications des terminaux par un réseau
  • H04L 67/00 - Dispositions ou protocoles de réseau pour la prise en charge de services ou d'applications réseau
  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p.ex. des menus
  • H04L 41/069 - Gestion des fautes, des événements, des alarmes ou des notifications en utilisant des journaux de notifications; Post-traitement des notifications
  • H04L 43/045 - Traitement des données de surveillance capturées, p.ex. pour la génération de fichiers journaux pour la visualisation graphique des données de surveillance
  • H04L 65/1083 - Procédures en session
  • H04L 41/06 - Gestion des fautes, des événements, des alarmes ou des notifications
  • H04L 9/40 - Protocoles réseaux de sécurité
  • H04L 67/10 - Protocoles dans lesquels une application est distribuée parmi les nœuds du réseau

66.

FLEET MANAGEMENT SYSTEM FOR PORTABLE MAINTENANCE TOOLS

      
Numéro d'application 18113378
Statut En instance
Date de dépôt 2023-02-23
Date de la première publication 2023-06-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Fisher, Joseph D.
  • Toepke, Todd M.
  • Meyer, Nicholas T.

Abrégé

An industrial service device fleet management system implements an organized and easy to use methodology to manage the digital content stored on each of a plurality of portable or stationary devices used in a plant, such as portable maintenance devices, to assure that each of the portable devices receives or implements only the content that it is supposed to have and is upgraded at the appropriate time to include new content, features, etc. The fleet management system includes a memory for storing information related to the fleet of portable or stationary devices including device identifications, device descriptions, end user names and privileges, the current content of each of the portable devices, and templates defining configuration parameters for the portable or stationary devices. The system also includes a content downloader that obtains, stores, and downloads content (such as software and firmware upgrades, additional features, applications, drivers, knowledge articles, etc.) for execution or display in various ones of the portable or stationary devices, includes a content decider module that analyzes when and if various ones of the portable or stationary devices should be provided additional or new content, and includes a notification system that notifies users of the portable or stationary devices of the need to upgrade or provide new content to the portable or stationary devices.

Classes IPC  ?

  • G06Q 10/0631 - Planification, affectation, distribution ou ordonnancement de ressources d’entreprises ou d’organisations
  • G05B 19/042 - Commande à programme autre que la commande numérique, c.à d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques
  • G06Q 10/20 - Administration de la réparation ou de la maintenance des produits
  • H04L 9/40 - Protocoles réseaux de sécurité
  • H04L 67/06 - Protocoles spécialement adaptés au transfert de fichiers, p.ex. protocole de transfert de fichier [FTP]
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • H04L 67/00 - Dispositions ou protocoles de réseau pour la prise en charge de services ou d'applications réseau

67.

Methods and apparatus to implement safety applications associated with process control systems

      
Numéro d'application 18069787
Numéro de brevet 11914360
Statut Délivré - en vigueur
Date de dépôt 2022-12-21
Date de la première publication 2023-04-27
Date d'octroi 2024-02-27
Propriétaire FISHER-ROSEMONT SYSTEMS, INC. (USA)
Inventeur(s)
  • Law, Gary K.
  • Sherriff, Godfrey
  • Diaz, Sergio

Abrégé

Methods and apparatus to implement safety applications associated with process control systems are disclosed. An apparatus includes a configuration controller to: provide a plurality of available safety applications for implementation by a safety trip device to a user for selection, a first one of the safety applications associated with a first set of I/O signals, a second one of the safety applications associated with a second set of I/O signals, the first safety application implemented based on first pre-programmed instructions stored in memory of the safety trip device, the second safety application implemented based on second pre-programmed instructions stored in the memory; and, in response to a user selection of the first safety application, prompt the user to specify values for configuration settings associated with the first safety application. The apparatus also includes an I/O analyzer to implement the first safety application.

Classes IPC  ?

  • G05B 9/03 - Dispositions de sécurité électriques avec une boucle à canal multiple, c. à d. systèmes de commande redondants
  • G06F 11/07 - Réaction à l'apparition d'un défaut, p.ex. tolérance de certains défauts
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

68.

Automatic load balancing and performance leveling of virtual nodes running real-time control in process control systems

      
Numéro d'application 18085805
Numéro de brevet 11960270
Statut Délivré - en vigueur
Date de dépôt 2022-12-21
Date de la première publication 2023-04-20
Date d'octroi 2024-04-16
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Amaro, Jr., Anthony
  • Bell, Noel Howard
  • Caldwell, John M.
  • Law, Gary K.

Abrégé

A Multi-Purpose Dynamic Simulation and run-time Control platform includes a virtual process environment coupled to a physical process environment, where components/nodes of the virtual and physical process environments cooperate to dynamically perform run-time process control of an industrial process plant and/or simulations thereof. Virtual components may include virtual run-time nodes and/or simulated nodes. The MPDSC includes an I/O Switch which delivers I/O data between virtual and/or physical nodes, e.g., by using publish/subscribe mechanisms, thereby virtualizing physical I/O process data delivery. Nodes serviced by the I/O Switch may include respective component behavior modules that are unaware as to whether or not they are being utilized on a virtual or physical node. Simulations may be performed in real-time and even in conjunction with run-time operations of the plant, and/or simulations may be manipulated as desired (speed, values, administration, etc.). The platform simultaneously supports simulation and run-time operations and interactions/intersections therebetween.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • G06F 9/30 - Dispositions pour exécuter des instructions machines, p.ex. décodage d'instructions
  • G06F 13/40 - Structure du bus
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • G05B 17/00 - Systèmes impliquant l'usage de modèles ou de simulateurs desdits systèmes

69.

Cloud-Hosted Interface for Portable Device Communicators

      
Numéro d'application 18086260
Statut En instance
Date de dépôt 2022-12-21
Date de la première publication 2023-04-20
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Torio, Michelle Diane Bautista
  • Alcazaren, Jasmin Velasco

Abrégé

A system for sharing plant device configuration data collected by handheld communicators during monitoring and servicing activities. Plant device configuration data is assigned relational identifiers such as equipment identifiers that provide additional information relevant to the configuration data for a plant device. Additional plant process identifiers may also be assigned to distinguish configuration profiles for various equipment sets. The relational data may be used to retrieve the configuration profiles for application in various efforts to replicate configurations across plants.

Classes IPC  ?

  • G05B 19/042 - Commande à programme autre que la commande numérique, c.à d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques

70.

Smart Functionality for Discrete Field Devices and Signals

      
Numéro d'application 18076088
Statut En instance
Date de dépôt 2022-12-06
Date de la première publication 2023-04-13
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Law, Gary K.
  • Burr, Kent A.

Abrégé

A set of discrete input/output (I/O) channels for one or more field devices may be grouped, organized, and connected to a field module device, which may connect to an electronic marshalling apparatus in a marshalling cabinet via an I/O channel. The field module acts as an intermediary, decoding messages received via the I/O channel to identify commands for discrete output (DO) channels that are then forwarded appropriately. The field module may also receive variable values carried by signals on discrete input (DI) channels and encode the values to a message that may be transmitted to the marshalling apparatus and controller, thus making the variable values on the DI channels available to the controller. The field module may store a profile including information that facilitates various smart commissioning techniques, including autosensing of tags, automatic tag binding, and automatic configuration of a control element corresponding to the field module.

Classes IPC  ?

  • G06F 1/16 - TRAITEMENT ÉLECTRIQUE DE DONNÉES NUMÉRIQUES - Détails non couverts par les groupes et - Détails ou dispositions de structure
  • H04W 76/10 - Gestion de la connexion Établissement de la connexion
  • G06F 1/26 - Alimentation en énergie électrique, p.ex. régulation à cet effet

71.

CENTRALIZED VIRTUALIZATION MANAGEMENT NODE IN PROCESS CONTROL SYSTEMS

      
Numéro d'application 18079546
Statut En instance
Date de dépôt 2022-12-12
Date de la première publication 2023-04-13
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Amaro, Jr., Anthony
  • Bell, Noel Howard
  • Caldwell, John M.
  • Law, Gary K.

Abrégé

A Multi-Purpose Dynamic Simulation and run-time Control platform includes a virtual process environment coupled to a physical process environment, where components/nodes of the virtual and physical process environments cooperate to dynamically perform run-time process control of an industrial process plant and/or simulations thereof. Virtual components may include virtual run-time nodes and/or simulated nodes. The MPDSC includes an I/O Switch which delivers I/O data between virtual and/or physical nodes, e.g., by using publish/subscribe mechanisms, thereby virtualizing physical I/O process data delivery. Nodes serviced by the I/O Switch may include respective component behavior modules that are unaware as to whether or not they are being utilized on a virtual or physical node. Simulations may be performed in real-time and even in conjunction with run-time operations of the plant, and/or simulations may be manipulated as desired (speed, values, administration, etc.). The platform simultaneously supports simulation and run-time operations and interactions/intersections therebetween.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • G06F 13/40 - Structure du bus
  • G06F 9/30 - Dispositions pour exécuter des instructions machines, p.ex. décodage d'instructions

72.

FLEXRX

      
Numéro de série 97858844
Statut En instance
Date de dépôt 2023-03-27
Propriétaire Fisher-Rosemount Systems, Inc. ()
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

software as a service (SAAS), namely, hosting software for use by others for processing, recording, and printing data during pharmaceutical manufacturing processes

73.

GUIDED USER INTERFACE (GUI) BASED SYSTEMS AND METHODS FOR REGIONIZING FULL-SIZE PROCESS PLANT DISPLAYS FOR RENDERING ON MOBILE USER INTERFACE DEVICES

      
Numéro d'application 17982107
Statut En instance
Date de dépôt 2022-11-07
Date de la première publication 2023-02-23
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Uy, Cristopher Ian Sarmiento
  • Valderama, Ryan Gallardo
  • Fernandez Yu, Dino Anton
  • Dionsio, Mariana C.
  • Strinden, Daniel R.
  • Nixon, Mark J.

Abrégé

Graphical user interface (GUI) based systems and methods are disclosed for regionizing full-size process plant displays for rendering on mobile user interface devices. A regionizer application receives a full-size process plant display that graphically represents at least a portion of a process plant that includes graphic representations of a plurality of process plant entities. The regionizer app determines display region(s) of the full-size process plant display that define corresponding view portions of the full-size process plant display. The display regions are transmitted to a mobile user interface device for rendering by a mobile display navigation app. The GUI based systems and methods can also automatically detect graphical process control loop display portions within full-size process plant displays for rendering on mobile user interface devices. The GUI based systems and methods can further refactor full-size process plant displays at various zoom and detail levels for visualization on mobile user interface devices.

Classes IPC  ?

  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p.ex. des menus
  • G05B 15/02 - Systèmes commandés par un calculateur électriques

74.

Manufacturing Systems For Biopharmaceutical Products

      
Numéro d'application 17951552
Statut En instance
Date de dépôt 2022-09-23
Date de la première publication 2023-02-16
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Miller, John
  • Pai, Suraj
  • Narayanan, Sudheesh

Abrégé

A manufacturing system for a biopharmaceutical product includes first and second sets of biopharmaceutical manufacturing equipment located at a first and second enterprise sites, and memory configured to store an enterprise configuration and a process specification. The enterprise configuration includes records of one or more equipment parameters of the multiple pieces of equipment of the first and second sets of biopharmaceutical manufacturing equipment. At least one processor is configured to execute instructions determine whether at least one of the first enterprise site and the second enterprise site is capable of manufacturing the biopharmaceutical product, transmit a generated set of instructions to the determined at least one of the first enterprise site and the second enterprise site, and operate the multiple pieces of equipment at the determined at least one of the first enterprise site and the second enterprise site to manufacture the biopharmaceutical product.

Classes IPC  ?

  • G16H 70/40 - TIC spécialement adaptées au maniement ou au traitement de références médicales concernant des médicaments, p.ex. leurs effets secondaires ou leur usage prévu
  • G05B 19/042 - Commande à programme autre que la commande numérique, c.à d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques

75.

Visualization of A software defined process control system for industrial process plants

      
Numéro d'application 17838798
Statut En instance
Date de dépôt 2022-06-13
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

A software defined (SD) process control system (SDCS) implements controller and other process control-related business logic as logical abstractions (e.g., application layer services executing in containers, VMs, etc.) decoupled from hardware and software computing platform resources. An SD networking layer of the SDCS utilizes process control-specific operating system support services to manage the usage of the computing platform resources and the creation, deletion, modifications, and networking of application layer services with devices disposed in the field environment and with other services, responsive to the requirements and needs of the business logic and dynamically changing conditions of SDCS hardware and/or software assets during run-time of the process plant (such as performance, faults, addition/deletion of hardware and/or software assets, etc.). A visualization system of the SDCS provides a user with a view as to the state of the SDCS as currently configured/running on the computing platform to enable a user to view currently configured interrelationships between logical elements of the control system and other logical and/or physical elements of the control system. The visualization system also provides performance metrics of the system as currently configured to enable a user to understand the operational health of the control system as currently configured.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

76.

VISUALIZATION OF A SOFTWARE DEFINED PROCESS CONTROL SYSTEM FOR INDUSTRIAL PROCESS PLANTS

      
Numéro d'application 17838951
Statut En instance
Date de dépôt 2022-06-13
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

A software defined (SD) process control system (SDCS) implements controller and other process control-related business logic as logical abstractions (e.g., application layer services executing in containers, VMs, etc.) decoupled from hardware and software computing platform resources. An SD networking layer of the SDCS utilizes process control-specific operating system support services to manage the usage of the computing platform resources and the creation, deletion, modifications, and networking of application layer services with devices disposed in the field environment and with other services, responsive to the requirements and needs of the business logic and dynamically changing conditions of SDCS hardware and/or software assets during run-time of the process plant (such as performance, faults, addition/deletion of hardware and/or software assets, etc.). A visualization system of the SDCS provides a user with a view as to the state of the SDCS as currently configured/running on the computing platform to enable a user to view currently configured interrelationships between logical elements of the control system and other logical and/or physical elements of the control system. The visualization system also provides performance metrics of the system as currently configured to enable a user to understand the operational health of the control system as currently configured.

Classes IPC  ?

  • G05B 19/042 - Commande à programme autre que la commande numérique, c.à d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques

77.

GATEWAY SYSTEM WITH CONTEXTUALIZED PROCESS PLANT KNOWLEDGE REPOSITORY

      
Numéro d'application 17894483
Statut En instance
Date de dépôt 2022-08-24
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Fayad, Claudio
  • Halgren, Iii, Robert G.
  • Law, Gary K.
  • Caldwell, John M.
  • Amaro, Jr., Anthony
  • Hartmann, Peter

Abrégé

A gateway system securely delivers and exposes data generated by and/or related to a process plant for consumption by external systems, and includes an edge-facing component that receives process plant-related data from a process plant via a field-facing component of the system. The received data may comport with an exposable data type system utilizing a syntax known to the external systems. The edge-facing component stores the received data in a data lake, and mines the data lake to thereby discover relationships between stored data points. Indications of the received data and the discovered interrelationships are stored in a contextualized process plant knowledge repository, such as a graph database, that is accessible to the external systems and other systems and applications via one or more access mechanisms, which may include utilities, services, servers, and/or applications. Some of the access mechanisms allow external applications to be installed at the edge-facing component.

Classes IPC  ?

  • G06F 16/2458 - Types spéciaux de requêtes, p.ex. requêtes statistiques, requêtes floues ou requêtes distribuées
  • G06F 16/2457 - Traitement des requêtes avec adaptation aux besoins de l’utilisateur
  • G06F 16/901 - Indexation; Structures de données à cet effet; Structures de stockage
  • G05B 13/02 - Systèmes de commande adaptatifs, c. à d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques
  • G05B 13/04 - Systèmes de commande adaptatifs, c. à d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques impliquant l'usage de modèles ou de simulateurs
  • G06F 9/54 - Communication interprogramme
  • G06N 5/02 - Représentation de la connaissance; Représentation symbolique

78.

Discovery Service in a Software Defined Control System

      
Numéro d'application 17489373
Statut En instance
Date de dépôt 2021-09-29
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

A software defined (SD) process control system (SDCS) includes a method executed by a discovery service for inferring information regarding a physical or logical asset of a process plant. The method includes obtaining an announcement indicative of a presence of a physical or logical asset of the process plant. The method also includes obtaining, from a context dictionary, one or more parameters retrievable from the physical or logical asset or one or more services associated with the physical or logical asset that were not indicated in the announcement. Furthermore, the method includes storing a record of the discovered physical or logical asset in a discovered item data store. The record includes an indication of the identity of the physical or logical asset and the one or more parameters or one or more services associated with the physical or logical asset that were not indicated in the announcement.

Classes IPC  ?

  • G05B 19/042 - Commande à programme autre que la commande numérique, c.à d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques
  • G05B 19/10 - Commande à programme autre que la commande numérique, c.à d. dans des automatismes à séquence ou dans des automates à logique utilisant des sélecteurs

79.

Discovery Service in a Software Defined Control System

      
Numéro d'application 17489404
Statut En instance
Date de dépôt 2021-09-29
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

A software defined (SD) process control system (SDCS) includes a method executed by a discovery service for inferring information regarding a physical or logical asset of a process plant. The method includes obtaining an announcement indicative of a presence of a physical or logical asset of the process plant. The method also includes obtaining, from a context dictionary, one or more parameters retrievable from the physical or logical asset or one or more services associated with the physical or logical asset that were not indicated in the announcement. Furthermore, the method includes storing a record of the discovered physical or logical asset in a discovered item data store. The record includes an indication of the identity of the physical or logical asset and the one or more parameters or one or more services associated with the physical or logical asset that were not indicated in the announcement.

Classes IPC  ?

  • G05B 19/4155 - Commande numérique (CN), c.à d. machines fonctionnant automatiquement, en particulier machines-outils, p.ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'u caractérisée par le déroulement du programme, c.à d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p.ex. choix d'un programme
  • G06F 16/23 - Mise à jour
  • G06F 11/14 - Détection ou correction d'erreur dans les données par redondance dans les opérations, p.ex. en utilisant différentes séquences d'opérations aboutissant au même résultat
  • H04L 9/30 - Clé publique, c. à d. l'algorithme de chiffrement étant impossible à inverser par ordinateur et les clés de chiffrement des utilisateurs n'exigeant pas le secret
  • H04W 12/069 - Authentification utilisant des certificats ou des clés pré-partagées
  • H04L 9/14 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité utilisant plusieurs clés ou algorithmes

80.

Security services in a software defined control system

      
Numéro d'application 17489429
Numéro de brevet 11960588
Statut Délivré - en vigueur
Date de dépôt 2021-09-29
Date de la première publication 2022-12-22
Date d'octroi 2024-04-16
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

A software defined (SD) process control system (SDCS) includes a control container having contents which are executable during run-time of the process plant to control at least a portion of an industrial process. The SDCS also includes a security service associated with the control container and including contents which define one or more security conditions. The security service executes via a container on a compute node of the SDCS to control access to and/or data flow from the control container based on the contents of the security container.

Classes IPC  ?

  • G06F 21/33 - Authentification de l’utilisateur par certificats
  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p.ex. par clés ou règles de contrôle de l’accès
  • H04L 9/32 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité comprenant des moyens pour vérifier l'identité ou l'autorisation d'un utilisateur du système

81.

Systems and Methods for Associating Modules in a Software Defined Control System for Industrial Process Plants

      
Numéro d'application 17502891
Statut En instance
Date de dépôt 2021-10-15
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

A process control system includes a plurality of field devices operating to control a process in a process plant. A communication infrastructure couples the plurality of field devices to a software-defined control system (SDCS) that receives data from the field devices and transmits instructions to the field devices. A data cluster, executing the SDCS, includes a plurality of compute nodes, each of which includes a processor executing an operating system, a memory, and a communication resource coupled to one or more other compute nodes in the data cluster. A plurality of instantiated containers, each of which is an isolated execution environment within the operating system of the compute node on which the container is instantiated, cooperate to facilitate execution of a control strategy in the SDCS. At least one of the containers in the SDCS is pinned to a component in the SDCS.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

82.

SYSTEMS AND METHODS FOR ASSOCIATING MODULES IN A SOFTWARE DEFINED CONTROL SYSTEM FOR INDUSTRIAL PROCESS PLANTS

      
Numéro d'application 17502926
Statut En instance
Date de dépôt 2021-10-15
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

A process control system includes a plurality of field devices operating to control a process in a process plant. A communication infrastructure couples the plurality of field devices to a software-defined control system (SDCS) that receives data from the field devices and transmits instructions to the field devices. A data cluster, executing the SDCS, includes a plurality of compute nodes, each of which includes a processor executing an operating system, a memory, and a communication resource coupled to one or more other compute nodes in the data cluster. A plurality of instantiated containers, each of which is an isolated execution environment within the operating system of the compute node on which the container is instantiated, cooperate to facilitate execution of a control strategy in the SDCS. At least one of the containers in the SDCS is pinned to a component in the SDCS.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • G06F 21/53 - Contrôle des usagers, programmes ou dispositifs de préservation de l’intégrité des plates-formes, p.ex. des processeurs, des micrologiciels ou des systèmes d’exploitation au stade de l’exécution du programme, p.ex. intégrité de la pile, débordement de tampon ou prévention d'effacement involontaire de données par exécution dans un environnement restreint, p.ex. "boîte à sable" ou machine virtuelle sécurisée
  • G06F 1/26 - Alimentation en énergie électrique, p.ex. régulation à cet effet

83.

Systems and Methods for Dynamically Maintained Redundancy and Load Balancing in Software Defined Control Systems for Industrial Process Plants

      
Numéro d'application 17502987
Statut En instance
Date de dépôt 2021-10-15
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

A software defined distributed control system (SDCS) in a process plant includes an application layer that includes a plurality of containers instantiated in a data cluster. Each of the containers is an isolated execution environment executing within the local operating system of a respective computing node. The containers cooperate to facilitate execution of a control strategy in the SDCS, and includes a hyper converged infrastructure (HCI) operating across the data cluster, which HCI is configured to communicate with the application layer via an adapter service. The HCI includes software-defined (SD) compute resources, SD storage resources, SD networking resources, and an orchestrator service. The orchestrator service is programmed to configure a first container to include a service executing within the first container. It also assigns the first container to execute on an available hardware resource to control a plurality of field devices operating in the process plant.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • G06F 9/455 - Dispositions pour exécuter des programmes spécifiques Émulation; Interprétation; Simulation de logiciel, p.ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation

84.

SYSTEMS AND METHODS FOR HIERARCHICAL ORGANIZATION OF SOFTWARE DEFINED PROCESS CONTROL SYSTEMS FOR INDUSTRIAL PROCESS PLANTS

      
Numéro d'application 17503110
Statut En instance
Date de dépôt 2021-10-15
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

A process control system includes a plurality of field devices operating to control a process. A communication infrastructure couples the field devices to a software-defined control system (SDCS) that receives data from the field devices and transmits instructions to the field devices. A data cluster, executing the SDCS, includes a plurality of computing nodes, each of which includes a processor executing an operating system, a memory, and a communication resource coupled to one or more other computing nodes in the data cluster. First and second containers, each of which is an isolated execution environment, are instantiated on a first computing node within the operating system of the first computing node. The second container is instantiated within the first container. The first and second containers correspond to levels of a hierarchical structure of the SDCS.

Classes IPC  ?

  • G05B 19/042 - Commande à programme autre que la commande numérique, c.à d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques
  • G06F 9/455 - Dispositions pour exécuter des programmes spécifiques Émulation; Interprétation; Simulation de logiciel, p.ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation

85.

I/O server services for selecting and utilizing active controller outputs from containerized controller services in a process control environment

      
Numéro d'application 17504928
Numéro de brevet 11789428
Statut Délivré - en vigueur
Date de dépôt 2021-10-19
Date de la première publication 2022-12-22
Date d'octroi 2023-10-17
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

An I/O server service interacts with multiple containerized controller services each implementing the same control routine to control the same portion of the same plant. The I/O server service may provide the same controller inputs to each of the containerized controller services (e.g., representing measurements obtained by field devices and transmitted by the field devices to the I/O server service). Each containerized controller service executes the same control routine to generate a set of controller outputs. The I/O server service receives each set of controller outputs and forwards an “active” set to the appropriate field devices. The I/O server service and other services, such as an orchestrator service, may continuously evaluate performance and resource utilization in the control system, and may dynamically activate and deactivate controller services as appropriate.

Classes IPC  ?

  • G05B 19/4155 - Commande numérique (CN), c.à d. machines fonctionnant automatiquement, en particulier machines-outils, p.ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'u caractérisée par le déroulement du programme, c.à d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p.ex. choix d'un programme

86.

I/O server services configured to facilitate control in a process control environment by containerized controller services

      
Numéro d'application 17504938
Numéro de brevet 11726933
Statut Délivré - en vigueur
Date de dépôt 2021-10-19
Date de la première publication 2022-12-22
Date d'octroi 2023-08-15
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

An I/O server service interacts with multiple containerized controller services each implementing the same control routine to control the same portion of the same plant. The I/O server service may provide the same controller inputs to each of the containerized controller services (e.g., representing measurements obtained by field devices and transmitted by the field devices to the I/O server service). Each containerized controller service executes the same control routine to generate a set of controller outputs. The I/O server service receives each set of controller outputs and forwards an “active” set to the appropriate field devices. The I/O server service and other services, such as an orchestrator service, may continuously evaluate performance and resource utilization in the control system, and may dynamically activate and deactivate controller services as appropriate.

Classes IPC  ?

  • G06F 13/20 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus d'entrée/sortie

87.

UTILIZING QUALITY-OF-SERVICE METRICS TO FACILITATE TRANSITIONS BETWEEN I/O CHANNELS FOR I/O SERVER SERVICES

      
Numéro d'application 17504945
Statut En instance
Date de dépôt 2021-10-19
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

An I/O server service interfaces with multiple containerized controller services each implementing the same control routine to control the same portion of the same plant. The I/O server service may provide the same controller inputs to each of the containerized controller services (e.g., representing measurements obtained by field devices and transmitted by the field devices to the I/O server service). Each containerized controller service executes the same control routine to generate a set of controller outputs. The I/O server service receives each set of controller outputs and forwards an “active” set to the appropriate field devices. The I/O server service may utilize a quality-of-service metric to determine which controller outputs and/or I/O channel is “active.” The I/O server service and other services, such as an orchestrator service, may continuously evaluate performance and resource utilization in the control system, and may dynamically activate and deactivate controller services as appropriate.

Classes IPC  ?

  • G05B 19/042 - Commande à programme autre que la commande numérique, c.à d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques

88.

SOFTWARE DEFINED CONTROL SYSTEM INCLUDING I/O SERVER SERVICES THAT COMMUNICATE WITH CONTAINERIZED SERVICES

      
Numéro d'application 17504953
Statut En instance
Date de dépôt 2021-10-19
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

An I/O server service interacts with multiple containerized controller services each implementing the same control routine to control the same portion of the same plant. The I/O server service may provide the same controller inputs to each of the containerized controller services (e.g., representing measurements obtained by field devices and transmitted by the field devices to the I/O server service). Each containerized controller service executes the same control routine to generate a set of controller outputs. The I/O server service receives each set of controller outputs and forwards an “active” set to the appropriate field devices. The I/O server service and other services, such as an orchestrator service, may continuously evaluate performance and resource utilization in the control system, and may dynamically activate and deactivate controller services as appropriate. The I/O server service may interact with other containerized services, such as containerized historian services or workstation services, to facilitate control in the plant.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 29/08 - Procédure de commande de la transmission, p.ex. procédure de commande du niveau de la liaison

89.

VISUALIZSATION OF A SOFTWARE DEFINED PROCESS CONTROL SYSTEM FOR INDUSTRIAL PROCESS PLANTS

      
Numéro d'application 17836624
Statut En instance
Date de dépôt 2022-06-09
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

A software defined (SD) process control system (SDCS) implements controller and other process control-related business logic as logical abstractions (e.g., application layer services executing in containers, VMs, etc.) decoupled from hardware and software computing platform resources. An SD networking layer of the SDCS utilizes process control-specific operating system support services to manage the usage of the computing platform resources and the creation, deletion, modifications, and networking of application layer services with devices disposed in the field environment and with other services, responsive to the requirements and needs of the business logic and dynamically changing conditions of SDCS hardware and/or software assets during run-time of the process plant (such as performance, faults, addition/deletion of hardware and/or software assets, etc.). A visualization system of the SDCS provides a user with a view as to the state of the SDCS as currently configured/running on the computing platform to enable a user to view currently configured interrelationships between logical elements of the control system and other logical and/or physical elements of the control system. The visualization system also provides performance metrics of the system as currently configured to enable a user to understand the operational health of the control system as currently configured.

Classes IPC  ?

  • G06F 9/455 - Dispositions pour exécuter des programmes spécifiques Émulation; Interprétation; Simulation de logiciel, p.ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p.ex. des interruptions ou des opérations d'entrée–sortie

90.

SOFTWARE DEFINED PROCESS CONTROL SYSTEM AND METHODS FOR INDUSTRIAL PROCESS PLANTS

      
Numéro d'application 17487609
Statut En instance
Date de dépôt 2021-09-28
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.
  • Law, Gary K.
  • Fayad, Claudio

Abrégé

A software defined (SD) process control system (SDCS) implements controller and other process control-related business logic as logical abstractions (e.g., application layer services executing in containers, VMs, etc.) decoupled from hardware and software computing platform resources. An SD networking layer of the SDCS utilizes process control-specific operating system support services to manage the usage of the computing platform resources and the creation, deletion, modifications, and networking of application layer services with devices disposed in the field environment and with other services, responsive to the requirements and needs of the business logic and dynamically changing conditions of SDCS hardware and/or software assets during run-time of the process plant (such as performance, faults, addition/deletion of hardware and/or software assets, etc.). Thus, dynamic (re-)allocation of hardware/software resources is primarily, if not entirely, and continually governed in real-time by present requirements and needs of application layer services as well as dynamically changing SDCS conditions.

Classes IPC  ?

  • G05B 19/4155 - Commande numérique (CN), c.à d. machines fonctionnant automatiquement, en particulier machines-outils, p.ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'u caractérisée par le déroulement du programme, c.à d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p.ex. choix d'un programme

91.

SOFTWARE DEFINED PROCESS CONTROL SYSTEM AND METHODS FOR INDUSTRIAL PROCESS PLANTS

      
Numéro d'application 17487858
Statut En instance
Date de dépôt 2021-09-28
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.
  • Law, Gary K.
  • Fayad, Claudio

Abrégé

A software defined (SD) process control system (SDCS) implements controller and other process control-related business logic as logical abstractions (e.g., application layer services executing in containers, VMs, etc.) decoupled from hardware and software computing platform resources. An SD networking layer of the SDCS utilizes process control-specific operating system support services to manage the usage of the computing platform resources and the creation, deletion, modifications, and networking of application layer services with devices disposed in the field environment and with other services, responsive to the requirements and needs of the business logic and dynamically changing conditions of SDCS hardware and/or software assets during run-time of the process plant (such as performance, faults, addition/deletion of hardware and/or software assets, etc.). Thus, dynamic (re-)allocation of hardware/software resources is primarily, if not entirely, and continually governed in real-time by present requirements and needs of application layer services as well as dynamically changing SDCS conditions.

Classes IPC  ?

  • G05B 19/4155 - Commande numérique (CN), c.à d. machines fonctionnant automatiquement, en particulier machines-outils, p.ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'u caractérisée par le déroulement du programme, c.à d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p.ex. choix d'un programme

92.

Security Services in a Software Defined Control System

      
Numéro d'application 17489290
Statut En instance
Date de dépôt 2021-09-29
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

A software defined (SD) process control system (SDCS) includes a control container having contents which are executable during run-time of the process plant to control at least a portion of an industrial process. The SDCS also includes a security service associated with the control container and including contents which define one or more security conditions. The security service executes via a container on a compute node of the SDCS to control access to and/or data flow from the control container based on the contents of the security container.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 29/06 - Commande de la communication; Traitement de la communication caractérisés par un protocole
  • G06F 9/455 - Dispositions pour exécuter des programmes spécifiques Émulation; Interprétation; Simulation de logiciel, p.ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation

93.

Discovery Service in a Software Defined Control System

      
Numéro d'application 17489334
Statut En instance
Date de dépôt 2021-09-29
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

A software defined (SD) process control system (SDCS) includes a method executed by a discovery service for inferring information regarding a physical or logical asset of a process plant. The method includes obtaining an announcement indicative of a presence of a physical or logical asset of the process plant. The method also includes obtaining, from a context dictionary, one or more parameters retrievable from the physical or logical asset or one or more services associated with the physical or logical asset that were not indicated in the announcement. Furthermore, the method includes storing a record of the discovered physical or logical asset in a discovered item data store. The record includes an indication of the identity of the physical or logical asset and the one or more parameters or one or more services associated with the physical or logical asset that were not indicated in the announcement.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • G06F 9/455 - Dispositions pour exécuter des programmes spécifiques Émulation; Interprétation; Simulation de logiciel, p.ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation

94.

Systems and Methods for Dynamically Maintained Redundancy and Load Balancing in Software Defined Control Systems for Industrial Process Plants

      
Numéro d'application 17503047
Statut En instance
Date de dépôt 2021-10-15
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

A software defined distributed control system (SDCS) in a process plant includes an application layer that includes a plurality of containers instantiated in a data cluster. Each of the containers is an isolated execution environment executing within the local operating system of a respective computing node. The containers cooperate to facilitate execution of a control strategy in the SDCS, and includes a hyper converged infrastructure (HCI) operating across the data cluster, which HCI is configured to communicate with the application layer via an adapter service. The HCI includes software-defined (SD) compute resources, SD storage resources, SD networking resources, and an orchestrator service. The orchestrator service is programmed to configure a first container to include a service executing within the first container. It also assigns the first container to execute on an available hardware resource to control a plurality of field devices operating in the process plant.

Classes IPC  ?

  • G06F 9/50 - Allocation de ressources, p.ex. de l'unité centrale de traitement [UCT]
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)

95.

Systems and Methods for Dynamically Maintained Redundancy and Load Balancing in Software Defined Control Systems for Industrial Process Plants

      
Numéro d'application 17503080
Statut En instance
Date de dépôt 2021-10-15
Date de la première publication 2022-12-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

A software defined distributed control system (SDCS) in a process plant includes an application layer that includes a plurality of containers instantiated in a data cluster. Each of the containers is an isolated execution environment executing within the local operating system of a respective computing node. The containers cooperate to facilitate execution of a control strategy in the SDCS, and includes a hyper converged infrastructure (HCI) operating across the data cluster, which HCI is configured to communicate with the application layer via an adapter service. The HCI includes software-defined (SD) compute resources, SD storage resources, SD networking resources, and an orchestrator service. The orchestrator service is programmed to configure a first container to include a service executing within the first container. It also assigns the first container to execute on an available hardware resource to control a plurality of field devices operating in the process plant.

Classes IPC  ?

  • G05B 19/042 - Commande à programme autre que la commande numérique, c.à d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques
  • G06F 9/455 - Dispositions pour exécuter des programmes spécifiques Émulation; Interprétation; Simulation de logiciel, p.ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation

96.

Virtualized real-time I/O in process control systems

      
Numéro d'application 17878402
Numéro de brevet 11747798
Statut Délivré - en vigueur
Date de dépôt 2022-08-01
Date de la première publication 2022-11-17
Date d'octroi 2023-09-05
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Amaro, Jr., Anthony
  • Bell, Noel Howard
  • Caldwell, John M.
  • Law, Gary K.

Abrégé

A Multi-Purpose Dynamic Simulation and run-time Control platform includes a virtual process environment coupled to a physical process environment, where components/nodes of the virtual and physical process environments cooperate to dynamically perform run-time process control of an industrial process plant and/or simulations thereof. Virtual components may include virtual run-time nodes and/or simulated nodes. The MPDSC includes an I/O Switch which delivers I/O data between virtual and/or physical nodes, e.g., by using publish/subscribe mechanisms, thereby virtualizing physical I/O process data delivery. Nodes serviced by the I/O Switch may include respective component behavior modules that are unaware as to whether or not they are being utilized on a virtual or physical node. Simulations may be performed in real-time and even in conjunction with run-time operations of the plant, and/or simulations may be manipulated as desired (speed, values, administration, etc.). The platform simultaneously supports simulation and run-time operations and interactions/intersections therebetween.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • G06F 13/40 - Structure du bus
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • G05B 17/00 - Systèmes impliquant l'usage de modèles ou de simulateurs desdits systèmes

97.

FIELD DEVICE LOOP WARNING PARAMETER CHANGE SMART NOTIFICATION

      
Numéro d'application 17844916
Statut En instance
Date de dépôt 2022-06-21
Date de la première publication 2022-10-06
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Bacus, Joseph Aballe
  • Geronimo Balla, Jehiel Camille
  • Diancin, Wynn Gervacio
  • Samson, Dashene Aren

Abrégé

A system for preventing inadvertent or untimely parameter changes to an active online field device from a secondary system different from a distributed control system application providing control instructions to the field device, where the parameter changes may cause detrimental effects to a plant process or activity. A request for a parameter change from the secondary system may be intercepted before the request is received by a field device or a controller for evaluation by an operator of the distributed control system. The validation process may provide a plant operator with override authority to approve or deny a set of critical parameter changes to an active field device or other active plant device.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
  • H04L 41/0686 - Présence d’informations supplémentaires dans la notification, p.ex. pour l’amélioration de métadonnées spécifiques
  • H04L 41/069 - Gestion des fautes, des événements, des alarmes ou des notifications en utilisant des journaux de notifications; Post-traitement des notifications
  • G06F 3/04847 - Techniques d’interaction pour la commande des valeurs des paramètres, p.ex. interaction avec des règles ou des cadrans
  • H04L 67/125 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance en impliquant la commande des applications des terminaux par un réseau
  • H04L 67/75 - Services réseau en affichant sur l'écran de l'utilisateur les conditions du réseau ou d'utilisation

98.

REAL-TIME MODELING SYSTEM

      
Numéro de série 97621170
Statut Enregistrée
Date de dépôt 2022-10-06
Date d'enregistrement 2023-12-26
Propriétaire Fisher-Rosemount Systems, Inc. ()
Classes de Nice  ? 09 - Appareils et instruments scientifiques et électriques

Produits et services

downloadable computer software that provides integrated business management intelligence by combining information from various databases and presenting it in an easy-to-understand user interface; downloadable computer software for use in modeling and analyzing manufacturing systems

99.

Centralized Knowledge Repository and Data Mining System

      
Numéro d'application 17639164
Statut En instance
Date de dépôt 2020-12-09
Date de la première publication 2022-09-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Enver, Alper T.
  • Kidd, Joshua B.
  • Cook, Emilee C.
  • Albritton, Jesse
  • Varghese, Mathew
  • Orchard, Marcus Shane Strangeway
  • Nixon, Mark J.

Abrégé

A system for securely and efficiently obtaining data from a process plant and processing that data for consumption by one or more external applications or systems includes receiving event data from various data sources in or associated with a plant via various different data formats and data communication structures at a centralized server or gateway, striping off the communication format structure from the data, placing the data, including metadata associated with the data, into an event stream, and making the data in the event stream available to a processing infrastructure that processes that data in a comprehensive and robust manner for easy consumption by external data mining, data visualization and data analytic systems or applications.

Classes IPC  ?

  • G06F 16/2458 - Types spéciaux de requêtes, p.ex. requêtes statistiques, requêtes floues ou requêtes distribuées
  • G06F 16/2455 - Exécution des requêtes
  • G06F 16/25 - Systèmes d’intégration ou d’interfaçage impliquant les systèmes de gestion de bases de données

100.

Smart search capabilities in a process control system

      
Numéro d'application 17747474
Numéro de brevet 11775587
Statut Délivré - en vigueur
Date de dépôt 2022-05-18
Date de la première publication 2022-09-01
Date d'octroi 2023-10-03
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Hartmann, Peter
  • Fabros, Richard Clarence Dayo
  • Amaro, Jr., Anthony
  • Caldwell, John M.

Abrégé

To provide search capabilities in a process control system, a contextual knowledge repository is generated that organizes process plant-related data according to semantic relations between the process plant-related data and the process plant entities. When a user submits a process plant search query related to process plant entities within a process plant, search results are obtained by identifying a data set from the contextual knowledge repository which is responsive to the process plant search query. The search results are then presented on a user interface device based on the identified data set. To allow for searches to be performed by user interface devices external to the process plant, a data diode is disposed between a field-facing component and an edge-facing component of the process plant so that data flows from the field-facing component to the edge-facing component without flowing from the edge-facing component to the field-facing component.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informations; Structures de bases de données à cet effet; Structures de systèmes de fichiers à cet effet
  • G06F 16/903 - Requêtes
  • G06F 16/9035 - Filtrage basé sur des données supplémentaires, p.ex. sur des profils d'utilisateurs ou de groupes
  • G06F 16/9038 - Présentation des résultats des requêtes
  • G06F 16/908 - Recherche caractérisée par l’utilisation de métadonnées, p.ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des métadonnées provenant automatiquement du contenu
  • G06F 16/909 - Recherche caractérisée par l’utilisation de métadonnées, p.ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p.ex. la localisation
  1     2     3     ...     10        Prochaine page