A bottom hole assembly (BHA) includes a whipstock having a latch release mechanism and a milling tool having a plurality of blades and a lock mechanism. The BHA also includes a collar coupled to the whipstock and disposed about a portion of the milling tool, wherein the blades of the milling tool abut the collar. The milling tool is releasably coupled to the whipstock by the interaction of the latch release mechanism and the lock mechanism.
E21B 7/06 - Modification de la direction du trou de forage
E21B 23/04 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage mis en œuvre à l'aide de moyens fluides, p.ex. actionnés par explosion
A liner string for a wellbore includes a liner hanger assembly (LHA) and a liner hanger deployment assembly (LHDA) releasably attached to the LHA. The LHDA includes a central bore and a running tool moveable from a locked position to an unlocked position, the running tool including a flow path in communication with the central bore. The liner string further includes a chamber disposed between the LHDA and LHA, wherein the chamber is in selective fluid communication with the flow path. Wherein, when the flow path is closed, the chamber is isolated from the central bore, and when the flow path is open, the flow path provides fluid communication between central bore and chamber.
E21B 43/10 - Mise en place de tubages, filtres ou crépines dans les puits
E21B 23/04 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage mis en œuvre à l'aide de moyens fluides, p.ex. actionnés par explosion
A running tool sets and cements a liner in a borehole. While the tool’s bypass section is closed, a plug deployed to the tool diverts hydraulic pressure to set a liner hanger in the borehole. The setting plug is unseated, and the bypass section is switched opened by deploying another plug to an opening seat and shifting a control sleeve open relative to a bypass port. While the tool’s packoff remains sealed in the hanger, cement pumped out the bypass port is bullheaded into a lap of the liner and borehole. When cementing is complete, the bypass section is switched closed by deploying another plug to a closing seat and shifting the control sleeve closed relative to the bypass port. The bypass section is then placed in a flow-through condition where fluid communication is reestablished through the tool to the liner by allowing fluid to flow past the plugs in the tool.
E21B 43/10 - Mise en place de tubages, filtres ou crépines dans les puits
E21B 33/16 - Procédés ou dispositifs de cimentation, de bouchage des trous, des fissures ou analogues pour la cimentation des tubes dans les trous de forage ou de sondage utilisant des bouchons pour isoler la charge de ciment; Bouchons à cet effet
4.
Rotating control device with debris-excluding barrier
A rotating control device can include a bearing housing, an inner mandrel rotatably supported in the bearing housing, and a barrier having upper and lower portions, the upper portion being secured against rotation relative to the inner mandrel, the lower portion being secured against rotation relative to the bearing housing, the lower portion including annular recesses, the recesses being progressively deeper in a radially outward direction. Another barrier can include upper and lower portions, the lower portion including multiple annular walls, an upper surface of each wall being inclined downward in a radially outward direction. Another barrier can include upper and lower portions, the upper and lower portions having annular walls, the upper portion walls being interdigitated with the lower portion walls, and the upper and lower portion walls being circumferentially discontinuous, whereby gaps are formed between circumferential ends of the upper and lower portion walls.
A packer assembly includes a packer mandrel and a packing element disposed about the packer mandrel. An upper recovery sleeve is disposed about the packer mandrel and extending between the packer mandrel and an upper end of the packing element, and a lower recovery sleeve is disposed about the packer mandrel and extending between the packer mandrel and a lower end of the packing element. An upper backup assembly is movably disposed about the upper recovery sleeve and adjacent to the upper end of the packing element. A lower backup assembly is movably disposed about the lower recovery sleeve. The lower backup assembly has a lower backup ring assembly configured to enclose an outer surface of the lower end of the packing element. A retrieval sleeve is selectively movable relative to the lower backup ring assembly and configured to at least partially retract the lower backup ring assembly.
An assembly is used for chemical injection through a wellhead (10) to a capillary line (102) in a well. A capillary hanger (150) installs in the wellhead to support the capillary line (102). A no-return valve (160) of the capillary hanger prevents fluid communication uphole from the supported capillary line (102). An injection module (104) mounts above a gate valve (50) on the wellhead and includes a movable mandrel (120) disposed therein. Hydraulic pressure applied to a piston chamber (121) in the module extends the mandrel through the open gate valve (50) so that a distal end (134) of the mandrel (120) can open the no-return valve (160). At this point, chemical injection introduced into the module can communicate through a flow bore (122) of the extended mandrel, through the open non-return valve (160), and on through the supported capillary line (102) in the well.
A float valve is used in a tubular having a through-bore for flow. The tubular can be a casing joint, a casing pup joint, a housing or a shell of a float collar/shoe, or other tubular element. A sleeve of drillable material is expanded inside the tubular. Sealing and/or anchor elements on the exterior of the sleeve can engage inside the tubular. Caps composed of drillable material are disposed on ends of the sleeve and have passages connected to ends of a flow tube. The flow tub is also composed of drillable material and has a bore therethrough for flow. A valve composed of drillable material is disposed in the passage of one of the caps and is configured to control the flow in the tubing through the flow tube.
E21B 34/14 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par le mouvement des outils, p.ex. obturateurs à manchons actionnés par des pistons ou par des outils à câble
E21B 34/08 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits sensibles à l'écoulement ou à la pression du fluide obtenu
A wiper plug is used in an operation to cement tubing in a borehole. The wiper plug is pumped down the tubing to separate an advancing fluid from a following fluid of the cementing operation, and an internal pressure chamber is maintained in a throughbore of the wiper plug between uphole and downhole barriers. The wiper plug eventually lands in the tubing, and the uphole barrier is removed by applying a first predetermined pressure against the uphole barrier. Removal of the uphole barrier is facilitated by the known and controlled internal pressure of the plug's chamber. The downhole barrier is also removed so that flow is permitted through the throughbore of the wiper plug. To perform a tubing pressure test, the downhole barrier can be removed due to pressure, and the chamber may have a temporary valve to hold applied pressure to a test level. Alternatively, the downhole barrier can hold the applied pressure. The temporary valve and the downhole barrier can then be self-removing in response to a stimulus.
E21B 33/16 - Procédés ou dispositifs de cimentation, de bouchage des trous, des fissures ou analogues pour la cimentation des tubes dans les trous de forage ou de sondage utilisant des bouchons pour isoler la charge de ciment; Bouchons à cet effet
E21B 34/14 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par le mouvement des outils, p.ex. obturateurs à manchons actionnés par des pistons ou par des outils à câble
9.
MANAGED PRESSURE DRILLING CONTROL SYSTEM WITH CONTINUOUSLY VARIABLE TRANSMISSION
An apparatus can include a choke with a flow restrictor member having at least two positions, a flow coefficient Cv of the choke with the flow restrictor member in one position being less than with the flow restrictor member in the other position, and an operational device that displaces the flow restrictor member at a variable actuation rate, the actuation rate with the flow restrictor member in one position being less than with the flow restrictor in the other position. A method can include displacing a flow restrictor member, thereby decreasing a flow coefficient Cv of a choke, and decreasing a rate of change of the flow coefficient Cv in response to decreasing the flow coefficient Cv. A drilling system can include a choke with a flow restrictor member, and a continuously variable transmission which causes an actuation rate to vary based on a position of the flow restrictor member.
A method of making-up tubular string components can include inputting to an image processor image data output from at least one camera, the image processor in response detecting positions of a tubular and a mark on another tubular, threading the tubulars with each other while inputting position data from the image processor to a controller, and the controller terminating the threading in response to the position of the mark relative to the position of the first tubular being within a predetermined range. Another method of making-up tubular string components can include, in response to inputting image data to an image processor, the image processor detecting longitudinal positions of two tubulars, threading the tubulars with each other, and a controller terminating the threading in response to the longitudinal position of one tubular relative to the longitudinal position of the other tubular being within a predetermined range.
Fail-safe methods for deactivating the pulsed neutron generator (PNG) of a logging tool are described herein, as are logging tools configured to execute the fail-safe methods. The fail- safe methods deactivate the PNG if the logging tool is disposed in air outside of a borehole. Measurements taken using one or more gamma ray detectors of the logging tool are used to calculate a value for a parameter that is indicative of the tool being disposed in an air environment. Examples of such parameters include ratios of capture gamma rays and burst gamma rays. The disclosed methods operate without reference to sensors and/or control from outside the tool. The methods do not inadvertently deactivate the tool when it encounters an air-filled borehole.
G01V 5/10 - Prospection ou détection au moyen de radiations nucléaires, p.ex. de la radioactivité naturelle ou provoquée spécialement adaptée au carottage en utilisant des sources de radiation nucléaire primaire ou des rayons X en utilisant des sources de neutrons
A wellbore isolation assembly includes an outer component and an inner component. The outer component is disposed at a first location in a wellbore. The inner component is disposed at a second location in the wellbore. The inner component is moved from the second location into engagement with the outer component at the first location to form a barrier within the wellbore. When deployed in the wellbore, the barrier inhibits passage of fluids. The wellbore isolation assembly is then retrieved from the wellbore.
E21B 33/14 - Procédés ou dispositifs de cimentation, de bouchage des trous, des fissures ou analogues pour la cimentation des tubes dans les trous de forage ou de sondage
E21B 23/00 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage
A gravel pack system includes a liner assembly and a deployment assembly. The liner assembly includes a sand control screen. The deployment assembly facilitates rotation of the liner assembly and circulation through the liner assembly while running the liner assembly into a wellbore using a work string. The deployment assembly includes a crossover tool that is operated to facilitate gravel packing without manipulation of the work string. The deployment assembly also includes a setting tool for setting a packer and/or a sand barrier at the top of the liner assembly.
E21B 23/06 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour le montage des packers
A spider for handling/gripping well components of various sizes can include multiple slip assemblies distributed circumferentially about a central axis, each slip assembly including a slip carrier radially displaceable relative to the central axis, a slip displaceable relative to the slip carrier, and a slip actuator operable to displace the slip relative to the slip carrier, the slip actuator being disposed at least partially internal to the slip carrier. Each slip assembly may include a slip carrier actuator that radially displaces the slip carrier. A table assembly may mount to a well rig with an upper surface of the table assembly being flush with a rig floor of the well rig. Another spider can include a pipe guide assembly with multiple guides and guide actuators. Each guide actuator rotates a respective one of the pipe guides about a respective guide axis that is parallel to the central axis.
A gravel pack system includes a liner assembly and a deployment assembly. The liner assembly includes a sand control screen. The deployment assembly facilitates rotation of the liner assembly and circulation through the liner assembly while running the liner assembly into a wellbore using a work string. The deployment assembly includes a crossover tool that is operated to facilitate gravel packing without manipulation of the work string. The deployment assembly also includes a setting tool for setting a packer and/or a sand barrier at the top of the liner assembly.
E21B 34/14 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par le mouvement des outils, p.ex. obturateurs à manchons actionnés par des pistons ou par des outils à câble
E21B 23/04 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage mis en œuvre à l'aide de moyens fluides, p.ex. actionnés par explosion
E21B 23/06 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour le montage des packers
A wellbore isolation assembly includes an outer component and an inner component. The outer component is disposed at a first location in a wellbore. The inner component is disposed at a second location in the wellbore. The inner component is moved from the second location into engagement with the outer component at the first location to form a barrier within the wellbore. When deployed in the wellbore, the barrier inhibits passage of fluids. The wellbore isolation assembly is then retrieved from the wellbore.
E21B 21/10 - Aménagements des vannes dans les systèmes de circulation des fluides de forage
E21B 23/06 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour le montage des packers
E21B 43/10 - Mise en place de tubages, filtres ou crépines dans les puits
Methods, tools, and systems for determining the lithium concentration of a formation traversed by a wellbore using pulsed neutron logging are described. Since determining lithium directly using pulsed neutron logging is problematic, this disclosure provides ways of determining lithium concentration indirectly using models that relate lithium concentration with concentrations of other elements that are predicted to be associated with lithium.
G01V 5/10 - Prospection ou détection au moyen de radiations nucléaires, p.ex. de la radioactivité naturelle ou provoquée spécialement adaptée au carottage en utilisant des sources de radiation nucléaire primaire ou des rayons X en utilisant des sources de neutrons
37 - Services de construction; extraction minière; installation et réparation
Produits et services
Providing the service of collecting downhole data from a survey tool, namely, testing formation pressure while drilling using a formation testing tool and reporting the pressure data to a customer
An elevator can include an elevator body, a set of ears on the elevator body configured for cooperative engagement with a set of bails, and another set of ears configured for cooperative engagement with another set of bails. A method of operating an elevator can include connecting a set of bails to a set of ears on an elevator body, and connecting another set of bails to another set of ears on the elevator body, the sets of bails being different from each other. A well system can include a lifting apparatus, an elevator including an elevator body, and one of two sets of bails connected between the lifting apparatus and the elevator. One set of ears on the elevator body being configured to cooperatively engage one set of bails, and another set of ears on the elevator body being configured to cooperatively engage the other set of bails.
A flow measurement apparatus can include a main flow passage, a bypass flow passage having an inlet and an outlet connected with the main flow passage, a mass flowmeter connected in the bypass flow passage between the inlet and the outlet, and a flow restrictor connected in the bypass flow passage between the inlet and the outlet. A method can include connecting the flow measurement apparatus, so that a fluid flow in the well also flows through the flow measurement apparatus, and determining at least one rheological parameter of a non-Newtonian fluid, based on an output of the flow measurement apparatus.
G01F 1/76 - Dispositifs pour mesurer le débit massique d'un fluide ou d'un matériau solide fluent
G01F 5/00 - Mesure d'une fraction du débit volumétrique
E21B 21/08 - Commande ou surveillance de la pression ou de l'écoulement du fluide de forage, p.ex. remplissage automatique des trous de forage, commande automatique de la pression au fond
G01F 15/00 - MESURE DES VOLUMES, DES DÉBITS VOLUMÉTRIQUES, DES DÉBITS MASSIQUES OU DU NIVEAU DES LIQUIDES; COMPTAGE VOLUMÉTRIQUE - Détails des appareils des groupes ou accessoires pour ces derniers, dans la mesure où de tels accessoires ou détails ne sont pas adaptés à ces types particuliers d'appareils, p.ex. pour l'indication à distance
G01F 15/02 - Compensation ou correction des variations de pression, de poids spécifique ou de température
G01F 1/84 - Débitmètres massiques du type Coriolis ou gyroscopique
21.
Pulsed neutron logging tool with in-air automatic shutdown
Fail-safe methods for deactivating the pulsed neutron generator (PNG) of a logging tool are described herein, as are logging tools configured to execute the fail-safe methods. The fail-safe methods deactivate the PNG if the logging tool is disposed in air outside of a borehole. Measurements taken using one or more gamma ray detectors of the logging tool are used to calculate a value for a parameter that is indicative of the tool being disposed in an air environment. Examples of such parameters include ratios of capture gamma rays and burst gamma rays. The disclosed methods operate without reference to sensors and/or control from outside the tool. The methods do not inadvertently deactivate the tool when it encounters an air-filled borehole.
G01V 5/10 - Prospection ou détection au moyen de radiations nucléaires, p.ex. de la radioactivité naturelle ou provoquée spécialement adaptée au carottage en utilisant des sources de radiation nucléaire primaire ou des rayons X en utilisant des sources de neutrons
22.
Debris Exclusive-Pressure Intensified-Pressure Balanced Setting Tool for Liner Hanger
A system and method set a liner hanger in a borehole by actuating a hydraulic setting mechanism on the hanger to engage slips in the borehole. A setting tool runs the hanger into position. A reserve volume of the tool holds a clean fluid separate from the borehole. A piston of the tool has a tool volume for the fluid. During run in, pressure in the tool volume is balanced to hydrostatic pressure by drawing actuation fluid from the reserve volume to the tool volume through a check valve. To set the hanger, a plug is engaged on a seat in the tool, tubing pressure is applied behind the engaged plug, and the seat is unlocked. With more applied pressure, the piston moves, reduces the tool volume, and intensifies pressure of the clean fluid communicated to the hanger's setting mechanism. Over-pressure can be handled by a venting valve.
E21B 23/04 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage mis en œuvre à l'aide de moyens fluides, p.ex. actionnés par explosion
A flow measurement apparatus can include a main flow passage, a bypass flow passage having an inlet and an outlet connected with the main flow passage, a mass flowmeter connected in the bypass flow passage between the inlet and the outlet, and a flow restrictor connected in the bypass flow passage between the inlet and the outlet. A method can include connecting the flow measurement apparatus, so that a fluid flow in the well also flows through the flow measurement apparatus, and determining at least one rheological parameter of a non-Newtonian fluid, based on an output of the flow measurement apparatus.
E21B 21/08 - Commande ou surveillance de la pression ou de l'écoulement du fluide de forage, p.ex. remplissage automatique des trous de forage, commande automatique de la pression au fond
G01F 1/88 - Débitmètres massiques indirects, p.ex. mesurant le débit volumétrique et la densité, la température ou la pression avec mesure de la différence de pression pour déterminer le débit volumétrique
G01F 1/84 - Débitmètres massiques du type Coriolis ou gyroscopique
G01N 11/04 - Recherche des propriétés d'écoulement des matériaux, p.ex. la viscosité, la plasticité; Analyse des matériaux en déterminant les propriétés d'écoulement en mesurant l'écoulement du matériau à travers un passage étroit, p.ex. un tube, une ouverture
E21B 47/10 - Localisation des fuites, intrusions ou mouvements du fluide
24.
DEBRIS EXCLUSIVE-PRESSURE INTENSIFIED-PRESSURE BALANCED SETTING TOOL FOR LINER HANGER
A system and method set a liner hanger in a borehole by actuating a hydraulic setting mechanism on the hanger to engage slips in the borehole. A setting tool runs the hanger into position. A reserve volume of the tool holds a clean fluid separate from the borehole. A piston of the tool has a tool volume for the fluid. During run in, pressure in the tool volume is balanced to hydrostatic pressure by drawing actuation fluid from the reserve volume to the tool volume through a check valve. To set the hanger, a plug is engaged on a seat in the tool, tubing pressure is applied behind the engaged plug, and the seat is unlocked. With more applied pressure, the piston moves, reduces the tool volume, and intensifies pressure of the clean fluid communicated to the hanger's setting mechanism. Over-pressure can be handled by a venting valve.
E21B 23/04 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage mis en œuvre à l'aide de moyens fluides, p.ex. actionnés par explosion
E21B 33/04 - Têtes de tubage; Suspension des tubages ou des colonnes de production dans les têtes de puits
E21B 43/10 - Mise en place de tubages, filtres ou crépines dans les puits
25.
Assembly method for communicating with line in wellhead
An assembly is used for chemical injection through a wellhead to a capillary line in a well. A capillary hanger installs in the wellhead to support the capillary line. A no-return valve of the capillary hanger prevents fluid communication uphole from the supported capillary line. An injection module mounts above a gate valve on the wellhead and includes a movable mandrel disposed therein. Hydraulic pressure applied to a piston chamber in the module extends the mandrel through the open gate valve so that a distal end of the mandrel can open the no-return valve. At this point, chemical injection introduced into the module can communicate through a flow bore of the extended mandrel, through the open non-return valve, and on through the supported capillary line in the well.
E21B 33/038 - Connecteurs utilisés sur les têtes de puits, p.ex. pour relier l'obturateur anti-éruption et la colonne montante dans l'eau
E21B 33/068 - Têtes de puits; Leur mise en place comportant des dispositions pour introduire des objets dans les puits ou pour les en retirer, ou pour y introduire des fluides
E21B 33/04 - Têtes de tubage; Suspension des tubages ou des colonnes de production dans les têtes de puits
E21B 34/02 - Aménagements des vannes pour les trous de forage ou pour les puits dans les têtes de puits
Methods, tools, and systems for determining the lithium concentration of a formation traversed by a wellbore using pulsed neutron logging are described. Since determining lithium directly using pulsed neutron logging is problematic, this disclosure provides ways of determining lithium concentration indirectly using models that relate lithium concentration with concentrations of other elements that are predicted to be associated with lithium.
G01V 5/10 - Prospection ou détection au moyen de radiations nucléaires, p.ex. de la radioactivité naturelle ou provoquée spécialement adaptée au carottage en utilisant des sources de radiation nucléaire primaire ou des rayons X en utilisant des sources de neutrons
27.
Measuring Component Concentrations of Nonhomogeneous Immiscible Mixtures in Multiphase Flows using Near-Infrared (NIR) Filter Photometry
Near-Infrared (NIR) filter photometry is used to calculate component concentrations in multiphase flows. The disclosed methodology adapts the Beer-Lambert law for nonhomogeneous immiscible mixtures (such as oil and water) by modeling the fluid layer as a nonhomogeneous distribution of its components and deriving a mathematical relationship between measured absorbances, component path lengths, and non-homogeneity factors. The methodology is integrated into a multi-channel filter photometer to measure phase concentrations in oil-and-gas pipelines. The system is proven more accurate than current state of the art based on data from simulations, multiphase flow laboratories and field trials.
G01F 1/661 - Mesure du débit volumétrique ou du débit massique d'un fluide ou d'un matériau solide fluent, dans laquelle le fluide passe à travers un compteur par un écoulement continu en mesurant la fréquence, le déphasage, le temps de propagation d'ondes électromagnétiques ou d'autres types d'ondes, p.ex. en utilisant des débitmètres à ultrasons en utilisant la lumière
G01N 21/3504 - Couleur; Propriétés spectrales, c. à d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p.ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge pour l'analyse des gaz, p.ex. analyse de mélanges de gaz
A downhole assembly includes a tubular body having a bore and a downhole tool connected to the tubular body. The downhole assembly also includes a sensor assembly having a carrier and a sensor. A sensor adapter is used to couple the sensor assembly to the tubular body. The sensor adapter includes an adapter body disposed in the bore of the tubular body; an adapter shaft for connection with the carrier; and a plurality of channels formed between the adapter shaft and the adapter body.
Systems and methods for predicting and optimizing the effects of acidizing treatment of carbonate rock are disclosed. The disclosed methods predict the conflicting effects of increased production (i.e., wormhole creation) and reduced rock compressive strength due to acid rock reactions. The mechanical stability of stimulated wellbores, such as horizontal wellbores, can be determined under different acidizing conditions, such as acid type and volume. The acidizing conditions can be optimized to maximize short and long-term production.
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Providing services for oil and gas wells, namely, the operation of downhole survey and measurement equipment and the provision of data from said equipment
A system can include a completion string with a tubing and a dip tube secured in the tubing. A gas is injected into an annulus between the tubing and the dip tube, and the gas and well liquids flow into the dip tube. A method can include installing a completion string including a tubing, a dip tube in the tubing, and a packer downhole of a gas lift valve, and flowing a gas into the tubing via the gas lift valve, into an annulus between the tubing and the dip tube, and then into the dip tube. Another system can include a tubular connector connected between adjacent sections of the tubing, with the dip tube secured in the tubing and connected to the tubular connector. A gas flows from the gas lift valve to the annulus via a gas flow path formed in the tubular connector.
E21B 17/04 - Accouplements; Joints entre tige et trépan, ou entre tiges
E21B 23/06 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour le montage des packers
E21B 43/12 - Procédés ou appareils pour commander l'écoulement du fluide extrait vers ou dans les puits
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Oilfield services, namely, the provision of data from the operation of a power operated wireline tool, namely, high resolution computerized detector for use in oil and gas drilling that provides cement evaluation, casing inspection, casing wear, corrosion, and fluid properties through the use of ultrasonic transducers
33.
System and Method for Controlling Artificial Lift Units
A system and method controls a plurality of artificial lift units at a plurality of wellsites. Processing equipment installs at a plurality of the wellsites. Operating parameters of each of the artificial lift units are obtained with sensing equipment at the wellsites and are communicated in real-time from the wellsites to the installed processing equipment at the plurality of the wellsites. A modelling function of the processing equipment analyzes a trend of the operating parameters of the artificial lift units, and automated machine learning of the processing equipment predicts a condition of at least one of the artificial lift units based on the analyzed trend. The processing equipment determines at least one automated control for the determined condition of the at least one artificial lift unit and counters the determined condition by implementing the at least one automated control at the at least one artificial lift unit.
E21B 43/12 - Procédés ou appareils pour commander l'écoulement du fluide extrait vers ou dans les puits
E21B 41/00 - Matériel ou accessoires non couverts par les groupes
G05B 13/02 - Systèmes de commande adaptatifs, c. à d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques
A stage tool used in a wellbore has two sub-housings that couple together. A first sleeve is movably disposed in the tool and is held closed with a temporary connection relative to a side port. The first sleeve has a first seat of millable material. A second sleeve is also movably disposed in the tool and is held open with a temporary connection relative to the side port. The second sleeve has a second seat of millable material. An opening plug lands on the first seat so pressure can break the connection and shift the first sleeve open relative to the side port. After pumping cement out of the tool, a closing plug pumped to the second seat allows pressure to break the connection and shift the second sleeve closed. The first sleeve includes a bypass that allows for fluid to pass beyond the seated plug.
E21B 33/14 - Procédés ou dispositifs de cimentation, de bouchage des trous, des fissures ou analogues pour la cimentation des tubes dans les trous de forage ou de sondage
E21B 34/14 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par le mouvement des outils, p.ex. obturateurs à manchons actionnés par des pistons ou par des outils à câble
A well barrier can include an inner mandrel, a flow passage, and a releasably secured plug. The plug blocks fluid flow through the flow passage, and includes a shoulder that prevents the plug from displacing completely through the inner mandrel. A method of treating a subterranean well can include treating a deeper zone, setting a well barrier in the well between the deeper zone and a shallower zone, then treating the shallower zone, and then applying a pressure differential from the deeper to the shallower zone, thereby displacing a plug out of the well barrier. A well treatment system can include a well barrier with a plug releasably secured to an inner mandrel. The plug is released by application of a pressure differential in a longitudinal direction, and fluid communication is unblocked by application of a pressure differential in an opposite longitudinal direction.
A method (80) of making-up a threaded connection can include rotating a tubular (12), measuring torque (44) applied to the tubular during the rotating, thereby generating data (82) including measured torque values, detecting (84) an anomalous occurrence (70) in the data during the rotating, and ceasing (88) application of the torque to the tubular in response to detection of the anomalous occurrence. A threaded connection make-up system (10) can include a rotary clamp (24) to apply torque to a tubular, a torque sensor (44) to produce measurements of the applied torque, and a control system (52) including a neural network, an artificial intelligence device, machine learning and/or genetic algorithms trained to detect an anomalous occurrence in data input to the control system. The data may include the applied torque and turns of the tubular as measured by a turn sensor.
A method of making-up a threaded connection can include rotating a tubular, measuring torque applied to the tubular during the rotating, thereby generating data including measured torque values, detecting an anomalous occurrence in the data during the rotating, and ceasing application of the torque to the tubular in response to detection of the anomalous occurrence. A threaded connection make-up system can include a rotary clamp to apply torque to a tubular, a torque sensor to produce measurements of the applied torque, and a control system including a neural network, an artificial intelligence device, machine learning and/or genetic algorithms trained to detect an anomalous occurrence in data input to the control system. The data may include the applied torque and turns of the tubular as measured by a turn sensor.
G05B 19/18 - Commande numérique (CN), c.à d. machines fonctionnant automatiquement, en particulier machines-outils, p.ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'u
An anchor for securing a well tool can include a longitudinally extending central axis, an outwardly extendable grip member, and a mechanical linkage including multiple pivotably connected links. The links pivot relative to each other in a plane laterally offset from the central axis. A method of anchoring a well tool can include flowing a fluid through an anchor connected to the well tool, thereby outwardly extending a grip member into contact with a well surface, and applying a tensile force to the anchor, thereby increasingly biasing the grip member against the well surface and securing the well tool relative to the well surface. A method of anchoring a tubing cutter in a tubular string can include applying a tensile force from an anchor to the tubular string, and cutting the tubular string while the tensile force is applied from the anchor to the tubular string.
E21B 29/00 - Découpage ou destruction de tubes, packers, bouchons ou câbles, situés dans les trous de forage ou dans les puits, p.ex. découpage de tubes endommagés, de fenêtres; Déformation des tubes dans les trous de forage; Remise en état des tubages de puits sans les retirer du sol
E21B 23/01 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour ancrer les outils ou similaires
E21B 23/04 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage mis en œuvre à l'aide de moyens fluides, p.ex. actionnés par explosion
39.
SYSTEM AND METHOD FOR ELECTRICAL CONTROL OF DOWNHOLE WELL TOOLS
A system for use with a subterranean well can include a system controller with a computer, a power supply and at least one current sensor, multiple downhole well tools, each of the downhole well tools including a motor and a member displaceable by the motor; and an umbilical connected between the system controller and the downhole well tools, at least one conductor of the umbilical being connected to the motor of each of the downhole well tools. A downhole well tool example can include an actuator assembly configured to displace a member of the downhole well tool, the actuator assembly including a motor, a load yoke displaceable by the motor, and an elongated position indicator bar having at least one profile formed thereon. Friction between the load yoke and the position indicator bar varies as the load yoke displaces relative to the position indicator bar.
A tubular gripping apparatus includes a housing having a bore and a plurality of gripping members movable between a gripping position and a release position. The apparatus may also include a shield having a tubular inner body movable relative to an outer body. The tubular inner body is movable between a retracted position, in which the tubular inner body is positioned above the plurality of gripping members, and an extended position, in which the inner body is at least partially positioned interiorly of the plurality of gripping members.
A tubular gripping apparatus includes a housing having a bore and a plurality of gripping members movable between a gripping position and a release position. The apparatus may also include a shield having a tubular inner body movable relative to an outer body. The tubular inner body is movable between a retracted position, in which the tubular inner body is positioned above the plurality of gripping members, and an extended position, in which the inner body is at least partially positioned interiorly of the plurality of gripping members.
A downhole tool for use in a wellbore includes a cone, a cone adapter at least partially disposed in the cone, a shoe member, and a slip assembly disposed between the cone and the shoe member. A mandrel extends through the cone adapter and attached to the shoe member. The cone adapter is retrievable with the mandrel.
E21B 23/06 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour le montage des packers
E21B 33/129 - Packers; Bouchons à patins mécaniques pour accrochage dans le tubage
A downhole tool for use in a wellbore includes a cone, a cone adapter at least partially disposed in the cone, a shoe member, and a slip assembly disposed between the cone and the shoe member. A mandrel extends through the cone adapter and attached to the shoe member. The cone adapter is retrievable with the mandrel.
A flow measurement apparatus can include a main flow passage, a variable flow restrictor, a bypass flow passage having an inlet connected with the main flow passage upstream of the variable flow restrictor and an outlet connected with the main flow passage downstream of the variable flow restrictor, and a mass flowmeter connected in the bypass flow passage between the inlet and the outlet. A method can include connecting a flow measurement apparatus, so that a fluid flow in a well also flows through the flow measurement apparatus, and varying a restriction to the fluid flow through the variable flow restrictor in response to a change in a flow rate of the fluid flow.
E21B 21/08 - Commande ou surveillance de la pression ou de l'écoulement du fluide de forage, p.ex. remplissage automatique des trous de forage, commande automatique de la pression au fond
E21B 21/10 - Aménagements des vannes dans les systèmes de circulation des fluides de forage
E21B 34/02 - Aménagements des vannes pour les trous de forage ou pour les puits dans les têtes de puits
G01F 1/40 - Mesure du débit volumétrique ou du débit massique d'un fluide ou d'un matériau solide fluent, dans laquelle le fluide passe à travers un compteur par un écoulement continu en utilisant des effets mécaniques en mesurant la pression ou la différence de pression la pression ou la différence de pression étant produite par une contraction de la veine fluide - Détails de structure des dispositifs de contraction de la veine fluide
G01F 1/84 - Débitmètres massiques du type Coriolis ou gyroscopique
F16K 3/02 - Robinets-vannes ou tiroirs, c. à d. dispositifs obturateurs dont l'élément de fermeture glisse le long d'un siège pour l'ouverture ou la fermeture à faces d'obturation planes; Garnitures d'étanchéité à cet effet
45.
CONTROL ATTACHMENT FOR A TONG ASSEMBLY POSITIONING SYSTEM
A tong positioning system (100) includes a positioning device configured to move a tong assembly (400). The positioning device includes a first actuator (330), a second actuator (500), and a control attachment (200) attachable to the positioning device (300). The control attachment includes a shutoff valve (208) fluidly coupled to a hydraulic supply, a control valve block (230), and a control device (210). The control valve block includes a hydraulic input fluidly coupled to the shutoff valve, a hydraulic output fluidly coupled to a hydraulic return, a first valve fluidly coupled to the first actuator, the first valve configured to actuate the first actuator, and a second valve fluidly coupled to the second actuator, the second valve configured to actuate the second actuator. The control device is configured to control the first valve and to control the second valve to actuate the first and second actuators to move the tong assembly.
A tong positioning system includes a positioning device configured to move a tong assembly. The positioning device includes a first actuator, a second actuator, and a control attachment attachable to the positioning device. The control attachment includes a shutoff valve fluidly coupled to a hydraulic supply, a control valve block, and a control device. The control valve block includes a hydraulic input fluidly coupled to the shutoff valve, a hydraulic output fluidly coupled to a hydraulic return, a first valve fluidly coupled to the first actuator, the first valve configured to actuate the first actuator, and a second valve fluidly coupled to the second actuator, the second valve configured to actuate the second actuator. The control device is configured to control the first valve and to control the second valve to actuate the first and second actuators to move the tong assembly.
A flow measurement apparatus can include a main flow passage, a variable flow restrictor, a bypass flow passage having an inlet connected with the main flow passage upstream of the variable flow restrictor and an outlet connected with the main flow passage downstream of the variable flow restrictor, and a mass flowmeter connected in the bypass flow passage between the inlet and the outlet. A method can include connecting a flow measurement apparatus, so that a fluid flow in a well also flows through the flow measurement apparatus, and varying a restriction to the fluid flow through the variable flow restrictor in response to a change in a flow rate of the fluid flow.
E21B 21/08 - Commande ou surveillance de la pression ou de l'écoulement du fluide de forage, p.ex. remplissage automatique des trous de forage, commande automatique de la pression au fond
E21B 47/01 - Dispositifs pour supporter des instruments de mesure sur des trépans, des tubes, des tiges ou des câbles de forage; Protection des instruments de mesure dans les trous de forage contre la chaleur, les chocs, la pression ou similaire
A bottom hole assembly for use in a subterranean well can include a whipstock, a mill releasably secured to the whipstock, an antenna, and a release mechanism configured to release the mill from the whipstock in response to a predetermined radio frequency signal received by the antenna. A method can include positioning a bottom hole assembly in a well, the bottom hole assembly including a mill and a whipstock releasably secured to the mill, and then releasing the mill from the whipstock by displacing a radio frequency identification tag into the bottom hole assembly. A well system can include a bottom hole assembly comprising an anchor, a whipstock and a mill, and a radio frequency identification tag displaceable with fluid flow into the bottom hole assembly.
E21B 7/06 - Modification de la direction du trou de forage
E21B 23/02 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour verrouiller les outils ou autres éléments sur des supports ou dans des retraits entre sections adjacentes du tubage
E21B 47/13 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage par énergie électromagnétique, p.ex. gammes de fréquence radio
E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
E21B 47/26 - Stockage des données en fond de puits, p.ex. dans une mémoire ou sur un support d'enregistrement
A bottom hole assembly for use in a subterranean well can include a whipstock, a mill releasably secured to the whipstock, an antenna, and a release mechanism configured to release the mill from the whipstock in response to a predetermined radio frequency signal received by the antenna. A method can include positioning a bottom hole assembly in a well, the bottom hole assembly including a mill and a whipstock releasably secured to the mill, and then releasing the mill from the whipstock by displacing a radio frequency identification tag into the bottom hole assembly. A well system can include a bottom hole assembly comprising an anchor, a whipstock and a mill, and a radio frequency identification tag displaceable with fluid flow into the bottom hole assembly.
E21B 7/06 - Modification de la direction du trou de forage
E21B 47/13 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage par énergie électromagnétique, p.ex. gammes de fréquence radio
A catcher for use in a wellbore includes a housing and an insert disposed within the housing. A method of using the catcher includes disintegrating at least a portion of the insert while the insert is held rotationally stationary with respect to the housing by a taper connection between the insert and the housing.
E21B 40/00 - Accrocheurs de tubes, arrêtant automatiquement la chute des tubes de puits de pétrole
E21B 17/046 - Accouplements; Joints entre tige et trépan, ou entre tiges avec nervures, goupilles ou mâchoires et rainures complémentaires ou similaires, p.ex. accrochage à baïonnette
A catcher for use in a wellbore includes a housing and an insert disposed within the housing. A method of using the catcher includes disintegrating at least a portion of the insert while the insert is held rotationally stationary with respect to the housing by a taper connection between the insert and the housing.
E21B 23/06 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour le montage des packers
E21B 33/14 - Procédés ou dispositifs de cimentation, de bouchage des trous, des fissures ou analogues pour la cimentation des tubes dans les trous de forage ou de sondage
A mill for use in a wellbore includes a tubular housing having a bore therethrough, a plurality of pockets formed in a wall thereof, and a blade disposed in each pocket. Each blade includes a body having a first side opposite a second side, wherein the first side faces in a direction of rotation of the mill. The blade also includes a blade portion disposed on the first side of the body, wherein the blade portion has a first cutting face stepped relative to a second cutting face. Each blade is movable between a retracted position and an extended position, wherein a portion of the first side and the second side protrude from the housing in the extended position.
E21B 29/00 - Découpage ou destruction de tubes, packers, bouchons ou câbles, situés dans les trous de forage ou dans les puits, p.ex. découpage de tubes endommagés, de fenêtres; Déformation des tubes dans les trous de forage; Remise en état des tubages de puits sans les retirer du sol
An operating tool (50) for an artificial lift system (20) includes a housing (52) having a key slot (60). The operating tool further includes at least one biasing member (56) disposed in the housing. The operating tool further includes a key (70) including a key head having a key profile, wherein the key head (72) is remove from the slot when aligned with the key slot. The operating tool further includes a cam including a cam profile, wherein the cam is disposed in the housing and biased toward the slot by the at least one biasing member, wherein the cam profile is configured to engage the key profile to align the key head with the key slot.
E21B 17/046 - Accouplements; Joints entre tige et trépan, ou entre tiges avec nervures, goupilles ou mâchoires et rainures complémentaires ou similaires, p.ex. accrochage à baïonnette
E21B 17/10 - Protecteurs contre l'usure; Dispositifs de centrage
E21B 43/12 - Procédés ou appareils pour commander l'écoulement du fluide extrait vers ou dans les puits
An operating tool for an artificial lift system includes a housing having a key slot. The operating tool further includes at least one biasing member disposed in the housing. The operating tool further includes a key including a key head having a key profile, wherein the key head is remove from the slot when aligned with the key slot. The operating tool further includes a cam including a cam profile, wherein the cam is disposed in the housing and biased toward the slot by the at least one biasing member, wherein the cam profile is configured to engage the key profile to align the key head with the key slot.
E21B 17/06 - Joints libérables, p.ex. joints de sécurité
F04B 47/02 - Pompes ou installations de pompage spécialement adaptées pour élever un fluide à partir d'une grande profondeur, p.ex. pompes de puits les mécanismes d'entraînement étant placés au niveau du sol
F04B 53/14 - Pistons, tiges de piston ou liaisons piston-tige
E21B 43/12 - Procédés ou appareils pour commander l'écoulement du fluide extrait vers ou dans les puits
01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
17 - Produits en caoutchouc ou en matières plastiques; matières à calfeutrer et à isoler
Produits et services
Unprocessed thermoplastic compounds, thermoplastic elastomer resins and thermoplastic concentrates for use in manufacturing in a wide variety of industries Silicon elastomer with reinforcing support layer, adhesive and release liner used as a peel and stick grip and anti-sliding applique for attachment to solid surfaces, and especially for use in marine applications
A well barrier can include an inner mandrel, a flow passage, and a releasably secured plug. The plug blocks fluid flow through the flow passage, and includes a shoulder that prevents the plug from displacing completely through the inner mandrel. A method of treating a subterranean well can include treating a deeper zone, setting a well barrier in the well between the deeper zone and a shallower zone, then treating the shallower zone, and then applying a pressure differential from the deeper to the shallower zone, thereby displacing a plug out of the well barrier. A well treatment system can include a well barrier with a plug releasably secured to an inner mandrel. The plug is released by application of a pressure differential in a longitudinal direction, and fluid communication is unblocked by application of a pressure differential in an opposite longitudinal direction.
A well tool assembly can include a well barrier and a detachable sub connected to the well barrier. The detachable sub can include a sensor data receiver. A method of retrieving sensor data can include positioning a sensor on one side of a well barrier, connecting a detachable sub on an opposite side of the well barrier, the detachable sub including a sensor data receiver configured to receive sensor data from the sensor, and conveying the well barrier, the sensor and the detachable sub together into a well. A system can include a sensor, a detachable sub, and a well barrier positioned between the sensor and the detachable sub, the detachable sub including a sensor data receiver, a passage extending longitudinally through the detachable sub, and a closure that selectively opens and blocks the passage.
37 - Services de construction; extraction minière; installation et réparation
40 - Traitement de matériaux; recyclage, purification de l'air et traitement de l'eau
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
(1) Repair, conditioning, installation, and operating of oil and gas well equipment for others; repair of high-pressure water discharge cleaning machines; constructions of wellhead production equipment systems for others; make-up and pre assembly of downhole completion assemblies; pipe recovery services rendered to oil and gas well operators; and machinery maintenance and repair and molding of parts for others; directional gas and oil drilling services for others; underbalanced and managed pressure gas and oil drilling services for others; drilling and perforation services, namely providing electric wire line and tubing conveyed perforating services for others; providing oil field bolt tensioning services for bolted connections, namely, installing blowout preventor stacks, wellheads, gathering systems, turbines, compressors, and heat exchangers; rental of oil and gas well equipment and downhole tools; rental of high-pressure water discharge cleaning machines.
(2) Software as a service featuring software for the drilling and management of oil and gas reservoirs; technical consulting in the field of oil and gas well production, artificial lift operations, and well management; engineering design and evaluation service combining software offering, advanced analytics, modern visualization and network connectivity with real time data and engineering to optimize oilfield production, prevent well problems and service underperforming wells.
59.
PUMPING UNIT INSPECTION SENSOR ASSEMBLY, SYSTEM AND METHOD
A sensor assembly can include a gyroscope, an accelerometer, and a housing assembly containing the gyroscope and the accelerometer. An axis of the gyroscope can be collinear with an axis of the accelerometer. A method of inspecting a well pumping unit can include attaching a sensor assembly to the pumping unit, recording acceleration versus time data, and in response to an amplitude of the acceleration versus time data exceeding a predetermined threshold, transforming the data to acceleration versus frequency data. A method of balancing a well pumping unit can include comparing peaks of acceleration versus rotational orientation data to peaks of acceleration due to circular motion, and adjusting a position of a counterweight, thereby reducing a difference between the peaks of acceleration due to circular motion and the peaks of the acceleration versus rotational orientation data for subsequent operation of the pumping unit.
A well tool assembly (12) can include a well barrier (22) and a detachable sub (24) connected to the well barrier. The detachable sub can include a sensor data receiver (28). A method of retrieving sensor data can include positioning a sensor (18) on one side of a well barrier (22), connecting a detachable sub (24) on an opposite side of the well barrier, the detachable sub including a sensor data receiver (28) configured to receive sensor data from the sensor, and conveying the well barrier, the sensor and the detachable sub together into a well. A system can include a sensor (18), a detachable sub (24), and a well barrier (22) positioned between the sensor and the detachable sub, the detachable sub including a sensor data receiver, a passage (32) extending longitudinally through the detachable sub, and a closure (30) that selectively opens and blocks the passage.
E21B 47/06 - Mesure de la température ou de la pression
E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
E21B 47/26 - Stockage des données en fond de puits, p.ex. dans une mémoire ou sur un support d'enregistrement
An apparatus can include a telescoping arm (42) having a guiding means (44) and a pivot (70) at opposite ends, the telescoping arm (42) being rotatable about the pivot (70) relative to a spider (28), and the pivot being secured to the spider (28). The apparatus can include an actuator (48) operative to rotate the telescoping arm (42) about the pivot (70), an upper end the actuator (48) is connected to the telescoping arm (42), and a lower end of the actuator (48) is positioned within an outer circumference of the spider (28).
E21B 17/10 - Protecteurs contre l'usure; Dispositifs de centrage
E21B 19/087 - Appareils pour faire avancer les tiges ou les câbles; Appareils pour augmenter ou diminuer la pression sur l'outil de forage; Appareils pour compenser le poids des tiges au moyen d'un balancier
A bottom hole assembly can include a mill and a whipstock having an upper end and an opening. A retractable pin extends from the mill into the opening. A section of the whipstock is separable from the whipstock in response to a force applied to the mill. The section is positioned between the opening and the upper end. A method can include positioning a bottom hole assembly in a well, the bottom hole assembly including a whipstock releasably secured to a mill, and then releasing the mill from the whipstock by separating a section of the whipstock from a remainder of the whipstock. Another method can include conveying a bottom hole assembly into a well, setting an anchor, then applying pressure to a hydraulic release mechanism, and then applying a force to the mill, thereby separating a section of the whipstock from a remainder of the whipstock.
A bottom hole assembly can include a mill and a whipstock having an upper end and an opening. A retractable pin extends from the mill into the opening. A section of the whipstock is separable from the whipstock in response to a force applied to the mill. The section is positioned between the opening and the upper end. A method can include positioning a bottom hole assembly in a well, the bottom hole assembly including a whipstock releasably secured to a mill, and then releasing the mill from the whipstock by separating a section of the whipstock from a remainder of the whipstock. Another method can include conveying a bottom hole assembly into a well, setting an anchor, then applying pressure to a hydraulic release mechanism, and then applying a force to the mill, thereby separating a section of the whipstock from a remainder of the whipstock.
A float valve is used in a tubular having a through-bore for flow. The tubular can be a casing joint, a casing pup joint, a housing or a shell of a float collar/shoe, or other tubular element. A sleeve of drillable material is expanded inside the tubular. Sealing and/or anchor elements on the exterior of the sleeve can engage inside the tubular. Caps composed of drillable material are disposed on ends of the sleeve and have passages connected to ends of a flow tube. The flow tube is also composed of drillable material and has a bore therethrough for flow. A valve composed of drillable material is disposed in the passage of one of the caps and is configured to control the flow in the tubing through the flow tube.
A float valve is used in a tubular having a through-bore for flow. The tubular can be a casing joint, a casing pup joint, a housing or a shell of a float collar/shoe, or other tubular element. A sleeve of drillable material is expanded inside the tubular. Sealing and/or anchor elements on the exterior of the sleeve can engage inside the tubular. Caps composed of drillable material are disposed on ends of the sleeve and have passages connected to ends of a flow tube. The flow tube is also composed of drillable material and has a bore therethrough for flow. A valve composed of drillable material is disposed in the passage of one of the caps and is configured to control the flow in the tubing through the flow tube.
A bottom hole assembly can include a mill and a whipstock having an upper end and an opening. A retractable pin extends from the mill into the opening. A section of the whipstock is separable from the whipstock in response to a force applied to the mill. The section is positioned between the opening and the upper end. A method can include positioning a bottom hole assembly in a well, the bottom hole assembly including a whipstock releasably secured to a mill, and then releasing the mill from the whipstock by separating a section of the whipstock from a remainder of the whipstock. Another method can include conveying a bottom hole assembly into a well, setting an anchor, then applying pressure to a hydraulic release mechanism, and then applying a force to the mill, thereby separating a section of the whipstock from a remainder of the whipstock.
E21B 23/00 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage
E21B 23/01 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour ancrer les outils ou similaires
E21B 29/06 - Découpage de fenêtres, p.ex. découpage directionnel de fenêtres en vue d'opérations impliquant des sifflets-déviateurs
A float valve is used in a tubular having a through-bore for flow. The tubular can be a casing joint, a casing pup joint, a housing or a shell of a float collar/shoe, or other tubular element. A sleeve of drillable material is expanded inside the tubular. Sealing and/or anchor elements on the exterior of the sleeve can engage inside the tubular. Caps composed of drillable material are disposed on ends of the sleeve and have passages connected to ends of a flow tube. The flow tub is also composed of drillable material and has a bore therethrough for flow. A valve composed of drillable material is disposed in the passage of one of the caps and is configured to control the flow in the tubing through the flow tube.
E21B 34/14 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par le mouvement des outils, p.ex. obturateurs à manchons actionnés par des pistons ou par des outils à câble
E21B 34/08 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits sensibles à l'écoulement ou à la pression du fluide obtenu
68.
FLOAT VALVE PRODUCING TURBULENT FLOW FOR WET SHOE TRACK
A float tool is used for controlling flow in tubing. The float tool comprises a housing, at least one valve, and at least one inset. The housing is configured to install on the tubing and has a longitudinal bore therethrough. The at least one valve is disposed in the longitudinal bore. The at least one valve is configured to allow the flow in a downbore direction through the longitudinal bore and is configured to prevent flow in a upbore direction through the longitudinal bore. The at least one inset is disposed in the longitudinal bore and is disposed downbore of the at least one valve. The at least one inset defines an orifice therethrough. The orifice has one or more vanes angled relative to the longitudinal bore. The one or more vanes are configured to produce turbulence in the flow in the downbore direction through the longitudinal bore.
E21B 33/16 - Procédés ou dispositifs de cimentation, de bouchage des trous, des fissures ou analogues pour la cimentation des tubes dans les trous de forage ou de sondage utilisant des bouchons pour isoler la charge de ciment; Bouchons à cet effet
E21B 34/10 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par un fluide de commande provenant de l'extérieur du trou de forage
A method of separating a downhole tubular includes running a tool into a wellbore to a predetermined location on a work string and actuating flow actuated slips. The method also includes maintaining slips in a set position by providing a first upward force on the work string. The method further includes rotating the work string to separate an upper portion of the tubular from a lower portion using a cutter assembly disposed on the work string below the slips and pulling the upper portion of the tubing and the tool from the wellbore.
E21B 23/01 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour ancrer les outils ou similaires
E21B 33/128 - Packers; Bouchons avec un organe dilaté radialement par pression axiale
E21B 33/129 - Packers; Bouchons à patins mécaniques pour accrochage dans le tubage
E21B 29/00 - Découpage ou destruction de tubes, packers, bouchons ou câbles, situés dans les trous de forage ou dans les puits, p.ex. découpage de tubes endommagés, de fenêtres; Déformation des tubes dans les trous de forage; Remise en état des tubages de puits sans les retirer du sol
70.
Method and system for boosting sealing elements of downhole barriers
A downhole barrier can include a housing disposed between a slip and a seal element, a mandrel extending through the housing and the seal element, and a piston fixed to the mandrel and separating two chambers in the housing. One chamber is positioned between the slip and the other chamber, and is in communication with a passage in the mandrel. The other chamber is in communication with an exterior of the barrier. A system can include a downhole barrier set in a wellbore. The barrier can include a housing disposed between a slip and a seal element, a mandrel, and a piston fixed to the mandrel, the piston separating two chambers in the housing. An outer area of the mandrel in one chamber is equal to twice a difference between an inner area of the housing and an outer area of the mandrel in the other chamber.
A float tool is used for controlling flow in tubing. The float tool comprises a housing, at least one valve, and at least one inset. The housing is configured to install on the tubing and has a longitudinal bore therethrough. The at least one valve is disposed in the longitudinal bore. The at least one valve is configured to allow the flow in a downbore direction through the longitudinal bore and is configured to prevent flow in a upbore direction through the longitudinal bore. The at least one inset is disposed in the longitudinal bore and is disposed downbore of the at least one valve. The at least one inset defines an orifice therethrough. The orifice has one or more vanes angled relative to the longitudinal bore. The one or more vanes are configured to produce turbulence in the flow in the downbore direction through the longitudinal bore.
E21B 33/16 - Procédés ou dispositifs de cimentation, de bouchage des trous, des fissures ou analogues pour la cimentation des tubes dans les trous de forage ou de sondage utilisant des bouchons pour isoler la charge de ciment; Bouchons à cet effet
E21B 34/10 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par un fluide de commande provenant de l'extérieur du trou de forage
E21B 37/00 - Procédés ou appareils pour nettoyer les trous de forage ou les puits
72.
CONTROLLED DEFORMATION AND SHAPE RECOVERY OF PACKING ELEMENTS
A packer assembly includes a mandrel and a packing element disposed about the mandrel. Upper and lower recovery sleeves are disposed about the mandrel and extend between the mandrel and respective upper and lower ends of the packing element. The upper and lower recovery sleeves each have a recovery profile embedded within the packing element. Upper and lower backup assemblies are movably disposed about the respective upper and lower recovery sleeves, adjacent to the respective upper and lower ends of the packing element. The packer assembly includes at least one release mechanism. When setting the packer assembly in a bore, the packing element is axially compressed between the upper and lower backup assemblies to contact the bore wall, and the upper and lower backup assemblies splay outwards. Upon release, the packing element and backup assemblies retract, thereby facilitating retrieval of the packer assembly from the bore.
A slip assembly includes a first support cone configured to move a first extension ramp between retracted and extended positions. The first extension ramp is biased towards the retracted position by a first biasing member. The slip assembly further includes a second support cone configured to move a second extension ramp between retracted and extended positions. The second extension ramp is biased towards the retracted position by a second biasing member. The slip assembly further includes a slip member disposed between the first extension ramp and the second extension ramp. The slip member is configured to slide between retracted and extended positions along an outer surface of the first extension ramp and along an outer surface of the second extension ramp. A shank of the slip member is held in a cage by a retainer that moves radially when the slip member moves between the retracted and extended positions.
E21B 23/06 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour le montage des packers
E21B 23/01 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour ancrer les outils ou similaires
E21B 23/04 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage mis en œuvre à l'aide de moyens fluides, p.ex. actionnés par explosion
E21B 33/128 - Packers; Bouchons avec un organe dilaté radialement par pression axiale
E21B 33/129 - Packers; Bouchons à patins mécaniques pour accrochage dans le tubage
74.
CONTROLLED DEFORMATION AND SHAPE RECOVERY OF PACKING ELEMENTS
A packer assembly includes a mandrel and a packing element disposed about the mandrel. Upper and lower recovery sleeves are disposed about the mandrel and extend between the mandrel and respective upper and lower ends of the packing element. The upper and lower recovery sleeves each have a recovery profile embedded within the packing element. Upper and lower backup assemblies are movably disposed about the respective upper and lower recovery sleeves, adjacent to the respective upper and lower ends of the packing element. The packer assembly includes at least one release mechanism. When setting the packer assembly in a bore, the packing element is axially compressed between the upper and lower backup assemblies to contact the bore wall, and the upper and lower backup assemblies splay outwards. Upon release, the packing element and backup assemblies retract, thereby facilitating retrieval of the packer assembly from the bore.
E21B 33/128 - Packers; Bouchons avec un organe dilaté radialement par pression axiale
E21B 23/06 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour le montage des packers
A packer assembly includes a mandrel and a packing element disposed about the mandrel. Upper and lower recovery sleeves are disposed about the mandrel and extend between the mandrel and respective upper and lower ends of the packing element. The upper and lower recovery sleeves each have a recovery profile embedded within the packing element. Upper and lower backup assemblies are movably disposed about the respective upper and lower recovery sleeves, adjacent to the respective upper and lower ends of the packing element. The packer assembly includes at least one release mechanism. When setting the packer assembly in a bore, the packing element is axially compressed between the upper and lower backup assemblies to contact the bore wall, and the upper and lower backup assemblies splay outwards. Upon release, the packing element and backup assemblies retract, thereby facilitating retrieval of the packer assembly from the bore.
A slip assembly includes a first support cone configured to move a first extension ramp between retracted and extended positions. The first extension ramp is biased towards the retracted position by a first biasing member. The slip assembly further includes a second support cone configured to move a second extension ramp between retracted and extended positions. The second extension ramp is biased towards the retracted position by a second biasing member. The slip assembly further includes a slip member disposed between the first extension ramp and the second extension ramp. The slip member is configured to slide between retracted and extended positions along an outer surface of the first extension ramp and along an outer surface of the second extension ramp. A shank of the slip member is held in a cage by a retainer that moves radially when the slip member moves between the retracted and extended positions.
E21B 23/01 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour ancrer les outils ou similaires
E21B 33/129 - Packers; Bouchons à patins mécaniques pour accrochage dans le tubage
77.
CONTROLLED DEFORMATION AND SHAPE RECOVERY OF PACKING ELEMENTS
A packer assembly includes a mandrel and a packing element disposed about the mandrel. Upper and lower recovery sleeves are disposed about the mandrel and extend between the mandrel and respective upper and lower ends of the packing element. The upper and lower recovery sleeves each have a recovery profile embedded within the packing element. Upper and lower backup assemblies are movably disposed about the respective upper and lower recovery sleeves, adjacent to the respective upper and lower ends of the packing element. The packer assembly includes at least one release mechanism. When setting the packer assembly in a bore, the packing element is axially compressed between the upper and lower backup assemblies to contact the bore wall, and the upper and lower backup assemblies splay outwards. Upon release, the packing element and backup assemblies retract, thereby facilitating retrieval of the packer assembly from the bore.
E21B 33/128 - Packers; Bouchons avec un organe dilaté radialement par pression axiale
E21B 23/06 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour le montage des packers
E21B 33/129 - Packers; Bouchons à patins mécaniques pour accrochage dans le tubage
A packer assembly includes a packer mandrel and a packing element disposed about the packer mandrel. An upper recovery sleeve is disposed about the packer mandrel and extending between the packer mandrel and an upper end of the packing element, and a lower recovery sleeve is disposed about the packer mandrel and extending between the packer mandrel and a lower end of the packing element. An upper backup assembly is movably disposed about the upper recovery sleeve and adjacent to the upper end of the packing element. A lower backup assembly is movably disposed about the lower recovery sleeve. The lower backup assembly has a lower backup ring assembly configured to enclose an outer surface of the lower end of the packing element. A retrieval sleeve is selectively movable relative to the lower backup ring assembly and configured to at least partially retract the lower backup ring assembly.
E21B 23/06 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour le montage des packers
A magnet assembly for a debris collection tool includes first and second annular end bands, between which is disposed an annular arrangement of magnets. The magnet assembly includes a plurality of bridges, each bridge disposed between the first and second annular end bands and between circumferentially adjacent magnets of the annular arrangement of magnets. The first and second annular end bands are substantially of a non-magnetic material, and the bridges are substantially of a magnetic material.
A slip assembly includes a first support cone configured to move a first extension ramp between retracted and extended positions. The first extension ramp is biased towards the retracted position by a first biasing member. The slip assembly further includes a second support cone configured to move a second extension ramp between retracted and extended positions. The second extension ramp is biased towards the retracted position by a second biasing member. The slip assembly further includes a slip member disposed between the first extension ramp and the second extension ramp. The slip member is configured to slide between retracted and extended positions along an outer surface of the first extension ramp and along an outer surface of the second extension ramp. A shank of the slip member is held in a cage by a retainer that moves radially when the slip member moves between the retracted and extended positions.
E21B 23/06 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour le montage des packers
E21B 33/128 - Packers; Bouchons avec un organe dilaté radialement par pression axiale
E21B 33/129 - Packers; Bouchons à patins mécaniques pour accrochage dans le tubage
E21B 23/01 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour ancrer les outils ou similaires
E21B 23/04 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage mis en œuvre à l'aide de moyens fluides, p.ex. actionnés par explosion
81.
SHIFTING TOOL AND ASSOCIATED METHODS FOR OPERATING DOWNHOLE VALVES
A shifting tool can include a flow restrictor outwardly extendable in a well. A method can include flowing a fluid through a flow restriction, thereby creating a pressure differential and, in response, shifting a closure member while the fluid flows through the flow restriction. Another method can include positioning a shifting tool in a tubular string, then outwardly extending keys from the shifting tool in response to fluid pressure applied to the shifting tool, then engaging the keys with a profile formed in a closure member, and then shifting the closure member between open and closed positions.
E21B 34/14 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par le mouvement des outils, p.ex. obturateurs à manchons actionnés par des pistons ou par des outils à câble
E21B 23/06 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour le montage des packers
E21B 33/128 - Packers; Bouchons avec un organe dilaté radialement par pression axiale
E21B 34/10 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par un fluide de commande provenant de l'extérieur du trou de forage
A stage tool used in a wellbore has a housing consisting of two sub-housings that couple together. A first sleeve is movably disposed in the housing bore and is held closed with a temporary connection relative to a side port of the housing. The first sleeve has a first seat of millable material. A second sleeve is also movably disposed in the housing bore and is held opened with a temporary connection relative to the side port. The second sleeve has a second seat of millable material. An opening plug is landed on the first seat so pressure can break the connection and shift the first sleeve open relative to the side port. After pumping cement out of the tool, a closing plug is pumped to the second seat so pressure can break the connection and shift the second sleeve closed relative to the side port. The first sleeve includes a bypass that allows for fluid to pass beyond the seated plug.
E21B 34/14 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par le mouvement des outils, p.ex. obturateurs à manchons actionnés par des pistons ou par des outils à câble
E21B 33/14 - Procédés ou dispositifs de cimentation, de bouchage des trous, des fissures ou analogues pour la cimentation des tubes dans les trous de forage ou de sondage
83.
FLUID SAMPLER TOOL AND ASSOCIATED SYSTEM AND METHOD
A method including deploying into a well a fluid sampler tool (12) including a fluid sampler (28), a sampler valve (36, 38), a controller (40) and a sensor (42, 44), and the controller operating the sampler valve in response to a sensed well parameter being within a predetermined well parameter range. A fluid sampler tool (12) including a fluid sampler (28), a sampler valve (36, 38), a controller (40) and a carrier (32) configured to connect the fluid sampler tool in a tubular string (14), the controller being enclosed within a chamber (56) that is externally accessible on the carrier.
A system used downhole in tubing is operable with pressure communicated via at least one control line. The system includes a tool and a stinger. The tool disposed with the tubing has a tool bore for passage of tubing flow. The tool has an operator movable between operable states, and the operator has a tool key disposed in the bore. The stinger removably disposed in the tubing is configured to insert into the tool bore. The stinger has an actuator in communication with the at least one control line. Actuated by the control line, a stinger key disposed on the stinger is movable with the actuator between positions. In this way, the stinger key is configured to engage the tool key and is configured to move the tool's operator at least from the one state to another.
E21B 23/02 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour verrouiller les outils ou autres éléments sur des supports ou dans des retraits entre sections adjacentes du tubage
E21B 23/04 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage mis en œuvre à l'aide de moyens fluides, p.ex. actionnés par explosion
E21B 34/10 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par un fluide de commande provenant de l'extérieur du trou de forage
E21B 34/14 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par le mouvement des outils, p.ex. obturateurs à manchons actionnés par des pistons ou par des outils à câble
E21B 34/16 - Moyens de commande situés à l'extérieur du trou de forage
85.
FLUID SAMPLER TOOL AND ASSOCIATED SYSTEM AND METHOD
A method including deploying into a well a fluid sampler tool (12) including a fluid sampler (28), a sampler valve (36, 38), a controller (40) and a sensor (42, 44), and the controller operating the sampler valve in response to a sensed well parameter being within a predetermined well parameter range. A fluid sampler tool (12) including a fluid sampler (28), a sampler valve (36, 38), a controller (40) and a carrier (32) configured to connect the fluid sampler tool in a tubular string (14), the controller being enclosed within a chamber (56) that is externally accessible on the carrier.
A method can include deploying into a well a fluid sampler tool including a fluid sampler, a sampler valve, a controller and a sensor, and the controller operating the sampler valve in response to a sensed well parameter being within a predetermined well parameter range. A fluid sampler tool can include a fluid sampler, a sampler valve, a controller and a carrier configured to connect the fluid sampler tool in a tubular string, the controller being enclosed within a chamber that is externally accessible on the carrier.
A system used downhole in tubing is operable with pressure communicated via at least one control line. The system includes a tool and a stinger. The tool disposed with the tubing has a tool bore for passage of tubing flow. The tool has an operator movable between operable states, and the operator has a tool key disposed in the bore. The stinger removably disposed in the tubing is configured to insert into the tool bore. The stinger has an actuator in communication with the at least one control line. Actuated by the control line, a stinger key disposed on the stinger is movable with the actuator between positions. In this way, the stinger key is configured to engage the tool key and is configured to move the tool's operator at least from the one state to another.
E21B 23/02 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour verrouiller les outils ou autres éléments sur des supports ou dans des retraits entre sections adjacentes du tubage
E21B 23/04 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage mis en œuvre à l'aide de moyens fluides, p.ex. actionnés par explosion
E21B 34/10 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par un fluide de commande provenant de l'extérieur du trou de forage
E21B 34/14 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par le mouvement des outils, p.ex. obturateurs à manchons actionnés par des pistons ou par des outils à câble
E21B 34/16 - Moyens de commande situés à l'extérieur du trou de forage
88.
RETRIEVABLE ANTI-EXTRUSION FOLDBACK-RING BACKUP FOR SEALING ELEMENT
A well barrier can include an annular seal element, an anti-extrusion backup having radially inward and radially outward portions, and a biasing device that exerts a biasing force against the radially outward portion of the anti-extrusion backup. A method of operating a well barrier can include setting the well barrier by decreasing a longitudinal distance between abutments of the well barrier, thereby compressing a seal element between the abutments, and unsetting the well barrier by increasing the longitudinal distance between the abutments and radially inwardly retracting an anti-extrusion backup positioned longitudinally between the seal element and one of the abutments. Another well barrier can include an annular seal element, an anti-extrusion backup, an abutment displaceable relative to the seal element to compress the seal element, a sleeve reciprocable relative to the abutment, and a biasing device that biases the sleeve toward the anti-extrusion backup.
E21B 23/06 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour le montage des packers
89.
Stinger for actuating surface-controlled subsurface safety valve
A system used downhole in tubing is operable with pressure communicated via at least one control line. The system includes a tool and a stinger. The tool disposed with the tubing has a tool bore for passage of tubing flow. The tool has an operator movable between operable states, and the operator has a tool key disposed in the bore. The stinger removably disposed in the tubing is configured to insert into the tool bore. The stinger has an actuator in communication with the at least one control line. Actuated by the control line, a stinger key disposed on the stinger is movable with the actuator between positions. In this way, the stinger key is configured to engage the tool key and is configured to move the tool's operator at least from the one state to another.
E21B 34/14 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par le mouvement des outils, p.ex. obturateurs à manchons actionnés par des pistons ou par des outils à câble
E21B 43/12 - Procédés ou appareils pour commander l'écoulement du fluide extrait vers ou dans les puits
E21B 47/16 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage utilisant des ondes acoustiques le long du train de tiges ou du tubage
90.
BEAM PUMPING UNIT INSPECTION SENSOR ASSEMBLY, SYSTEM AND METHOD
A sensor assembly can include a gyroscope, an accelerometer, and a housing assembly containing the gyroscope and the accelerometer. An axis of the gyroscope can be collinear with an axis of the accelerometer. A method of inspecting a well pumping unit can include attaching a sensor assembly to the pumping unit, recording acceleration versus time data, and in response to an amplitude of the acceleration versus time data exceeding a predetermined threshold, transforming the data to acceleration versus frequency data. A method of balancing a well pumping unit can include comparing peaks of acceleration versus rotational orientation data to peaks of acceleration due to circular motion, and adjusting a position of a counterweight, thereby reducing a difference between the peaks of acceleration due to circular motion and the peaks of the acceleration versus rotational orientation data for subsequent operation of the pumping unit.
A sensor assembly can include a gyroscope, an accelerometer, and a housing assembly containing the gyroscope and the accelerometer. An axis of the gyroscope can be collinear with an axis of the accelerometer. A method of inspecting a well pumping unit can include attaching a sensor assembly to the pumping unit, recording acceleration versus time data, and in response to an amplitude of the acceleration versus time data exceeding a predetermined threshold, transforming the data to acceleration versus frequency data. A method of balancing a well pumping unit can include comparing peaks of acceleration versus rotational orientation data to peaks of acceleration due to circular motion, and adjusting a position of a counterweight, thereby reducing a difference between the peaks of acceleration due to circular motion and the peaks of the acceleration versus rotational orientation data for subsequent operation of the pumping unit.
A drive unit of a top drive system includes a drive stem having a plurality of ports from an exterior thereof to an interior thereof. A plurality of sliding coupling members is disposed in the ports. A coupling collar encircles the drive stem and has actuation surfaces and recessed surfaces on an interior thereof, wherein the recessed surfaces align with the ports when the coupling collar is in a first position, and the actuation surfaces align with the ports when the coupling collar is in a second position.
E21B 17/04 - Accouplements; Joints entre tige et trépan, ou entre tiges
E21B 3/03 - Moyens d'entraînement de surface pour forage par rotation à mouvement de rotation intermittent de l'outil dans un seul sens
F16L 37/23 - Accouplements du type à action rapide dans lesquels l'assemblage est maintenu par des billes, rouleaux ou ressorts hélicoïdaux sous pression radiale entre parties au moyen de billes
F16D 7/00 - Accouplements à glissement, p.ex. glissant en cas de surcharge, pour absorber les chocs
E21B 17/03 - Accouplements; Joints entre la tige ou le tube de forage et le moteur de forage, p.ex. entre la tige de forage et le marteau
E21B 3/02 - Moyens d'entraînement de surface pour forage par rotation
93.
Pumping unit inspection sensor assembly, system and method
A sensor assembly can include a gyroscope, an accelerometer, and a housing assembly containing the gyroscope and the accelerometer. An axis of the gyroscope can be collinear with an axis of the accelerometer. A method of inspecting a well pumping unit can include attaching a sensor assembly to the pumping unit, recording acceleration versus time data, and in response to an amplitude of the acceleration versus time data exceeding a predetermined threshold, transforming the data to acceleration versus frequency data. A method of balancing a well pumping unit can include comparing peaks of acceleration versus rotational orientation data to peaks of acceleration due to circular motion, and adjusting a position of a counterweight, thereby reducing a difference between the peaks of acceleration due to circular motion and the peaks of the acceleration versus rotational orientation data for subsequent operation of the pumping unit.
A stage cementing system includes a stage cementing assembly having a stage tool. The stage tool has an outer mandrel, an inner mandrel coupled to and disposed inside of the outer mandrel, an annular chamber between the outer mandrel and the inner mandrel, a first outer port through the outer mandrel, and longitudinally spaced first and second inner ports through the inner mandrel. The stage cementing system further includes an inner string assembly configured to be located inside the inner mandrel. The inner string assembly has a tubular body having a central throughbore and longitudinally spaced first and second side ports, a lower external seal element below the first and second side ports, a middle external seal element between the first and second side ports, and an upper external seal element above the first and second side ports.
E21B 33/14 - Procédés ou dispositifs de cimentation, de bouchage des trous, des fissures ou analogues pour la cimentation des tubes dans les trous de forage ou de sondage
E21B 34/10 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits actionnés par un fluide de commande provenant de l'extérieur du trou de forage
97.
MANAGED PRESSURE DRILLING CONTROL SYSTEM WITH CONTINUOUSLY VARIABLE TRANSMISSION
An apparatus can include a choke with a flow restrictor member having at least two positions, a flow coefficient Cv of the choke with the flow restrictor member in one position being less than with the flow restrictor member in the other position, and an operational device that displaces the flow restrictor member at a variable actuation rate, the actuation rate with the flow restrictor member in one position being less than with the flow restrictor in the other position. A method can include displacing a flow restrictor member, thereby decreasing a flow coefficient Cv of a choke, and decreasing a rate of change of the flow coefficient Cv in response to decreasing the flow coefficient Cv. A drilling system can include a choke with a flow restrictor member, and a continuously variable transmission which causes an actuation rate to vary based on a position of the flow restrictor member.
A method and apparatus for a downhole tool including a slip assembly having a plurality of slips configured to engage a downhole surface. The slip assembly includes a plurality of slip segments. Each slip segment includes a slip body, a plurality of profile elements coupled to the slip body, and a first coating disposed on the plurality of profile elements, wherein the first coating is formed from a plasma electrolytic oxidation treatment. The first coating and the plurality of profile elements form a plurality of gripping elements configured to grip the downhole surface.
E21B 23/06 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour le montage des packers
E21B 33/128 - Packers; Bouchons avec un organe dilaté radialement par pression axiale
E21B 33/129 - Packers; Bouchons à patins mécaniques pour accrochage dans le tubage
A method and apparatus for a downhole tool including a retained object. The downhole tool includes a longitudinal axis, a cone including a seat having an opening, and a shoe member. The downhole tool further includes a slip assembly disposed between the cone and the shoe member. The downhole tool further includes a mandrel disposed in the opening of the seat. The downhole tool further includes an attachment member attaching the mandrel to the shoe member, wherein the attachment member is eccentric to the longitudinal axis. The downhole tool further includes a setting sleeve abutting the cone. The downhole tool further includes the object, wherein the object configured to engage with the seat, and wherein the object is disposed between the mandrel and the setting sleeve.
E21B 33/129 - Packers; Bouchons à patins mécaniques pour accrochage dans le tubage
E21B 23/01 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour ancrer les outils ou similaires
37 - Services de construction; extraction minière; installation et réparation
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Repair, conditioning, installation, and operating of oil and gas well equipment for others; repair of high-pressure water discharge cleaning machines; constructions of wellhead production equipment systems for others; make-up and pre assembly of downhole completion assemblies; pipe recovery services rendered to oil and gas well operators; and machinery maintenance and repair and molding of parts for others; directional gas and oil drilling services for others; underbalanced and managed pressure gas and oil drilling services for others; Drilling and perforation services, namely, providing electric wire line and tubing conveyed perforating services for others; providing oil field bolt tensioning services for bolted connections, namely, installing blowout preventor stacks, wellheads, gathering systems, turbines, compressors, and heat exchangers; rental of oil and gas well equipment and downhole tools; rental of high-pressure water discharge cleaning machines Software as a service featuring software for the drilling and management of oil and gas reservoirs; Technical consulting in the field of oil and gas well production, artificial lift operations, and well management; engineering design and evaluation service combining software offering, advanced analytics, modern visualization and network connectivity with real time data and engineering to optimize oilfield production, prevent well problems and service underperforming wells