Landmark Graphics Corporation

États‑Unis d’Amérique

Retour au propriétaire

1-100 de 1 528 pour Landmark Graphics Corporation et 2 filiales Trier par
Recheche Texte
Affiner par
Type PI
        Brevet 1 469
        Marque 59
Juridiction
        International 655
        États-Unis 581
        Canada 289
        Europe 3
Propriétaire / Filiale
[Owner] Landmark Graphics Corporation 1 526
Object Reservoir, Inc. 1
Petris Technology, Inc. 1
Date
Nouveautés (dernières 4 semaines) 8
2024 avril (MACJ) 4
2024 mars 7
2024 février 1
2024 janvier 2
Voir plus
Classe IPC
E21B 41/00 - Matériel ou accessoires non couverts par les groupes 240
E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage 216
E21B 47/00 - Relevés dans les trous de forage ou dans les puits 173
G01V 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe 134
E21B 49/00 - Test pour déterminer la nature des parois des trous de forage; Essais de couches; Procédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits 131
Voir plus
Classe NICE
09 - Appareils et instruments scientifiques et électriques 48
42 - Services scientifiques, technologiques et industriels, recherche et conception 15
16 - Papier, carton et produits en ces matières 3
35 - Publicité; Affaires commerciales 1
37 - Services de construction; extraction minière; installation et réparation 1
Voir plus
Statut
En Instance 131
Enregistré / En vigueur 1 397
  1     2     3     ...     16        Prochaine page

1.

BRITTLE-BURST STRENGTH FOR WELL SYSTEM TUBULAR INTEGRITY

      
Numéro d'application 17970862
Statut En instance
Date de dépôt 2022-10-20
Date de la première publication 2024-04-25
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Liu, Zhengchun Michael
  • Samuel, Robello
  • Gonzales, Adolfo
  • Kang, Yongfeng

Abrégé

A system can receive data relating to a tubular of a well system. The system can execute a first module to determine first outputs. The system can execute a second module to determine second outputs based on the first outputs. The system can execute a third module to determine third outputs based on the first outputs. The second outputs can include a crack-initiation fracture pressure, and the third outputs can include a crack-propagation fracture pressure. The system can identify a brittle-burst strength of the tubular from among the second outputs, the third outputs, and a standard burst strength of the tubular. The system can provide the brittle-burst strength of the tubular to facilitate an adjustment to the tubular to optimize a wellbore operation associated with the well system.

Classes IPC  ?

  • E21B 47/007 - Mesure des contraintes dans le cuvelage ou la tige de forage

2.

BRITTLE-BURST STRENGTH FOR WELL SYSTEM TUBULAR INTEGRITY

      
Numéro d'application US2023030883
Numéro de publication 2024/085947
Statut Délivré - en vigueur
Date de dépôt 2023-08-23
Date de publication 2024-04-25
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Liu, Zhengchun Michael
  • Samuel, Robello
  • Gonzales, Adolfo
  • Kang, Yongfeng

Abrégé

A system can receive data relating to a tubular of a well system. The system can execute a first module to determine first outputs. The system can execute a second module to determine second outputs based on the first outputs. The system can execute a third module to determine third outputs based on the first outputs. The second outputs can include a crack-initiation fracture pressure, and the third outputs can include a crack-propagation fracture pressure. The system can identify a brittle-burst strength of the tubular from among the second outputs, the third outputs, and a standard burst strength of the tubular. The system can provide the brittle-burst strength of the tubular to facilitate an adjustment to the tubular to optimize a wellbore operation associated with the well system.

Classes IPC  ?

  • E21B 47/06 - Mesure de la température ou de la pression
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
  • E21B 43/267 - Maintien de fractures par étaiement
  • E21B 47/04 - Mesure de la profondeur ou du niveau du liquide

3.

FAULTED SEISMIC HORIZON MAPPING

      
Numéro d'application 17951250
Statut En instance
Date de dépôt 2022-09-23
Date de la première publication 2024-04-04
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Possee, Daniel James
  • Baines, Graham

Abrégé

Disclosed herein are embodiments of a method, a non-transitory computer readable medium, and an apparatus for faulted seismic horizon mapping. In one example, a method comprises: obtaining seismic data for a seismic volume that corresponds to a subsurface formation; generating a map of at least one horizon in the subsurface formation based on the seismic volume; identifying at least one fault intersecting the at least one horizon; determining a throw of the at least one fault; and updating the map of the at least one horizon to incorporate the at least one fault based on the throw of the at least one fault.

Classes IPC  ?

  • G01V 1/34 - Représentation des enregistrements sismiques
  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forage; Essais de couches; Procédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits
  • G01V 1/30 - Analyse

4.

PACK OFF INDICATOR FOR A WELLBORE OPERATION

      
Numéro d'application US2023021697
Numéro de publication 2024/072490
Statut Délivré - en vigueur
Date de dépôt 2023-05-10
Date de publication 2024-04-04
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Liu, Zhengchun Michael
  • Samuel, Robello

Abrégé

A system can generate, via a software model, downhole pressure estimations and downhole debris estimations using caving parameters. Additionally, the system can generate, via the software model, settled caving volume percent estimations using the caving parameters. The system can determine a pack off volume percent using the downhole pressure estimations, the downhole debris estimations, and the settled caving volume percent estimations. The system can output, via a user interface, the pack off indicator and a subset of the caving parameters for use in adjusting a wellbore operation. The user interface can provide a plot of the pack off volume percent horizontally offset with respect to a plot of the subset of the caving parameters and a depth of the wellbore.

Classes IPC  ?

  • E21B 47/06 - Mesure de la température ou de la pression
  • E21B 47/04 - Mesure de la profondeur ou du niveau du liquide

5.

GRAPH BASED MULTI-SURVEY HORIZON OPTIMIZATION

      
Numéro d'application 17950995
Statut En instance
Date de dépôt 2022-09-22
Date de la première publication 2024-03-28
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Possee, Daniel James
  • Baines, Graham

Abrégé

A method for processing seismic data by a seismic data system. The method comprises acquiring a plurality of first traces each corresponding to a respective first trace location. The method comprises expressing the first traces as first vertices in a first graph in which first edges connect the first vertices, wherein the first edges indicate positioning of the first vertices.

Classes IPC  ?

6.

PACK OFF INDICATOR FOR A WELLBORE OPERATION

      
Numéro d'application 17952785
Statut En instance
Date de dépôt 2022-09-26
Date de la première publication 2024-03-28
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Liu, Zhengchun Michael
  • Samuel, Robello

Abrégé

A system can generate, via a software model, downhole pressure estimations and downhole debris estimations using caving parameters. Additionally, the system can generate, via the software model, settled caving volume percent estimations using the caving parameters. The system can determine a pack off volume percent using the downhole pressure estimations, the downhole debris estimations, and the settled caving volume percent estimations. The system can output, via a user interface, the pack off indicator and a subset of the caving parameters for use in adjusting a wellbore operation. The user interface can provide a plot of the pack off volume percent horizontally offset with respect to a plot of the subset of the caving parameters and a depth of the wellbore.

Classes IPC  ?

  • E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage
  • E21B 47/04 - Mesure de la profondeur ou du niveau du liquide
  • G01V 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe

7.

FAULTED SEISMIC HORIZON MAPPING

      
Numéro d'application US2022077032
Numéro de publication 2024/063803
Statut Délivré - en vigueur
Date de dépôt 2022-09-26
Date de publication 2024-03-28
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Possee, Daniel James
  • Baines, Graham

Abrégé

Disclosed herein are embodiments of a method, a non-transitory computer readable medium, and an apparatus for faulted seismic horizon mapping. In one example, a method comprises: obtaining seismic data for a seismic volume that corresponds to a subsurface formation; generating a map of at least one horizon in the subsurface formation based on the seismic volume; identifying at least one fault intersecting the at least one horizon; determining a throw of the at least one fault; and updating the map of the at least one horizon to incorporate the at least one fault based on the throw of the at least one fault.

Classes IPC  ?

  • G01V 1/40 - Séismologie; Prospection ou détection sismique ou acoustique spécialement adaptées au carottage
  • G01V 1/28 - Traitement des données sismiques, p.ex. pour analyse, pour interprétation, pour correction

8.

GRAPH BASED MULTI-SURVEY HORIZON OPTIMIZATION

      
Numéro d'application US2023065971
Numéro de publication 2024/064424
Statut Délivré - en vigueur
Date de dépôt 2023-04-19
Date de publication 2024-03-28
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Possee, Daniel James
  • Baines, Graham

Abrégé

A method for processing seismic data by a seismic data system. The method comprises acquiring a plurality of first traces each corresponding to a respective first trace location. The method comprises expressing the first traces as first vertices in a first graph in which first edges connect the first vertices, wherein the first edges indicate positioning of the first vertices.

Classes IPC  ?

  • G01V 1/30 - Analyse
  • G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p.ex. correction de l'étalement; Etablissement d'une corrélation entre signaux sismiques; Elimination des effets produits par un excès d'énergie

9.

METHOD AND SYSTEM FOR PREDICTION AND CLASSIFICATION OF INTEGRATED VIRTUAL AND PHYSICAL SENSOR DATA

      
Numéro d'application 17766775
Statut En instance
Date de dépôt 2019-11-07
Date de la première publication 2024-03-21
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Ramsay, Travis St. George
  • Marotta, Egidio
  • Madasu, Srinath

Abrégé

The present disclosure is related to improvements in methods for evaluating and predicting responses of virtual sensors to determine formation and fluid properties as well as classifying the predicted as plausible or outlier responses that can indicate the need for maintenance of downhole physical sensors. In one aspect, a method includes detecting a change to a system of operating a wellbore to yield a determination, the system including a virtual sensor, the virtual sensor including a physical sensor placed in the wellbore for collecting one or more physical properties inside the wellbore; and based on the determination, performing one of retraining a machine learning model for predicting an output of the virtual sensor or predicting an output of the virtual sensor using the machine learning mode, the predicted output being indicative of at least one of sub-surface formation or fluid properties inside the wellbore.

Classes IPC  ?

  • E21B 49/08 - Prélèvement d'échantillons de fluides ou test des fluides dans les trous de forage ou dans les puits
  • E21B 43/16 - Procédés de récupération assistée pour l'extraction d'hydrocarbures

10.

FRICTION FOR CUTTING PLUG

      
Numéro d'application US2023065974
Numéro de publication 2024/050155
Statut Délivré - en vigueur
Date de dépôt 2023-04-19
Date de publication 2024-03-07
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Zhang, Yuan
  • Samuel, Robello
  • Liu, Zhengchun Michael

Abrégé

A method for controlling computerized operations related to a wellbore comprises drilling the wellbore in a subsurface formation with a drill string including a drill bit. The method comprises acquiring a plurality of drilling parameters while drilling the wellbore. The method comprises determining, based on the plurality of drilling parameters, solids properties for solids forming a cutting plug up hole of the drill bit. The method comprises determining a length of the cutting plug based on the solids properties. The method comprises determining a cutting plug friction force based on the cutting plug length and a pressure differential across the cutting plug. The method comprises performing a drilling operation based on the cutting plug friction force.

Classes IPC  ?

  • E21B 44/02 - Commande automatique de l'avance de l'outil
  • E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage
  • E21B 29/00 - Découpage ou destruction de tubes, packers, bouchons ou câbles, situés dans les trous de forage ou dans les puits, p.ex. découpage de tubes endommagés, de fenêtres; Déformation des tubes dans les trous de forage; Remise en état des tubages de puits sans les retirer du sol

11.

Friction for cutting plug

      
Numéro d'application 17902487
Numéro de brevet 11920455
Statut Délivré - en vigueur
Date de dépôt 2022-09-02
Date de la première publication 2024-03-05
Date d'octroi 2024-03-05
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Zhang, Yuan
  • Samuel, Robello
  • Liu, Zhengchun Michael

Abrégé

A method for controlling computerized operations related to a wellbore comprises drilling the wellbore in a subsurface formation with a drill string including a drill bit. The method comprises acquiring a plurality of drilling parameters while drilling the wellbore. The method comprises determining, based on the plurality of drilling parameters, solids properties for solids forming a cutting plug up hole of the drill bit. The method comprises determining a length of the cutting plug based on the solids properties. The method comprises determining a cutting plug friction force based on the cutting plug length and a pressure differential across the cutting plug. The method comprises performing a drilling operation based on the cutting plug friction force.

Classes IPC  ?

  • E21B 44/02 - Commande automatique de l'avance de l'outil
  • E21B 47/06 - Mesure de la température ou de la pression
  • E21B 47/08 - Mesure du diamètre ou des dimensions correspondantes des trous de forage

12.

INFERRING SUBSURFACE KNOWLEDGE FROM SUBSURFACE INFORMATION

      
Numéro d'application 18305601
Statut En instance
Date de dépôt 2023-04-24
Date de la première publication 2024-02-29
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Singh, Satyan
  • Jiang, Fan
  • Osypov, Konstantin
  • Toms, Julianna

Abrégé

A geoscience knowledge system can be obtained, where the geoscience knowledge system can include one or more of publicly available information, industry information, proprietary information, or task specific information. The geoscience knowledge system can be represented as a graph, graph data, network nodes, image data, tokenized data, or textualized data. Subsurface information can be obtained such as from seismic images or other types of sensor data. The subsurface information can be transformed or pre-processed, such as denoising, to make it suitable for use by the geoscience knowledge system. Then subsurface knowledge can be inferred from the subsurface information using the geoscience knowledge system. The subsurface knowledge can provided estimates, approximations, or value of the subterranean formation of interest in order to calculate an economic model parameter, such as a hydrocarbon distribution proximate the subterranean formation of interest.

Classes IPC  ?

13.

LEARNING HYDROCARBON DISTRIBUTION FROM SEISMIC IMAGE

      
Numéro d'application 17896748
Statut En instance
Date de dépôt 2022-08-26
Date de la première publication 2024-02-29
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Osypov, Konstantin
  • Jiang, Fan
  • Gomes, Marcelo
  • Singh, Satyan

Abrégé

The disclosure relates to determining rock properties of subterranean formations and learning the distribution of hydrocarbons in the formations. A geometrical element spread function is disclosed that quantifies distortion of the geology as seen by the geophysicists who process seismic images of the subterranean formations. A method of determining the rock properties using the seismic images and synthetic images is provided. In one example, the method includes: (1) obtaining seismic data from a subterranean formation using a seismic acquisition system, (2) generating one or more seismic images of the subterranean formation using the seismic data, (3) creating one or more synthetic images from the one or more seismic images, and (4) determining rock properties of the subterranean formation based on the one or more seismic images and the one or more synthetic images.

Classes IPC  ?

  • G01V 1/30 - Analyse
  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forage; Essais de couches; Procédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits
  • G01V 1/34 - Représentation des enregistrements sismiques

14.

INFERRING SUBSURFACE KNOWLEDGE FROM SUBSURFACE INFORMATION

      
Numéro d'application US2023019842
Numéro de publication 2024/043953
Statut Délivré - en vigueur
Date de dépôt 2023-04-25
Date de publication 2024-02-29
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Singh, Satyan
  • Jiang, Fan
  • Osypov, Konstantin
  • Toms, Julianna

Abrégé

A geoscience knowledge system can be obtained, where the geoscience knowledge system can include one or more of publicly available information, industry information, proprietary information, or task specific information. The geoscience knowledge system can be represented as a graph, graph data, network nodes, image data, tokenized data, or textualized data. Subsurface information can be obtained such as from seismic images or other types of sensor data. The subsurface information can be transformed or pre-processed, such as denoising, to make it suitable for use by the geoscience knowledge system. Then subsurface knowledge can be inferred from the subsurface information using the geoscience knowledge system. The subsurface knowledge can provided estimates, approximations, or value of the subterranean formation of interest in order to calculate an economic model parameter, such as a hydrocarbon distribution proximate the subterranean formation of interest.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06N 3/042 - Réseaux neuronaux fondés sur la connaissance; Représentations logiques de réseaux neuronaux
  • G06N 5/04 - Modèles d’inférence ou de raisonnement

15.

REAL-TIME DRILLING OPTIMIZATION IN A METAVERSE SPACE

      
Numéro d'application 17821660
Statut En instance
Date de dépôt 2022-08-23
Date de la première publication 2024-02-29
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Samuel, Robello
  • Crawshay, David James
  • Agrawal, Abhishek

Abrégé

A system can be used for optimizing a wellbore operation via a metaverse space that can include one or more avatars. The system can provide access to the metaverse space for an entity. The metaverse space can be a computer-generated representation of a location relating to a wellbore operation. The system can receive, via an avatar in the metaverse space, a query from the entity relating to the wellbore operation. The avatar can include software applications for performing tasks in the metaverse space. The system can execute, via the avatar, a request to a micro-service for at least one solution parameter based on the query. The request can cause the micro-service to generate the at least one solution parameter. The system can receive the at least one solution parameter from the micro-service. The system can output the at least one solution parameter for adjusting the wellbore operation.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06F 40/40 - Traitement ou traduction du langage naturel
  • G06T 15/00 - Rendu d'images tridimensionnelles [3D]

16.

TRAJECTORY TRACKING AND OPTIMIZATION FOR DRILLING AUTOMATION

      
Numéro d'application 17895746
Statut En instance
Date de dépôt 2022-08-25
Date de la première publication 2024-02-29
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Zhang, Shang
  • Codling, Jeremy
  • Agrawal, Abhishek
  • Samuel, Robello

Abrégé

Processes to receive user input parameters and system input parameters associated with a borehole undergoing active drilling operations to continually update drilling directions with wholistically applied optimizations to bring the actual borehole trajectory closer to the planned borehole trajectory. The processes can project ahead of the drilling assembly to determine the actual trajectory of the borehole and generate corrections to reduce the gap between the actual and planned trajectory paths. Various optimizations can be applied to the corrections to avoid overstressing systems or reducing the borehole productivity. Conflicts between optimizations can be resolved using a weighting or ranking system. More than one set of corrections can be determined and a user or a machine learning system can be used to select the one set of corrections to use as the results to be communicated and applied to the drilling operation plan or a borehole system, such as a geo-steering system.

Classes IPC  ?

  • E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage
  • E21B 7/04 - Forage dirigé

17.

TRAJECTORY TRACKING AND OPTIMIZATION FOR DRILLING AUTOMATION

      
Numéro d'application US2022041692
Numéro de publication 2024/043903
Statut Délivré - en vigueur
Date de dépôt 2022-08-26
Date de publication 2024-02-29
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Zhang, Shang
  • Codling, Jeremy
  • Agrawal, Abhishek
  • Samuel, Robello

Abrégé

Processes to receive user input parameters and system input parameters associated with a borehole undergoing active drilling operations to continually update drilling directions with wholistically applied optimizations to bring the actual borehole trajectory closer to the planned borehole trajectory. The processes can project ahead of the drilling assembly to determine the actual trajectory of the borehole and generate corrections to reduce the gap between the actual and planned trajectory paths. Various optimizations can be applied to the corrections to avoid overstressing systems or reducing the borehole productivity. Conflicts between optimizations can be resolved using a weighting or ranking system. More than one set of corrections can be determined and a user or a machine learning system can be used to select the one set of corrections to use as the results to be communicated and applied to the drilling operation plan or a borehole system, such as a geo-steering system.

Classes IPC  ?

  • E21B 47/09 - Localisation ou détermination de la position d'objets dans les trous de forage ou dans les puits; Identification des parties libres ou bloquées des tubes
  • E21B 47/04 - Mesure de la profondeur ou du niveau du liquide
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage

18.

LEARNING HYDROCARBON DISTRIBUTION FROM SEISMIC IMAGE

      
Numéro d'application US2022041773
Numéro de publication 2024/043907
Statut Délivré - en vigueur
Date de dépôt 2022-08-27
Date de publication 2024-02-29
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Osypov, Konstantin
  • Jiang, Fan
  • Gomes, Marcelo
  • Singh, Satyan

Abrégé

The disclosure relates to determining rock properties of subterranean formations and learning the distribution of hydrocarbons in the formations. A geometrical element spread function is disclosed that quantifies distortion of the geology as seen by the geophysicists who process seismic images of the subterranean formations. A method of determining the rock properties using the seismic images and synthetic images is provided. In one example, the method includes: (1) obtaining seismic data from a subterranean formation using a seismic acquisition system, (2) generating one or more seismic images of the subterranean formation using the seismic data, (3) creating one or more synthetic images from the one or more seismic images, and (4) determining rock properties of the subterranean formation based on the one or more seismic images and the one or more synthetic images.

Classes IPC  ?

  • G01V 1/46 - Acquisition des données
  • G01V 1/30 - Analyse
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage

19.

REAL-TIME DRILLING OPTIMIZATION IN A METAVERSE SPACE

      
Numéro d'application US2022075359
Numéro de publication 2024/043929
Statut Délivré - en vigueur
Date de dépôt 2022-08-23
Date de publication 2024-02-29
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Samuel, Robello
  • Crawshay, David James
  • Agrawal, Abhishek

Abrégé

A system can be used for optimizing a wellbore operation via a metaverse space that can include one or more avatars. The system can provide access to the metaverse space for an entity. The metaverse space can be a computer-generated representation of a location relating to a wellbore operation. The system can receive, via an avatar in the metaverse space, a query from the entity relating to the wellbore operation. The avatar can include software applications for performing tasks in the metaverse space. The system can execute, via the avatar, a request to a micro-service for at least one solution parameter based on the query. The request can cause the micro-service to generate the at least one solution parameter. The system can receive the at least one solution parameter from the micro-service. The system can output the at least one solution parameter for adjusting the wellbore operation.

Classes IPC  ?

  • G06Q 50/10 - Services
  • G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"
  • G06T 13/40 - Animation tridimensionnelle [3D] de personnages, p.ex. d’êtres humains, d’animaux ou d’êtres virtuels
  • G06T 19/00 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie
  • G06F 21/30 - Authentification, c. à d. détermination de l’identité ou de l’habilitation des responsables de la sécurité
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes

20.

TRIP MAP FOR ADJUSTING A TRIPPING OPERATION IN A WELLBORE

      
Numéro d'application US2022075039
Numéro de publication 2024/039397
Statut Délivré - en vigueur
Date de dépôt 2022-08-16
Date de publication 2024-02-22
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s) Samuel, Robello

Abrégé

A system can generate a trip map for adjusting a tripping operation in a wellbore. The system can receive input data from a downhole tool in a wellbore. The system can determine parameters for the tripping operation. The system can determine an overall condition for an interval of the wellbore based on the parameters. The system can determine a status for the parameters and for the overall condition based on a difference between the parameters or the overall condition and a corresponding optimized value. The system can generate a trip map using the parameters and the overall condition. The trip map can include a background shape and a polygon that can be positioned on the background shape. The polygon can include corners corresponding to the parameters and overall condition that are positioned angularly around the background. The trip map can be output to adjust the tripping operation.

Classes IPC  ?

  • G01V 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
  • G01V 3/18 - Prospection ou détection électrique ou magnétique; Mesure des caractéristiques du champ magnétique de la terre, p.ex. de la déclinaison ou de la déviation spécialement adaptée au carottage
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes

21.

ANALYZING BOREHOLE PATHS USING STRATIGRAPHIC TURNING POINTS

      
Numéro d'application US2022035661
Numéro de publication 2024/005819
Statut Délivré - en vigueur
Date de dépôt 2022-06-30
Date de publication 2024-01-04
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Butt, Alice
  • Ponomarev, Mykhailo
  • Mageroy, Einar

Abrégé

The disclosure presents processes to determine turning points in stratigraphy (TPS) which can be used to improve the representation of the borehole path in relation to layers of the subterranean formation. The TPS can be determined by analyzing each directional survey point in relation to the nearest layer of the subterranean formation. In determining which layer is the nearest layer, the process can analyze the layer type, such as conformable or unconformable, whether a fault intersects the borehole, the angle of the layer in relation to the borehole path, or whether the true stratigraphic thickness (TST) changes from one of a positive parameter or negative parameter to the other. The generated TPS can be used by a system as input or can be displayed for a user where the segmented borehole path can be aligned using the calculated TST to improve the ability of the user to analyze the representation.

Classes IPC  ?

  • G01V 1/46 - Acquisition des données
  • G01V 1/50 - Analyse des données
  • E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage
  • E21B 47/04 - Mesure de la profondeur ou du niveau du liquide

22.

Trip map for adjusting a tripping operation in a wellbore

      
Numéro d'application 17820181
Numéro de brevet 11859485
Statut Délivré - en vigueur
Date de dépôt 2022-08-16
Date de la première publication 2024-01-02
Date d'octroi 2024-01-02
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s) Samuel, Robello

Abrégé

A system can generate a trip map for adjusting a tripping operation in a wellbore. The system can receive input data from a downhole tool in a wellbore. The system can determine parameters for the tripping operation. The system can determine an overall condition for an interval of the wellbore based on the parameters. The system can determine a status for the parameters and for the overall condition based on a difference between the parameters or the overall condition and a corresponding optimized value. The system can generate a trip map using the parameters and the overall condition. The trip map can include a background shape and a polygon that can be positioned on the background shape. The polygon can include corners corresponding to the parameters and overall condition that are positioned angularly around the background. The trip map can be output to adjust the tripping operation.

Classes IPC  ?

  • E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage

23.

OPTIMIZING DRILLING PARAMETERS FOR CONTROLLING A WELLBORE DRILLING OPERATION

      
Numéro d'application US2022033578
Numéro de publication 2023/244224
Statut Délivré - en vigueur
Date de dépôt 2022-06-15
Date de publication 2023-12-21
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Agrawal, Abhishek
  • Zhang, Shang
  • Samuel, Robello

Abrégé

A system can receive input data indicating a current state of a wellbore drilling operation. The system can determine, by a set of software applications, constraints associated with the wellbore drilling operation. The system can optimize, by an optimization model and using the input data, a drilling parameter subject to the constraints associated with the wellbore drilling operation. The system can output the optimized drilling parameter for controlling the wellbore drilling operation.

Classes IPC  ?

  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forage; Essais de couches; Procédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits
  • E21B 43/30 - Disposition particulière des puits, p.ex. disposition rendant optimum l'espacement des puits
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
  • E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage

24.

DETERMINING CELL PROPERTIES FOR A GRID GENERATED FROM A GRID-LESS MODEL OF A RESERVOIR OF AN OILFIELD

      
Numéro d'application US2022033616
Numéro de publication 2023/244225
Statut Délivré - en vigueur
Date de dépôt 2022-06-15
Date de publication 2023-12-21
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s) Hassanpour, Mehran

Abrégé

A system can receive a grid-less point cloud model of a geological formation, the grid-less cloud point model that includes data points. The system can determine, by a machine-learning model for clustering data points, clusters for the data points according to a heterogeneity index. The system can determine an outline for each cluster. The system can generate a grid corresponding to the geological formation, the grid comprising a plurality of cells for each cluster of the plurality of clusters, each cluster having cell properties. The system can output the grid for the geological formation to a graphical user interface, the grid usable for executing a flow simulation at the graphical user interface.

Classes IPC  ?

  • G01V 1/40 - Séismologie; Prospection ou détection sismique ou acoustique spécialement adaptées au carottage
  • G01V 1/28 - Traitement des données sismiques, p.ex. pour analyse, pour interprétation, pour correction
  • G06N 20/00 - Apprentissage automatique
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage

25.

DETERMINING CELL PROPERTIES FOR A GRID GENERATED FROM A GRID-LESS MODEL OF A RESERVOIR OF AN OILFIELD

      
Numéro d'application 17840393
Statut En instance
Date de dépôt 2022-06-14
Date de la première publication 2023-12-14
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s) Hassanpour, Mehran

Abrégé

A system can receive a grid-less point cloud model of a geological formation, the grid-less cloud point model that includes data points. The system can determine, by a machine-learning model for clustering data points, clusters for the data points according to a heterogeneity index. The system can determine an outline for each cluster. The system can generate a grid corresponding to the geological formation, the grid comprising a plurality of cells for each cluster of the plurality of clusters, each cluster having cell properties. The system can output the grid for the geological formation to a graphical user interface, the grid usable for executing a flow simulation at the graphical user interface.

Classes IPC  ?

  • G06F 30/28 - Optimisation, vérification ou simulation de l’objet conçu utilisant la dynamique des fluides, p.ex. les équations de Navier-Stokes ou la dynamique des fluides numérique [DFN]

26.

OPTIMIZING DRILLING PARAMETERS FOR CONTROLLING A WELLBORE DRILLING OPERATION

      
Numéro d'application 17840314
Statut En instance
Date de dépôt 2022-06-14
Date de la première publication 2023-12-14
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Agrawal, Abhishek
  • Zhang, Shang
  • Samuel, Robello

Abrégé

A system can receive input data indicating a current state of a wellbore drilling operation. The system can determine, by a set of software applications, constraints associated with the wellbore drilling operation. The system can optimize, by an optimization model and using the input data, a drilling parameter subject to the constraints associated with the wellbore drilling operation. The system can output the optimized drilling parameter for controlling the wellbore drilling operation.

Classes IPC  ?

  • E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage

27.

EMISSIONS ESTIMATIONS AT A HYDROCARBON OPERATION LOCATION USING A DATA-DRIVEN APPROACH

      
Numéro d'application US2022032412
Numéro de publication 2023/239351
Statut Délivré - en vigueur
Date de dépôt 2022-06-06
Date de publication 2023-12-14
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Srivastav, Shreshth
  • Kaushik, Ashutosh
  • Hungund, Bilal

Abrégé

A system can collect a first set of equipment data and emissions data from a first hydrocarbon operation location. The system can train at least one machine-learning model to estimate an emission factor of at least one equipment component of the first hydrocarbon operation location using the first set of equipment data and the emissions data of the first hydrocarbon operation location. The system can then apply the at least one machine-learning model to a second set of equipment data to estimate total emissions over a predetermined amount of time at a second hydrocarbon operation location.

Classes IPC  ?

  • G06Q 50/26 - Services gouvernementaux ou services publics
  • G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"
  • G06N 20/00 - Apprentissage automatique
  • E21B 44/02 - Commande automatique de l'avance de l'outil

28.

EMISSIONS ESTIMATIONS AT A HYDROCARBON OPERATION LOCATION USING A DATA-DRIVEN APPROACH

      
Numéro d'application 17833873
Statut En instance
Date de dépôt 2022-06-06
Date de la première publication 2023-12-07
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Srivastav, Shreshth
  • Kaushik, Ashutosh
  • Hungund, Bilal

Abrégé

A system can collect a first set of equipment data and emissions data from a first hydrocarbon operation location. The system can train at least one machine-learning model to estimate an emission factor of at least one equipment component of the first hydrocarbon operation location using the first set of equipment data and the emissions data of the first hydrocarbon operation location. The system can then apply the at least one machine-learning model to a second set of equipment data to estimate total emissions over a predetermined amount of time at a second hydrocarbon operation location.

Classes IPC  ?

  • E21B 49/08 - Prélèvement d'échantillons de fluides ou test des fluides dans les trous de forage ou dans les puits
  • E21B 47/10 - Localisation des fuites, intrusions ou mouvements du fluide

29.

BUILDING SCALABLE GEOLOGICAL PROPERTY MODELS USING MACHINE LEARNING ALGORITHMS

      
Numéro d'application 17585441
Statut En instance
Date de dépôt 2019-12-03
Date de la première publication 2023-11-16
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Hassanpour, Mehran
  • Bardy, Gaetan
  • Shi, Genbao

Abrégé

A method of predicting rock properties at a selectable scale is provided, including receiving coordinates of locations of respective sample points, receiving measurement data associated with measurements or measurement interpretations for each sample point, receiving for each sample point a scale that indicates the scale used to obtain the measurements and/or measurement interpretations, wherein different scales are received for different sample points. A deep neural network (DNN) is trained by applying the received coordinates, measurement data, and scale associated with each sample point and associating the sample point with a rock property as a function of the coordinates, measurement data, and scale applied for the sample point. The DNN is configured to generate rock property data for a received request point having coordinates and a selectable scale, wherein the rock property data is determined for the request point as a function of the coordinates and the selectable scale.

Classes IPC  ?

  • G01V 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
  • G06N 3/091 - Apprentissage actif

30.

AUTOMATED FAULT SEGMENT GENERATION

      
Numéro d'application 17738247
Statut En instance
Date de dépôt 2022-05-06
Date de la première publication 2023-11-09
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Nguyen, Xuan Nam
  • Tufekci, Sinan
  • Jaramillo, Alejandro

Abrégé

The disclosure presents processes to automatically generate one or more set of fault segments from a fault plane pointset. The processes can identify a predominant direction and derive a set of fault segments from the fault plane pointset, where the fault segments are generated by using slices of data from the fault plane pointset that are perpendicular to the predominant direction. For each slice of data, the fault segments can be analyzed with neighboring fault segments to determine if they are overlapping. Fault segments that block or overlap other fault segments can be assigned to a different subset of fault segments from the underlying fault segments. Gaps in the fault plane pointset, and the resulting set of fault segments, can be filled in by merging neighboring fault segments above and below the gap if the neighboring fault segments satisfy a criteria for filling the gap.

Classes IPC  ?

  • E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage
  • G01V 1/30 - Analyse
  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forage; Essais de couches; Procédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits

31.

AUTOMATED FAULT SEGMENT GENERATION

      
Numéro d'application US2022028268
Numéro de publication 2023/214977
Statut Délivré - en vigueur
Date de dépôt 2022-05-09
Date de publication 2023-11-09
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Nguyen, Xuan Nam
  • Tufekci, Sina
  • Jaramillo, Alejandro

Abrégé

The disclosure presents processes to automatically generate one or more set of fault segments from a fault plane pointset. The processes can identify a predominant direction and derive a set of fault segments from the fault plane pointset, where the fault segments are generated by using slices of data from the fault plane pointset that are perpendicular to the predominant direction. For each slice of data, the fault segments can be analyzed with neighboring fault segments to determine if they are overlapping. Fault segments that block or overlap other fault segments can be assigned to a different subset of fault segments from the underlying fault segments. Gaps in the fault plane pointset, and the resulting set of fault segments, can be filled in by merging neighboring fault segments above and below the gap if the neighboring fault segments satisfy a criteria for filling the gap.

Classes IPC  ?

32.

SUSTAINABILITY RECOMMENDATIONS FOR HYDROCARBON OPERATIONS

      
Numéro d'application US2022026488
Numéro de publication 2023/211432
Statut Délivré - en vigueur
Date de dépôt 2022-04-27
Date de publication 2023-11-02
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Nielsen, Roxana Mehrabadi
  • Horbatko, Morgan Michelle
  • Rees, Emily

Abrégé

A system can receive a sustainability target for a level of assessment for a hydrocarbon operation. The system can receive actual data for an activity associated with the hydrocarbon operation. The system can generate a sustainability metric based on the actual data and one or more parameters of the activity. The system can generate, by at least one algorithm, a predicted sustainability state for the level of assessment at a subsequent point in time based on the sustainability metric, the actual data, and the one or more parameters of the activity. The system can generate a recommendation for at least one action based on the predicted sustainability state and the sustainability target for the hydrocarbon operation. The system can output the recommendation for the at least one action for adjusting the activity of the hydrocarbon operation.

Classes IPC  ?

33.

RETROFITTING EXISTING RIG HARDWARE AND PERFORMING BIT FORENSIC FOR DULL BIT GRADING THROUGH SOFTWARE

      
Numéro d'application US2022050960
Numéro de publication 2023/204852
Statut Délivré - en vigueur
Date de dépôt 2022-11-23
Date de publication 2023-10-26
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Samuel, Robello
  • Srinivasan, Nagaraj

Abrégé

The disclosure provides an automated process for determining the wear condition of a downhole tool that removes the subjectivity associated with manual observation. The automated process can advantageously evaluate a wear condition of a downhole tool using visual analytics and real-time analysis after the downhole tool has been extracted from the wellbore. An example of a method includes: (1) securing a downhole tool in a rig assembly, (2) obtaining, using sensors, surround tool data of the downhole tool in the rig assembly, wherein the surround tool data includes a first set of surround tool data obtained before a downhole operation by the downhole tool and a second set of surround tool data obtained after the downhole operation, and (3) automatically determining a wear condition of the downhole tool in real time by comparing the second set of surround tool data to the first set of surround tool data.

Classes IPC  ?

  • E21B 47/002 - Relevés dans les trous de forage ou dans les puits par inspection visuelle
  • E21B 12/02 - Indicateurs d'usure
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
  • E21B 12/06 - Dispositifs de nettoyage mécaniques
  • E21B 44/02 - Commande automatique de l'avance de l'outil

34.

FREQUENCY-DEPENDENT MACHINE LEARNING MODEL IN SEISMIC INTERPRETATION

      
Numéro d'application 17825914
Statut En instance
Date de dépôt 2022-05-26
Date de la première publication 2023-09-14
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Jiang, Fan
  • Jaramillo, Alejandro
  • Angelovich, Steven Roy

Abrégé

Frequency-dependent machine-learning (ML) models can be used to interpret seismic data. A system can apply spectral decomposition to pre-processed training data to generate frequency-dependent training data of two or more frequencies. The system can train two or more ML models using the frequency-dependent training data. Subsequent to training the two or more ML models, the system can apply the two or more ML models to seismic data to generate two or more subterranean feature probability maps. The system can perform an analysis of aleatoric uncertainty on the two or more subterranean feature probability maps to create an uncertainty map for aleatoric uncertainty. Additionally, the system can generate a filtered subterranean feature probability map based on the uncertainty map for aleatoric uncertainty.

Classes IPC  ?

  • G01V 1/34 - Représentation des enregistrements sismiques
  • G01V 1/28 - Traitement des données sismiques, p.ex. pour analyse, pour interprétation, pour correction
  • G01V 1/30 - Analyse
  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique

35.

FREQUENCY-DEPENDENT MACHINE-LEARNING MODEL IN SEISMIC INTERPRETATION

      
Numéro d'application US2022031179
Numéro de publication 2023/172278
Statut Délivré - en vigueur
Date de dépôt 2022-05-26
Date de publication 2023-09-14
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Jiang, Fan
  • Jaramillo, Alejandro
  • Angelovich, Steven Roy

Abrégé

Frequency-dependent machine-learning (ML) models can be used to interpret seismic data. A system can apply spectral decomposition to pre-processed training data to generate frequency-dependent training data of two or more frequencies. The system can train two or more ML models using the frequency-dependent training data. Subsequent to training the two or more ML models, the system can apply the two or more ML models to seismic data to generate two or more subterranean feature probability maps. The system can perform an analysis of aleatoric uncertainty on the two or more subterranean feature probability maps to create an uncertainty map for aleatoric uncertainty. Additionally, the system can generate a filtered subterranean feature probability map based on the uncertainty map for aleatoric uncertainty.

Classes IPC  ?

  • G01V 1/50 - Analyse des données
  • G01V 1/30 - Analyse
  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique
  • G06N 7/00 - Agencements informatiques fondés sur des modèles mathématiques spécifiques

36.

DETERMINING RESERVOIR HETEROGENEITY FOR OPTIMIZED DRILLING LOCATION

      
Numéro d'application US2022017732
Numéro de publication 2023/163703
Statut Délivré - en vigueur
Date de dépôt 2022-02-24
Date de publication 2023-08-31
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Davies, Andrew
  • Simmons, Michael
  • Cowliff, Lawrence
  • Kozlowski, Estanislao Nicolás

Abrégé

A system can determine a heterogeneity and a score for a reservoir for optimizing a drilling location. The system can receive a wireline log associated with a well that is positioned in a subterranean formation that includes a reservoir. The system can determine, using the wireline log, at least one statistical parameter for an interval of the well. The system can determine, using the at least one statistical parameter, a vertical heterogeneity of the reservoir. The system can determine, using the vertical heterogeneity, a score associated with the reservoir. The score can indicate an extraction difficulty and a carbon intensity of the reservoir. The system can output the score for optimizing a drilling location.

Classes IPC  ?

  • E21B 43/30 - Disposition particulière des puits, p.ex. disposition rendant optimum l'espacement des puits
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
  • E21B 47/26 - Stockage des données en fond de puits, p.ex. dans une mémoire ou sur un support d'enregistrement
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes

37.

Determining reservoir heterogeneity for optimized drilling location

      
Numéro d'application 17679996
Numéro de brevet 11905809
Statut Délivré - en vigueur
Date de dépôt 2022-02-24
Date de la première publication 2023-08-24
Date d'octroi 2024-02-20
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Davies, Andrew
  • Simmons, Michael
  • Cowliff, Lawrence
  • Kozlowski, Estanislao Nicolás

Abrégé

A system can determine a heterogeneity and a score for a reservoir for optimizing a drilling location. The system can receive a wireline log associated with a well that is positioned in a subterranean formation that includes a reservoir. The system can determine, using the wireline log, at least one statistical parameter for an interval of the well. The system can determine, using the at least one statistical parameter, a vertical heterogeneity of the reservoir. The system can determine, using the vertical heterogeneity, a score associated with the reservoir. The score can indicate an extraction difficulty and a carbon intensity of the reservoir. The system can output the score for optimizing a drilling location.

Classes IPC  ?

  • E21B 43/25 - Procédés pour activer la production
  • E21B 43/16 - Procédés de récupération assistée pour l'extraction d'hydrocarbures
  • E21B 47/003 - Détermination des volumes du puits ou trou de forage
  • E21B 47/0224 - Détermination de l'inclinaison ou de la direction du trou de forage, p.ex. à l'aide de géomagnétisme utilisant des moyens sismiques ou acoustiques
  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forage; Essais de couches; Procédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits

38.

MODELING A KARST FORMATION FOR A WELLBORE OPERATION

      
Numéro d'application 17669902
Statut En instance
Date de dépôt 2022-02-11
Date de la première publication 2023-08-17
Propriétaire
  • Landmark Graphics Corporation (USA)
  • Petróleo Brasileiro S.A. - Petrobras (Brésil)
Inventeur(s)
  • Pereira, Marcio Rogerio Spinola
  • Renaut, Erwan Yann
  • Cazarin, Caroline Lessio
  • Santos, Luiz Eduardo Pinheiro
  • Quadros, Franco Borges

Abrégé

A system can model a karst formation for controlling a wellbore operation. The system can receive first input data that includes a set of fracture properties in a fracture network of a subterranean formation. The system can receive second input data that includes a set of point sets from a fracture geometry of the fracture network. The system can generate a set of fracture skeletons from the first input data and the second input data. The system can model a karst feature based on the plurality of fracture skeletons. The system can output the karst feature for controlling a wellbore operation.

Classes IPC  ?

39.

MODELING A KARST FORMATION FOR A WELLBORE OPERATION

      
Numéro d'application US2022016178
Numéro de publication 2023/154055
Statut Délivré - en vigueur
Date de dépôt 2022-02-11
Date de publication 2023-08-17
Propriétaire
  • LANDMARK GRAPHICS CORPORATION (USA)
  • PETRÓLEO BRASILEIRO S.A. - PETROBRAS (Brésil)
Inventeur(s)
  • Pereira, Marcio Rogerio Spinola
  • Renaut, Erwan Yann
  • Cazarin, Caroline Lessio
  • Santos, Luiz Eduardo Pinheiro
  • Quadros, Franco Borges

Abrégé

A system can model a karst formation for controlling a wellbore operation. The system can receive first input data that includes a set of fracture properties in a fracture network of a subterranean formation. The system can receive second input data that includes a set of point sets from a fracture geometry of the fracture network. The system can generate a set of fracture skeletons from the first input data and the second input data. The system can model a karst feature based on the plurality of fracture skeletons. The system can output the karst feature for controlling a wellbore operation.

Classes IPC  ?

  • E21B 43/30 - Disposition particulière des puits, p.ex. disposition rendant optimum l'espacement des puits
  • E21B 43/267 - Maintien de fractures par étaiement
  • E21B 47/26 - Stockage des données en fond de puits, p.ex. dans une mémoire ou sur un support d'enregistrement

40.

ADVANCED TUBULAR DESIGN METHODOLOGY WITH HIGH TEMPERATURE GEOTHERMAL AND OIL/GAS CYCLIC THERMAL LOADING EFFECT

      
Numéro d'application 17592989
Statut En instance
Date de dépôt 2022-02-04
Date de la première publication 2023-08-10
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Kang, Yongfeng
  • Samuel, Robello
  • Kumar, Vagish

Abrégé

The disclosure addresses the existing gap in tubular designs and monitoring of tubulars in wellbores by considering high temperature, cyclic thermal loading effects. An example method of designing tubular for use in a well is provided that includes: (1) receiving a well configuration for a well and at least one type of well operation for the well, (2) receiving a selection of a tubular for use in the well, (3) generating a temperature history and a pressure history for the well using the well configuration, the selection of the tubular, the at least one type of well operation, and one or more simulators, and (4) determining, using the temperature history and the pressure history, a derated strength of the tubular based on one or more effects of high temperature, cyclic thermal loadings on the tubular.

Classes IPC  ?

  • G06F 30/18 - Conception de réseaux, p.ex. conception basée sur les aspects topologiques ou d’interconnexion des systèmes d’approvisionnement en eau, électricité ou gaz, de tuyauterie, de chauffage, ventilation et climatisation [CVC], ou de systèmes de câblage
  • E21B 47/07 - Température
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes

41.

ADVANCED TUBULAR DESIGN METHODOLOGY WITH HIGH TEMPERATURE GEOTHERMAL AND OIL/GAS CYCLIC THERMAL LOADING EFFECT

      
Numéro d'application US2022015416
Numéro de publication 2023/149901
Statut Délivré - en vigueur
Date de dépôt 2022-02-07
Date de publication 2023-08-10
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Kang, Yongfeng
  • Samuel, Robello
  • Kumar, Vagish

Abrégé

The disclosure addresses the existing gap in tubular designs and monitoring of tubulars in wellbores by considering high temperature, cyclic thermal loading effects. An example method of designing tubular for use in a well is provided that includes: (1) receiving a well configuration for a well and at least one type of well operation for the well, (2) receiving a selection of a tubular for use in the well, (3) generating a temperature history and a pressure history for the well using the well configuration, the selection of the tubular, the at least one type of well operation, and one or more simulators, and (4) determining, using the temperature history and the pressure history, a derated strength of the tubular based on one or more effects of high temperature, cyclic thermal loadings on the tubular.

Classes IPC  ?

  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • E21B 47/06 - Mesure de la température ou de la pression
  • E21B 47/007 - Mesure des contraintes dans le cuvelage ou la tige de forage

42.

RESERVOIR TURNING BANDS SIMULATION WITH DISTRIBUTED COMPUTING

      
Numéro d'application 17646705
Statut En instance
Date de dépôt 2021-12-31
Date de la première publication 2023-07-06
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Shi, Genbao
  • Ranzinger, Kurt Alan

Abrégé

Some implementations relate to a method for parallelizing, by a geological data system, operations of a geostatistical simulation for a well data set via a plurality of processing elements (PEs). The method may include determining a reservoir area for the well data set. The method may include determining a set of turning band lines for the reservoir area. The method may include dividing the reservoir area into a plurality of tiles, each tile including a respective subset of the set of turning band lines. The method may include assigning at least one of the tiles to each of the PEs. The method may include determining, in parallel for each tile, intermediate results with respect to each respective subset of turning band lines. The method may include aggregating the intermediate results to form a final result of the geostatistical simulation.

Classes IPC  ?

  • G01V 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu

43.

RESERVOIR TURNING BANDS SIMULATION WITH DISTRIBUTED COMPUTING

      
Numéro d'application US2021073209
Numéro de publication 2023/129185
Statut Délivré - en vigueur
Date de dépôt 2021-12-31
Date de publication 2023-07-06
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Shi, Genbao
  • Ranzinger, Kurt Alan

Abrégé

Some implementations relate to a method for parallelizing, by a geological data system, operations of a geostatistical simulation for a well data set via a plurality of processing elements (PEs). The method may include determining a reservoir area for the well data set. The method may include determining a set of turning band lines for the reservoir area. The method may include dividing the reservoir area into a plurality of tiles, each tile including a respective subset of the set of turning band lines. The method may include assigning at least one of the tiles to each of the PEs. The method may include determining, in parallel for each tile, intermediate results with respect to each respective subset of turning band lines. The method may include aggregating the intermediate results to form a final result of the geostatistical simulation.

Classes IPC  ?

  • G01V 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
  • G01V 1/28 - Traitement des données sismiques, p.ex. pour analyse, pour interprétation, pour correction
  • G01V 1/30 - Analyse

44.

MACHINE LEARNING ASSISTED PARAMETER MATCHING AND PRODUCTION FORECASTING FOR NEW WELLS

      
Numéro d'application US2021064335
Numéro de publication 2023/121641
Statut Délivré - en vigueur
Date de dépôt 2021-12-20
Date de publication 2023-06-29
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Bansal, Yogesh
  • Mijares, Gerardo

Abrégé

Systems and methods for machine learning (ML) assisted parameter matching are disclosed. Wellsite data is acquired for one or more existing production wells in a hydrocarbon producing field. The wellsite data is transformed into one or more model data sets for predictive modeling. A first ML model is trained to predict well logs for the existing production well(s), based on the model data set(s). A first well model is generated to estimate production of the existing production well(s) based on the predicted well logs. Parameters of the first well model are tuned based on a comparison between the estimated and an actual production of the existing production well(s). A second ML model is trained to predict parameters of a second well model for a new production well, based on the tuned parameters of the first well model. The new well's production is forecasted using the second ML model.

Classes IPC  ?

  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique

45.

MACHINE LEARNING ASSISTED COMPLETION DESIGN FOR NEW WELLS

      
Numéro d'application 17560982
Statut En instance
Date de dépôt 2021-12-23
Date de la première publication 2023-06-29
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Bansal, Yogesh
  • Mijares, Gerardo

Abrégé

Systems and methods for completion design are disclosed. Wellsite data is acquired for one or more existing production wells. The wellsite data is transformed into model data sets for training a first machine learning (ML) model to predict well logs. A first well model uses the well logs to estimate production of the existing well(s). Parameters of the first well model are tuned based on a comparison between the estimated and actual production of the existing well(s). A second ML model is trained to predict parameters of a second well model for a new well, based on the tuned parameters of the first well model. The new well's production is forecasted using the second ML model. Completion costs for the new well are estimated based on the well's completion design parameters and the forecasted production. Completion design parameters are adjusted, based on the estimated completion costs and the forecasted production.

Classes IPC  ?

  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p.ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
  • G06F 30/13 - Conception architecturale, p.ex. conception architecturale assistée par ordinateur [CAAO] relative à la conception de bâtiments, de ponts, de paysages, d’usines ou de routes
  • E21B 47/00 - Relevés dans les trous de forage ou dans les puits
  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forage; Essais de couches; Procédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits

46.

RECOMMENDATION ENGINE FOR AUTOMATED SEISMIC PROCESSING

      
Numéro d'application US2021064555
Numéro de publication 2023/121654
Statut Délivré - en vigueur
Date de dépôt 2021-12-21
Date de publication 2023-06-29
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Angelovich, Steven
  • Bhardwaj, Manisha

Abrégé

System and methods for automated seismic processing are provided. Historical seismic project data associated with one or more historical seismic projects is obtained from a data store. The historical seismic project data is transformed into seismic workflow model data. At least one seismic workflow model is generated using the seismic workflow model data. Responsive to receiving seismic data for a new seismic project, an optimized workflow for processing the received seismic data is determined based on the at least one generated seismic workflow model. Geophysical parameters for processing the seismic data with the optimized workflow are selected. The seismic data for the new seismic project is processed using the optimized workflow and the selected geophysical parameters.

Classes IPC  ?

  • G01V 1/28 - Traitement des données sismiques, p.ex. pour analyse, pour interprétation, pour correction
  • G01V 1/24 - Enregistrement des données sismiques
  • G01V 1/30 - Analyse
  • G01V 1/00 - Séismologie; Prospection ou détection sismique ou acoustique

47.

MACHINE LEARNING ASSISTED COMPLETION DESIGN FOR NEW WELLS

      
Numéro d'application US2021065094
Numéro de publication 2023/121672
Statut Délivré - en vigueur
Date de dépôt 2021-12-23
Date de publication 2023-06-29
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Bansal, Yogesh
  • Mijares, Gerardo

Abrégé

Systems and methods for completion design are disclosed. Wellsite data is acquired for one or more existing production wells. The wellsite data is transformed into model data sets for training a first machine learning (ML) model to predict well logs. A first well model uses the well logs to estimate production of the existing well(s). Parameters of the first well model are tuned based on a comparison between the estimated and actual production of the existing well(s). A second ML model is trained to predict parameters of a second well model for a new well, based on the tuned parameters of the first well model. The new well's production is forecasted using the second ML model. Completion costs for the new well are estimated based on the well's completion design parameters and the forecasted production. Completion design parameters are adjusted, based on the estimated completion costs and the forecasted production.

Classes IPC  ?

  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
  • E21B 47/008 - Surveillance des systèmes de pompe de fond de trou, p.ex. pour la détection de conditions appelées "cognement sur le fluide"
  • E21B 43/16 - Procédés de récupération assistée pour l'extraction d'hydrocarbures
  • G06N 20/00 - Apprentissage automatique

48.

SEISMIC NAVIGATION DATA QUALITY ANALYSIS

      
Numéro d'application 17553091
Statut En instance
Date de dépôt 2021-12-16
Date de la première publication 2023-06-22
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Roy, Samiran
  • Srivastav, Shreshth
  • Mandapaka, Bhaskar
  • Priyadarshy, Satyam

Abrégé

The disclosure presents processes to select cartographic reference system (CRS) recommendations from a CRS model where the CRS recommendations are matched to received seismic data. A learning mode can be used to build the CRS model where seismic data is matched to CRS. The learning mode can be automated using natural language processing system to parse the meta data for the seismic data, such as the name, area, or code, or label. The CRS model can be updated using an output from a user system, such as when a user manually matches a CRS to seismic data. The matched seismic data to CRS, e.g., seismic data-CRS match, can be used as input to a user system or a computing system, such as a borehole operation system.

Classes IPC  ?

  • G01V 1/30 - Analyse
  • G06N 20/00 - Apprentissage automatique
  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forage; Essais de couches; Procédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits

49.

DETERMINING PARAMETERS FOR A WELLBORE OPERATION BASED ON RESONANCE SPEEDS OF DRILLING EQUIPMENT

      
Numéro d'application 17553738
Statut En instance
Date de dépôt 2021-12-16
Date de la première publication 2023-06-22
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Kumar, Swaminathan Kiran
  • Samuel, Robello

Abrégé

Drilling parameters for a wellbore operation can be determined based on resonance speeds. For example, a system can receive real-time data for a drilling operation that is concurrently occurring with receiving the real-time data. The system can determine, for a drilling depth, a rotations-per-minute (RPM) value corresponding to a resonance speed based on a weight-on-bit (WOB) value and the real-time data. The system can generate a plot of the WOB value and the RPM value corresponding to the resonance speed. The system can determine drilling parameters for the drilling operation based on the plot. The drilling parameters can exclude, for the WOB value, the RPM value corresponding to the resonance speed.

Classes IPC  ?

  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
  • E21B 45/00 - Mesure du temps de forage ou de la vitesse de pénétration

50.

Recommendation engine for automated seismic processing

      
Numéro d'application 17557287
Numéro de brevet 11782177
Statut Délivré - en vigueur
Date de dépôt 2021-12-21
Date de la première publication 2023-06-22
Date d'octroi 2023-10-10
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Angelovich, Steven
  • Bhardwaj, Manisha

Abrégé

System and methods for automated seismic processing are provided. Historical seismic project data associated with one or more historical seismic projects is obtained from a data store. The historical seismic project data is transformed into seismic workflow model data. At least one seismic workflow model is generated using the seismic workflow model data. Responsive to receiving seismic data for a new seismic project, an optimized workflow for processing the received seismic data is determined based on the at least one generated seismic workflow model. Geophysical parameters for processing the seismic data with the optimized workflow are selected. The seismic data for the new seismic project is processed using the optimized workflow and the selected geophysical parameters.

Classes IPC  ?

  • G01V 1/32 - Transformation d'un mode d'enregistrement en un autre
  • G01V 1/28 - Traitement des données sismiques, p.ex. pour analyse, pour interprétation, pour correction
  • G01V 1/30 - Analyse

51.

DETERMINING PARAMETERS FOR A WELLBORE OPERATION BASED ON RESONANCE SPEEDS OF DRILLING EQUIPMENT

      
Numéro d'application US2021063924
Numéro de publication 2023/113808
Statut Délivré - en vigueur
Date de dépôt 2021-12-16
Date de publication 2023-06-22
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Kumar, Swaminathan Kiran
  • Samuel, Robello

Abrégé

Drilling parameters for a wellbore operation can be determined based on resonance speeds. For example, a system can receive real-time data for a drilling operation that is concurrently occurring with receiving the real-time data. The system can determine, for a drilling depth, a rotations-per-minute (RPM) value corresponding to a resonance speed based on a weight-on-bit (WOB) value and the real-time data. The system can generate a plot of the WOB value and the RPM value corresponding to the resonance speed. The system can determine drilling parameters for the drilling operation based on the plot. The drilling parameters can exclude, for the WOB value, the RPM value corresponding to the resonance speed.

Classes IPC  ?

  • E21B 47/04 - Mesure de la profondeur ou du niveau du liquide
  • E21B 47/26 - Stockage des données en fond de puits, p.ex. dans une mémoire ou sur un support d'enregistrement
  • E21B 44/04 - Commande automatique de l'avance de l'outil en réponse au couple fourni par le moyen d'entraînement
  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forage; Essais de couches; Procédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits

52.

SEISMIC NAVIGATION DATA QUALITY ANALYSIS

      
Numéro d'application US2021064026
Numéro de publication 2023/113814
Statut Délivré - en vigueur
Date de dépôt 2021-12-17
Date de publication 2023-06-22
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Roy, Samiran
  • Srivastav, Shreshth
  • Mandapaka, Bhaskar
  • Priyadarshy, Satyam

Abrégé

The disclosure presents processes to select cartographic reference system (CRS) recommendations from a CRS model where the CRS recommendations are matched to received seismic data. A learning mode can be used to build the CRS model where seismic data is matched to CRS. The learning mode can be automated using natural language processing system to parse the meta data for the seismic data, such as the name, area, or code, or label. The CRS model can be updated using an output from a user system, such as when a user manually matches a CRS to seismic data. The matched seismic data to CRS, e.g., seismic data-CRS match, can be used as input to a user system or a computing system, such as a borehole operation system.

Classes IPC  ?

  • G01V 1/30 - Analyse
  • G01V 1/00 - Séismologie; Prospection ou détection sismique ou acoustique
  • G01V 1/28 - Traitement des données sismiques, p.ex. pour analyse, pour interprétation, pour correction
  • G01V 1/34 - Représentation des enregistrements sismiques
  • G06N 20/00 - Apprentissage automatique

53.

SCORING A FINAL RISK FOR IDENTIFIED BOREHOLE DESIGN CONCEPTS

      
Numéro d'application 17553219
Statut En instance
Date de dépôt 2021-12-16
Date de la première publication 2023-06-22
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Parra, Margareth Gibbons
  • Gonzales, Adolfo
  • Chaudhari, Nitish Damodar
  • Tirado, Gabriel

Abrégé

The disclosure presents processes for evaluating a borehole design against one or more identified risks. The processes can determine borehole design concepts for the borehole design. Each borehole design concept can have multiple risks assigned, which can be selected from a library of risks, a risk matrix or template, a risk model, or user entered risks. The risks can be scored using one or more statistics-based algorithms, such as a sum, an average, a mean, or other algorithms. The risks can be grouped by a risk level, forming a sub-risk score for each risk level for each borehole design concept. A final risk score can be generated using the sub-risk scores for the borehole design. More than one borehole design can be evaluated using a risk tolerance parameter and the borehole design that satisfies the risk tolerance parameter can be selected as the recommended borehole design.

Classes IPC  ?

  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p.ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage

54.

MACHINE LEARNING ASSISTED PARAMETER MATCHING AND PRODUCTION FORECASTING FOR NEW WELLS

      
Numéro d'application 17556092
Statut En instance
Date de dépôt 2021-12-20
Date de la première publication 2023-06-22
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Bansal, Yogesh
  • Mijares, Gerardo

Abrégé

Systems and methods for machine learning (ML) assisted parameter matching are disclosed. Wellsite data is acquired for one or more existing production wells in a hydrocarbon producing field. The wellsite data is transformed into one or more model data sets for predictive modeling. A first ML model is trained to predict well logs for the existing production well(s), based on the model data set(s). A first well model is generated to estimate production of the existing production well(s) based on the predicted well logs. Parameters of the first well model are tuned based on a comparison between the estimated and an actual production of the existing production well(s). A second ML model is trained to predict parameters of a second well model for a new production well, based on the tuned parameters of the first well model. The new well’s production is forecasted using the second ML model.

Classes IPC  ?

  • E21B 49/08 - Prélèvement d'échantillons de fluides ou test des fluides dans les trous de forage ou dans les puits
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage

55.

SCORING A FINAL RISK FOR IDENTIFIED BOREHOLE DESIGN CONCEPTS

      
Numéro d'application US2021064031
Numéro de publication 2023/113815
Statut Délivré - en vigueur
Date de dépôt 2021-12-17
Date de publication 2023-06-22
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Parra, Margareth Gibbons
  • Gonzales, Adolfo
  • Chaudhari, Nitish Damodar
  • Tirado, Gabriel

Abrégé

The disclosure presents processes for evaluating a borehole design against one or more identified risks. The processes can determine borehole design concepts for the borehole design. Each borehole design concept can have multiple risks assigned, which can be selected from a library of risks, a risk matrix or template, a risk model, or user entered risks. The risks can be scored using one or more statistics-based algorithms, such as a sum, an average, a mean, or other algorithms. The risks can be grouped by a risk level, forming a sub-risk score for each risk level for each borehole design concept. A final risk score can be generated using the sub-risk scores for the borehole design. More than one borehole design can be evaluated using a risk tolerance parameter and the borehole design that satisfies the risk tolerance parameter can be selected as the recommended borehole design.

Classes IPC  ?

  • E21B 43/30 - Disposition particulière des puits, p.ex. disposition rendant optimum l'espacement des puits
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • G06N 20/00 - Apprentissage automatique

56.

INTEGRATED SURVEILLANCE AND CONTROL

      
Numéro d'application 18106882
Statut En instance
Date de dépôt 2023-02-07
Date de la première publication 2023-06-15
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Rangarajan, Keshava
  • Winston, Joseph Blake
  • Jain, Anuj
  • Wang, Xi

Abrégé

A method of managing oilfield activity with a control system is provided having a plurality of virtual sensors and integrating the virtual sensors into a virtual sensor network. The method includes determining interdependencies among the virtual sensors, obtaining operational information from the virtual sensors, and providing virtual sensor output to the control system based on the determined interdependencies and the operational information.

Classes IPC  ?

  • E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 20/00 - Apprentissage automatique
  • H04L 67/125 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p.ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance en impliquant la commande des applications des terminaux par un réseau
  • G05B 13/04 - Systèmes de commande adaptatifs, c. à d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques impliquant l'usage de modèles ou de simulateurs
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
  • G05B 13/02 - Systèmes de commande adaptatifs, c. à d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques

57.

RANDOM NOISE ATTENUATION FOR SEISMIC DATA

      
Numéro d'application US2021059438
Numéro de publication 2023/091124
Statut Délivré - en vigueur
Date de dépôt 2021-11-16
Date de publication 2023-05-25
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Singh, Satyan
  • Norlund, Philip
  • Sanchez Rodriguez, Adrian
  • Wolfe, Eugene
  • Angelovich, Steven

Abrégé

System and methods of random noise attenuation are provided. A first model may be trained to extract random noise from seismic datasets. A second model may be trained to reconstruct leaked signals from the random noise extracted by the first model. A seismic dataset corresponding to a subsurface reservoir formation and including random noise may be obtained. Using the trained first model, at least a portion of the random noise may be extracted from the first seismic dataset. Using the trained second model, a leaked signal, which includes a portion of the seismic dataset, may be reconstructed from the extracted random noise. A cleaned seismic dataset is generated based on the reconstructed leaked signal and the extracted random noise. The cleaned seismic dataset may include a quantity of random noise that is less than that of the original seismic dataset.

Classes IPC  ?

  • G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p.ex. correction de l'étalement; Etablissement d'une corrélation entre signaux sismiques; Elimination des effets produits par un excès d'énergie
  • G01V 1/30 - Analyse

58.

DYNAMIC FILTER FOR SMOOTHING VELOCITY MODEL FOR DOMAIN-CONVERTING SEISMIC DATA

      
Numéro d'application US2021058672
Numéro de publication 2023/086077
Statut Délivré - en vigueur
Date de dépôt 2021-11-09
Date de publication 2023-05-19
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s) Fink, William

Abrégé

A system can be provided for applying a dynamic filter to a velocity model for converting the domain of seismic data. The system can receive a velocity model for a geological area of interest. The system can apply a dynamic filter to the velocity model for smoothing an anomaly included in the velocity model. The system can apply the velocity model with the smoothed anomaly to seismic data associated with the geological area of interest for converting the domain of the seismic data.

Classes IPC  ?

  • G01V 1/30 - Analyse
  • G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p.ex. correction de l'étalement; Etablissement d'une corrélation entre signaux sismiques; Elimination des effets produits par un excès d'énergie
  • E21B 47/26 - Stockage des données en fond de puits, p.ex. dans une mémoire ou sur un support d'enregistrement

59.

RANDOM NOISE ATTENUATION FOR SEISMIC DATA

      
Numéro d'application 17527245
Statut En instance
Date de dépôt 2021-11-16
Date de la première publication 2023-05-18
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Singh, Satyan
  • Norlund, Philip
  • Sanchez Rodriguez, Adrian
  • Wolfe, Eugene
  • Angelovich, Steven

Abrégé

System and methods of random noise attenuation are provided. A first model may be trained to extract random noise from seismic datasets. A second model may be trained to reconstruct leaked signals from the random noise extracted by the first model. A seismic dataset corresponding to a subsurface reservoir formation and including random noise may be obtained. Using the trained first model, at least a portion of the random noise may be extracted from the first seismic dataset. Using the trained second model, a leaked signal, which includes a portion of the seismic dataset, may be reconstructed from the extracted random noise. A cleaned seismic dataset is generated based on the reconstructed leaked signal and the extracted random noise. The cleaned seismic dataset may include a quantity of random noise that is less than that of the original seismic dataset.

Classes IPC  ?

  • G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p.ex. correction de l'étalement; Etablissement d'une corrélation entre signaux sismiques; Elimination des effets produits par un excès d'énergie
  • G01V 1/28 - Traitement des données sismiques, p.ex. pour analyse, pour interprétation, pour correction

60.

Dynamic filter for smoothing velocity model for domain-converting seismic data

      
Numéro d'application 17522839
Numéro de brevet 11940581
Statut Délivré - en vigueur
Date de dépôt 2021-11-09
Date de la première publication 2023-05-11
Date d'octroi 2024-03-26
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s) Fink, William

Abrégé

A system can be provided for applying a dynamic filter to a velocity model for converting the domain of seismic data. The system can receive a velocity model for a geological area of interest. The system can apply a dynamic filter to the velocity model for smoothing an anomaly included in the velocity model. The system can apply the velocity model with the smoothed anomaly to seismic data associated with the geological area of interest for converting the domain of the seismic data.

Classes IPC  ?

  • G01V 1/32 - Transformation d'un mode d'enregistrement en un autre
  • G01V 1/28 - Traitement des données sismiques, p.ex. pour analyse, pour interprétation, pour correction
  • G01V 1/30 - Analyse

61.

DETERMINING FAULT SURFACES FROM FAULT ATTRIBUTE VOLUMES

      
Numéro d'application US2021055607
Numéro de publication 2023/069080
Statut Délivré - en vigueur
Date de dépôt 2021-10-19
Date de publication 2023-04-27
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Nguyen, Xuan Nam
  • Jaramillo, Alejandro

Abrégé

Hydrocarbon exploration and extraction can be facilitated by determining fault surfaces from fault attribute volumes. For example, a system described herein can receive a fault attribute volume for faults in a subterranean formation determined using seismic data. The fault attribute volume may include multiple traces with trace locations. The system can determine a set of fault samples for each trace location. Each fault sample can include fault attributes such as a depth value, an amplitude value, and a vertical thickness value. The system can determine additional fault attributes such as a dip value and an azimuth value for each fault sample of each trace location. The system can determine fault surfaces for the faults using the fault samples and fault attributes. The system can then output the fault surfaces for use in a hydrocarbon extraction operation.

Classes IPC  ?

  • G01V 1/30 - Analyse
  • G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p.ex. correction de l'étalement; Etablissement d'une corrélation entre signaux sismiques; Elimination des effets produits par un excès d'énergie
  • G01V 1/40 - Séismologie; Prospection ou détection sismique ou acoustique spécialement adaptées au carottage

62.

Determining fault surfaces from fault attribute volumes

      
Numéro d'application 17505033
Numéro de brevet 11965997
Statut Délivré - en vigueur
Date de dépôt 2021-10-19
Date de la première publication 2023-04-20
Date d'octroi 2024-04-23
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Nguyen, Xuan Nam
  • Jaramillo, Alejandro

Abrégé

Hydrocarbon exploration and extraction can be facilitated by determining fault surfaces from fault attribute volumes. For example, a system described herein can receive a fault attribute volume for faults in a subterranean formation determined using seismic data. The fault attribute volume may include multiple traces with trace locations. The system can determine a set of fault samples for each trace location. Each fault sample can include fault attributes such as a depth value, an amplitude value, and a vertical thickness value. The system can determine additional fault attributes such as a dip value and an azimuth value for each fault sample of each trace location. The system can determine fault surfaces for the faults using the fault samples and fault attributes. The system can then output the fault surfaces for use in a hydrocarbon extraction operation.

Classes IPC  ?

63.

TECHNIQUES FOR EXTRACTION OF VECTORIZED CONTENT OF AN OIL AND GAS PLAY WITHIN AN UNSTRUCTURED FILE

      
Numéro d'application 17047272
Statut En instance
Date de dépôt 2020-01-14
Date de la première publication 2023-04-20
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Fletcher, Ian A.
  • Slidel, Daniel James David
  • Ivko, Benjamin Patrick

Abrégé

A method includes retrieving an unstructured document and defining an area of interest of the unstructured document that visually represents geological formation information. The method also includes extracting a set of vectorized polygons from the area of interest. Additionally, the method includes assigning properties from the unstructured document to each of the vectorized polygons in the set of vectorized polygons. Further, the method includes assigning a coordinate reference frame to the set of vectorized polygons and generating a user-interactive document from the set of vectorized polygons.

Classes IPC  ?

  • G06F 40/166 - Traitement de texte Édition, p.ex. insertion ou suppression
  • G06V 30/422 - Dessins techniques; Cartes géographiques
  • G06V 10/25 - Détermination d’une région d’intérêt [ROI] ou d’un volume d’intérêt [VOI]
  • G06V 10/44 - Extraction de caractéristiques locales par analyse des parties du motif, p.ex. par détection d’arêtes, de contours, de boucles, d’angles, de barres ou d’intersections; Analyse de connectivité, p.ex. de composantes connectées
  • G06F 16/93 - Systèmes de gestion de documents
  • G06F 40/151 - Transformation

64.

ACTIVE REINFORCEMENT LEARNING FOR DRILLING OPTIMIZATION AND AUTOMATION

      
Numéro d'application 17047109
Statut En instance
Date de dépôt 2020-06-05
Date de la première publication 2023-04-13
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Saidutta, Yashas Malur
  • Pandya, Raja Vikram R
  • Madasu, Srinath
  • Dande, Shashi
  • Rangarajan, Keshava

Abrégé

Systems and methods for automated drilling control and optimization are disclosed. Training data, including values of drilling parameters, for a current stage of a drilling operation are acquired. A reinforcement learning model is trained to estimate values of the drilling parameters for a subsequent stage of the drilling operation to be performed, based on the acquired training data and a reward policy mapping inputs and outputs of the model. The subsequent stage of the drilling operation is performed based on the values of the drilling parameters estimated using the trained model. A difference between the estimated and actual values of the drilling parameters is calculated, based on real-time data acquired during the subsequent stage of the drilling operation. The reinforcement learning model is retrained to refine the reward policy, based on the calculated difference. At least one additional stage of the drilling operation is performed using the retrained model.

Classes IPC  ?

  • E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage
  • G06N 3/092 - Apprentissage par renforcement

65.

Determining characteristics of fluid loss in a wellbore

      
Numéro d'application 17497155
Numéro de brevet 11629562
Statut Délivré - en vigueur
Date de dépôt 2021-10-08
Date de la première publication 2023-04-13
Date d'octroi 2023-04-18
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Samuel, Robello
  • Adari, Rishi

Abrégé

A system can provide for determining characteristics loss in a wellbore. The system can include a processor and a non-transitory memory with instructions that are executable by the processor for causing the processor to execute operations. The operations can include receiving, from sensors in a wellbore, data corresponding to loss indicators. The operations can include determining a loss probability for each loss indicator. The operations can include determining a total loss probability of fluid loss in the wellbore based on the loss probabilities. The operations can include outputting the total loss probability to be used in a drilling operation in the wellbore.

Classes IPC  ?

  • E21B 21/08 - Commande ou surveillance de la pression ou de l'écoulement du fluide de forage, p.ex. remplissage automatique des trous de forage, commande automatique de la pression au fond
  • E21B 21/00 - Procédés ou appareils pour nettoyer les trous de forage par jet de fluide, p.ex. en utilisant l'air d'échappement du moteur
  • E21B 47/117 - Détection de fuites, p.ex. du tubage, par test de pression
  • E21B 43/26 - Procédés pour activer la production par formation de crevasses ou de fractures

66.

DETERMINING CHARACTERISTICS OF FLUID LOSS IN A WELLBORE

      
Numéro d'application US2021057085
Numéro de publication 2023/059345
Statut Délivré - en vigueur
Date de dépôt 2021-10-28
Date de publication 2023-04-13
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Samuel, Robello
  • Adari, Rishi

Abrégé

A system can provide for determining characteristics loss in a wellbore. The system can include a processor and a non-transitory memory with instructions that are executable by the processor for causing the processor to execute operations. The operations can include receiving, from sensors in a wellbore, data corresponding to loss indicators. The operations can include determining a loss probability for each loss indicator. The operations can include determining a total loss probability of fluid loss in the wellbore based on the loss probabilities. The operations can include outputting the total loss probability to be used in a drilling operation in the wellbore.

Classes IPC  ?

  • E21B 47/10 - Localisation des fuites, intrusions ou mouvements du fluide
  • E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage
  • E21B 43/26 - Procédés pour activer la production par formation de crevasses ou de fractures
  • E21B 47/06 - Mesure de la température ou de la pression

67.

COMBINED SOFT AND STIFF-STRING TORQUE AND DRAG MODEL

      
Numéro d'application 17054432
Statut En instance
Date de dépôt 2020-01-02
Date de la première publication 2023-03-30
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Samuel, Robello
  • Zhang, Yuan

Abrégé

Aspects of the disclosed technology provide techniques for determining frictional forces bearing on a downhole drill string. In some implementations, a method of the disclosed technology can include steps for segmenting a plurality of continuous nodes of the drilling string into a first segment and a second segment, computing a first set of values corresponding with one or more nodes in the first segment using a first model, computing a second set of values corresponding with one or more nodes in the second segment using a second model, and determining a torque of the drill string based on the first set of values and the second set of values. In some aspects, the method can further include steps for determining a drag force on the drill string based on the first set of values and the second set of values. Systems and machine-readable media are also provided.

Classes IPC  ?

  • E21B 47/007 - Mesure des contraintes dans le cuvelage ou la tige de forage
  • E21B 44/04 - Commande automatique de l'avance de l'outil en réponse au couple fourni par le moyen d'entraînement
  • E21B 7/06 - Modification de la direction du trou de forage

68.

PHYSICAL PARAMETER PROJECTION FOR WELLBORE DRILLING

      
Numéro d'application 17054629
Statut En instance
Date de dépôt 2020-03-26
Date de la première publication 2023-03-30
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Wesley, Avinash
  • Samuel, Robello
  • Mittal, Manish K.

Abrégé

Aspects and features of this disclosure relate to projecting physical drilling parameters to control a drilling operation. A computing system applies Bayesian optimization to a model incorporating the input data using varying values for an adverse drilling factor to produce a target function. The computing system determines a minimum value for the target function. The computing system provides a projected value for the physical drilling parameters based on the minimum value. The computing system generates an alert responsive to determining that the projected value for the physical drilling parameters exceeds a prescribed limit.

Classes IPC  ?

  • E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage
  • E21B 47/007 - Mesure des contraintes dans le cuvelage ou la tige de forage

69.

Diffusion flux inclusion for a reservoir simulation for hydrocarbon recovery

      
Numéro d'application 18070227
Numéro de brevet 11775708
Statut Délivré - en vigueur
Date de dépôt 2022-11-28
Date de la première publication 2023-03-30
Date d'octroi 2023-10-03
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Mohebbinia, Saeedeh
  • Wong, Terry Wayne

Abrégé

A method includes selecting a model for a simulation of hydrocarbon recovery from a reservoir having a plurality of fractures during injection of an injected gas into the plurality of fractures. Selecting the model includes determining a flux ratio of a convection rate to a diffusion rate for the reservoir, determining whether the flux ratio is less than a threshold, and in response to the flux ratio being less than the threshold, selecting the model that includes diffusion. Selecting the model includes performing the simulation of the hydrocarbon recovery from the reservoir based on the model.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forage; Essais de couches; Procédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits
  • G06F 9/455 - Dispositions pour exécuter des programmes spécifiques Émulation; Interprétation; Simulation de logiciel, p.ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation
  • E21B 43/16 - Procédés de récupération assistée pour l'extraction d'hydrocarbures
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • G06F 111/10 - Modélisation numérique
  • E21B 43/26 - Procédés pour activer la production par formation de crevasses ou de fractures

70.

FORMATION EVALUATION BASED ON SEISMIC HORIZON MAPPING WITH MULTI-SCALE OPTIMIZATION

      
Numéro d'application US2021071473
Numéro de publication 2023/043476
Statut Délivré - en vigueur
Date de dépôt 2021-09-15
Date de publication 2023-03-23
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Possee, Daniel James
  • Liu, Yikuo
  • Baines, Graham

Abrégé

A least one seismic attribute is determined for each voxel of the seismic volume. A first horizon is selected for mapping and a sparse global grid is generated which includes the horizon, at least one constraint point identifying the horizon, and a number of points having a depth in the seismic volume. A value of at least one seismic attribute is determined for each point and their depths are adjusted based on the value of the seismic attribute. A map of the horizon can be generated based on the adjusted depths. Multiple local grids can be generated based on the sparse global grid, and the depths of the local grid points adjusted to generate a map of the horizon at voxel level resolution. The seismic volume can be mapped into multiple horizons, where previously mapped horizons can function as constraints on the sparse global grid.

Classes IPC  ?

  • G01V 1/30 - Analyse
  • G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p.ex. correction de l'étalement; Etablissement d'une corrélation entre signaux sismiques; Elimination des effets produits par un excès d'énergie

71.

Formation evaluation based on seismic horizon mapping with multi-scale optimization

      
Numéro d'application 17447604
Numéro de brevet 11630226
Statut Délivré - en vigueur
Date de dépôt 2021-09-14
Date de la première publication 2023-03-16
Date d'octroi 2023-04-18
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Possee, Daniel James
  • Liu, Yikuo
  • Baines, Graham

Abrégé

A least one seismic attribute is determined for each voxel of the seismic volume. A first horizon is selected for mapping and a sparse global grid is generated which includes the horizon, at least one constraint point identifying the horizon, and a number of points having a depth in the seismic volume. A value of at least one seismic attribute is determined for each point and their depths are adjusted based on the value of the seismic attribute. A map of the horizon can be generated based on the adjusted depths. Multiple local grids can be generated based on the sparse global grid, and the depths of the local grid points adjusted to generate a map of the horizon at voxel level resolution. The seismic volume can be mapped into multiple horizons, where previously mapped horizons can function as constraints on the sparse global grid.

Classes IPC  ?

  • G01V 1/34 - Représentation des enregistrements sismiques
  • G01V 1/28 - Traitement des données sismiques, p.ex. pour analyse, pour interprétation, pour correction

72.

CONTEXTUALIZATION OF GEOSCIENTIFIC DATA USING GEOLOGICAL AGE FRAMEWORK

      
Numéro d'application US2021049756
Numéro de publication 2023/038627
Statut Délivré - en vigueur
Date de dépôt 2021-09-10
Date de publication 2023-03-16
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Booker, Matthew
  • Carroll, Gareth
  • Wright, Georgina

Abrégé

The disclosure presents processes to improve the ability to analyze geological information for an area or region of interest. A user can specify one or more input files, such as from public, private, or proprietary sources. The user can specify a geological or geographic framework to utilize. The process can then perform a matching between the data in the input files and the data in the framework. The matching process can utilize a geological matching using a specified range of depths or a geographical matching followed by the geological matching. Other parameters can be utilized such as a radius to define an area of interest around a central location of interest. Matched data elements can have geological attributes from the geological framework data linked to data elements in the input files. The input files can be downloaded, displayed, printed, or communicated to another computing system or program for further analysis

Classes IPC  ?

  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forage; Essais de couches; Procédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • G01V 1/46 - Acquisition des données
  • G01V 1/50 - Analyse des données

73.

CONTEXTUALIZATION OF GEOSCIENTIFIC DATA USING GEOLOGICAL AGE FRAMEWORK

      
Numéro d'application 17470758
Statut En instance
Date de dépôt 2021-09-09
Date de la première publication 2023-03-09
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Booker, Matthew
  • Carroll, Gareth
  • Wright, Georgina

Abrégé

The disclosure presents processes to improve the ability to analyze geological information for an area or region of interest. A user can specify one or more input files, such as from public, private, or proprietary sources. The user can specify a geological or geographic framework to utilize. The process can then perform a matching between the data in the input files and the data in the framework. The matching process can utilize a geological matching using a specified range of depths or a geographical matching followed by the geological matching. Other parameters can be utilized such as a radius to define an area of interest around a central location of interest. Matched data elements can have geological attributes from the geological framework data linked to data elements in the input files. The input files can be downloaded, displayed, printed, or communicated to another computing system or program for further analysis.

Classes IPC  ?

  • G06F 16/29 - Bases de données d’informations géographiques
  • G06F 16/2457 - Traitement des requêtes avec adaptation aux besoins de l’utilisateur
  • G06N 3/02 - Réseaux neuronaux

74.

DETERMINING PARAMETERS FOR A WELLBORE PLUG AND ABANDONMENT OPERATION

      
Numéro d'application US2021048271
Numéro de publication 2023/033788
Statut Délivré - en vigueur
Date de dépôt 2021-08-30
Date de publication 2023-03-09
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Samuel, Robello
  • Samec, William Wade
  • Hebert, Roddy
  • Gales, Robert H.
  • Eyuboglu, Abbas Sami

Abrégé

A location of a cut and an amount of force to be used in a pull operation for a plug & abandonment (P&A) operation can be determined. Measurements of at least one characteristic of fluids and solids disposed in an annulus defined between a casing and a wall of a wellbore can be received. A total fluid and solid friction force drag can be determined using hydrostatic force that is determined from the measurements. A mechanical friction force drag can be determined based on a weight of the casing. The mechanical friction force drag and the total fluid and solid friction force drag can be used to determine a friction factor. The friction factor can be used to determine a depth location at which to cut the casing and a pull force for pulling the casing from the wellbore in the P&A operation.

Classes IPC  ?

  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
  • E21B 47/04 - Mesure de la profondeur ou du niveau du liquide
  • E21B 44/04 - Commande automatique de l'avance de l'outil en réponse au couple fourni par le moyen d'entraînement

75.

MACHINE LEARNING MODEL SELECTION BASED ON FEATURE MERGING FOR A SPATIAL LOCATION ACROSS MULTIPLE TIME WINDOWS

      
Numéro d'application US2021071335
Numéro de publication 2023/033857
Statut Délivré - en vigueur
Date de dépôt 2021-09-01
Date de publication 2023-03-09
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s) Zhang, Jiazuo

Abrégé

A method comprises receiving a current dataset for a current time window from at least one sensor in a wellbore created in a subsurface formation, wherein the current dataset comprises values of a number of current features of the subsurface formation at a spatial location in the wellbore. The method includes selecting at least one previous time window from a number of previous time windows that includes a previously cached dataset that was detected by the at least one sensor or a different sensor in the wellbore and that spatially overlaps with the spatial location for the current dataset. The method includes merging the current dataset with the previously cached dataset to create a merged dataset. The method includes selecting a machine learning model from a plurality of machine learning models for the spatial location in the wellbore based on the merged dataset.

Classes IPC  ?

  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage

76.

MACHINE LEARNING MODEL SELECTION BASED ON FEATURE MERGING FOR A SPATIAL LOCATION ACROSS MULTIPLE TIME WINDOWS

      
Numéro d'application 17446537
Statut En instance
Date de dépôt 2021-08-31
Date de la première publication 2023-03-02
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s) Zhang, Jiazuo

Abrégé

A method comprises receiving a current dataset for a current time window from at least one sensor in a wellbore created in a subsurface formation, wherein the current dataset comprises values of a number of current features of the subsurface formation at a spatial location in the wellbore. The method includes selecting at least one previous time window from a number of previous time windows that includes a previously cached dataset that was detected by the at least one sensor or a different sensor in the wellbore and that spatially overlaps with the spatial location for the current dataset. The method includes merging the current dataset with the previously cached dataset to create a merged dataset. The method includes selecting a machine learning model from a plurality of machine learning models for the spatial location in the wellbore based on the merged dataset.

Classes IPC  ?

  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques
  • G06N 20/00 - Apprentissage automatique

77.

Determining parameters for a wellbore plug and abandonment operation

      
Numéro d'application 17461294
Numéro de brevet 11761298
Statut Délivré - en vigueur
Date de dépôt 2021-08-30
Date de la première publication 2023-03-02
Date d'octroi 2023-09-19
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Samuel, Robello
  • Samec, William Wade
  • Hebert, Roddy
  • Gales, Robert H.
  • Eyuboglu, Abbas Sami

Abrégé

A location of a cut and an amount of force to be used in a pull operation for a plug & abandonment (P&A) operation can be determined. Measurements of at least one characteristic of fluids and solids disposed in an annulus defined between a casing and a wall of a wellbore can be received. A total fluid and solid friction force drag can be determined using hydrostatic force that is determined from the measurements. A mechanical friction force drag can be determined based on a weight of the casing. The mechanical friction force drag and the total fluid and solid friction force drag can be used to determine a friction factor. The friction factor can be used to determine a depth location at which to cut the casing and a pull force for pulling the casing from the wellbore in the P&A operation.

Classes IPC  ?

  • E21B 29/00 - Découpage ou destruction de tubes, packers, bouchons ou câbles, situés dans les trous de forage ou dans les puits, p.ex. découpage de tubes endommagés, de fenêtres; Déformation des tubes dans les trous de forage; Remise en état des tubages de puits sans les retirer du sol
  • E21B 47/09 - Localisation ou détermination de la position d'objets dans les trous de forage ou dans les puits; Identification des parties libres ou bloquées des tubes
  • E21B 33/14 - Procédés ou dispositifs de cimentation, de bouchage des trous, des fissures ou analogues pour la cimentation des tubes dans les trous de forage ou de sondage
  • E21B 33/134 - Bouchons d'étrésillon

78.

WELL CONSTRUCTION OPTIMIZATION TECHNIQUES

      
Numéro d'application 17404446
Statut En instance
Date de dépôt 2021-08-17
Date de la première publication 2023-02-23
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Braz, Paulo Alves
  • Marin Martinez, Roger David
  • Tirado, Gabriel
  • De Souza, Marcelo Gomes
  • Martinez, Damian
  • Araujo, Henrique De Azevedo
  • Fattori, Cristian

Abrégé

A method includes acquiring historical well construction data associated with a set of historical wells. The method also includes developing a well construction model using the corpus of historical well construction data. Additionally, the method includes acquiring real-time well construction data during a well construction operation and applying the well construction model to the real-time well construction data to identify changes to a well construction parameter. Further, the method includes outputting a command to update the well construction operation using the changes to the well construction parameter.

Classes IPC  ?

  • E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage
  • G06Q 10/06 - Ressources, gestion de tâches, des ressources humaines ou de projets; Planification d’entreprise ou d’organisation; Modélisation d’entreprise ou d’organisation

79.

CALIBRATION OF DRILLSTRING WEIGHT WITH DRAG FOR FRICTION FACTOR ESTIMATION

      
Numéro d'application 17445582
Statut En instance
Date de dépôt 2021-08-20
Date de la première publication 2023-02-23
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s) Samuel, Robello

Abrégé

A method comprises determining a value of at least one oppositional force for a drillstring at multiple depths in the wellbore, determining a value of a drag force for the drillstring at the multiple depths, determining a value of hook load for the drillstring at the multiple depths based on the value of the at least one opposition force and the value of the drag force at the multiple depths, and determining a calibrated drillstring weight based on a change in the value of the hook load over the multiple depths. From the calibrated drillstring weight, an adjusted estimated hook load can be determined. The drag force can be calculated based on a drag per centralizer and the number of centralizers in the wellbore. A centralizer friction factor can be determined and used to calibrate the value of the drag per centralizer.

Classes IPC  ?

  • E21B 47/007 - Mesure des contraintes dans le cuvelage ou la tige de forage
  • G01N 19/02 - Mesure du coefficient de frottement entre matériaux
  • E21B 12/00 - Accessoires pour outils de forage

80.

CALIBRATION OF DRILLSTRING WEIGHT FOR FRICTION FACTOR ESTIMATION

      
Numéro d'application US2021071257
Numéro de publication 2023/022746
Statut Délivré - en vigueur
Date de dépôt 2021-08-23
Date de publication 2023-02-23
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s) Samuel, Robello

Abrégé

A method comprises determining a value of at least one oppositional force for a drillstring at multiple depths in the wellbore, determining a value of hook load for the drillstring at the multiple depths based on the value of the at least one opposition force at the multiple depths, and determining a calibrated drillstring weight based on a change in the value of the hook load over the multiple depths of the wellbore. The change in the value of the hook load can be determined based on a change in a measured hook load and/or a change in an estimated hook load. From the calibrated drillstring weight, an adjusted estimated hook load can be determined.

Classes IPC  ?

  • E21B 47/04 - Mesure de la profondeur ou du niveau du liquide
  • E21B 44/02 - Commande automatique de l'avance de l'outil
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes

81.

CALIBRATION OF DRILLSTRING WEIGHT FOR FRICTION FACTOR ESTIMATION

      
Numéro d'application 17445578
Statut En instance
Date de dépôt 2021-08-20
Date de la première publication 2023-02-23
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s) Samuel, Robello

Abrégé

A method comprises determining a value of at least one oppositional force for a drillstring at multiple depths in the wellbore, determining a value of hook load for the drillstring at the multiple depths based on the value of the at least one opposition force at the multiple depths, and determining a calibrated drillstring weight based on a change in the value of the hook load over the multiple depths of the wellbore. The change in the value of the hook load can be determined based on a change in a measured hook load and/or a change in an estimated hook load. From the calibrated drillstring weight, an adjusted estimated hook load can be determined.

Classes IPC  ?

  • E21B 47/007 - Mesure des contraintes dans le cuvelage ou la tige de forage
  • G01N 19/02 - Mesure du coefficient de frottement entre matériaux
  • E21B 12/00 - Accessoires pour outils de forage

82.

WELL CONSTRUCTION OPTIMIZATION TECHNIQUES

      
Numéro d'application US2021046880
Numéro de publication 2023/022730
Statut Délivré - en vigueur
Date de dépôt 2021-08-20
Date de publication 2023-02-23
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Braz, Paulo Alves
  • Marin Martinez, Roger David
  • Tirado, Gabriel
  • De Souza, Marcelo Gomes
  • Martinez, Damian
  • Araujo, Henrique De Azevedo
  • Fattori, Cristian

Abrégé

A method includes acquiring historical well construction data associated with a set of historical wells. The method also includes developing a well construction model using the corpus of historical well construction data. Additionally, the method includes acquiring real-time well construction data during a well construction operation and applying the well construction model to the real-time well construction data to identify changes to a well construction parameter. Further, the method includes outputting a command to update the well construction operation using the changes to the well construction parameter.

Classes IPC  ?

  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
  • G01V 1/40 - Séismologie; Prospection ou détection sismique ou acoustique spécialement adaptées au carottage

83.

CALIBRATION OF DRILLSTRING WEIGHT WITH DRAG FOR FRICTION FACTOR ESTIMATION

      
Numéro d'application US2021071258
Numéro de publication 2023/022747
Statut Délivré - en vigueur
Date de dépôt 2021-08-23
Date de publication 2023-02-23
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s) Samuel, Robello

Abrégé

A method comprises determining a value of at least one oppositional force for a drillstring at multiple depths in the wellbore, determining a value of a drag force for the drillstring at the multiple depths, determining a value of hook load for the drillstring at the multiple depths based on the value of the at least one opposition force and the value of the drag force at the multiple depths, and determining a calibrated drillstring weight based on a change in the value of the hook load over the multiple depths. From the calibrated drillstring weight, an adjusted estimated hook load can be determined. The drag force can be calculated based on a drag per centralizer and the number of centralizers in the wellbore. A centralizer friction factor can be determined and used to calibrate the value of the drag per centralizer.

Classes IPC  ?

  • E21B 47/10 - Localisation des fuites, intrusions ou mouvements du fluide
  • E21B 44/02 - Commande automatique de l'avance de l'outil

84.

MULTIPLE SWIVELS AND ROTATION MOTOR SYSTEM

      
Numéro d'application 17388869
Statut En instance
Date de dépôt 2021-07-29
Date de la première publication 2023-02-02
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Zhang, Yuan
  • Samuel, Robello

Abrégé

The disclosure presents apparatuses and systems to reduce drag and friction forces on a drill string located downhole a borehole. The drill string can have two or more movement isolators to allow a movement sensitive tool to be movement isolated from other portions of the drill string that have powered movement. The other drill string portions can be powered by a surface equipment or by a downhole movement motor attached to the drill string, such as a rotational mud motor, an agitator, a jar motor, or a rotary steerable. Portions of the drill string located further downhole than the movement sensitive tool can utilize a movement motor attached to the drill string to provide movement to reduce drag and friction force where the movement isolators can reduce the movement force experienced by the movement sensitive tool.

Classes IPC  ?

  • E21B 17/05 - Joints à pivot
  • E21B 4/16 - Moyens d'entraînement multiples au fond du trou, p.ex. pour le forage combiné par percussion et par rotation; Moyens d'entraînement pour unités de forage à plusieurs trépans

85.

MULTIPLE SWIVELS AND ROTATION MOTOR SYSTEM

      
Numéro d'application US2021043825
Numéro de publication 2023/009131
Statut Délivré - en vigueur
Date de dépôt 2021-07-30
Date de publication 2023-02-02
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Zhang, Yuan
  • Samuel, Robello

Abrégé

The disclosure presents apparatuses and systems to reduce drag and friction forces on a drill string located downhole a borehole. The drill string can have two or more movement isolators to allow a movement sensitive tool to be movement isolated from other portions of the drill string that have powered movement. The other drill string portions can be powered by a surface equipment or by a downhole movement motor attached to the drill string, such as a rotational mud motor, an agitator, a jar motor, or a rotary steerable. Portions of the drill string located further downhole than the movement sensitive tool can utilize a movement motor attached to the drill string to provide movement to reduce drag and friction force where the movement isolators can reduce the movement force experienced by the movement sensitive tool.

Classes IPC  ?

86.

SUPERVISED MACHINE LEARNING-BASED WELLBORE CORRELATION

      
Numéro d'application 17305861
Statut En instance
Date de dépôt 2021-07-15
Date de la première publication 2023-01-19
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Servais, Marc Paul
  • Baines, Graham

Abrégé

A method for performing wellbore correlation across multiple wellbores includes predicting a depth alignment across the wellbores based on a geological feature of the wellbores. Predicting a depth alignment includes selecting a reference wellbore, defining a control point in a reference signal of a reference well log for the reference wellbore, and generating an input tile from the reference signal, the control points, and a number of non-reference well logs corresponding to non-reference wellbores. The well logs include changes in a geological feature over a depth of a wellbore. The input tile is input into a machine-learning model to output a corresponding control point for each non-reference well log. The corresponding control point corresponds to the control point of the reference log. Based on the corresponding control points output from the machine-learning model, the non-reference well logs are aligned with the reference well log to correlate the multiple wellbores.

Classes IPC  ?

  • E21B 47/04 - Mesure de la profondeur ou du niveau du liquide
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
  • G06N 3/08 - Méthodes d'apprentissage

87.

SUPERVISED MACHINE LEARNING-BASED WELLBORE CORRELATION

      
Numéro d'application US2021070891
Numéro de publication 2023/287454
Statut Délivré - en vigueur
Date de dépôt 2021-07-16
Date de publication 2023-01-19
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Servais, Marc Paul
  • Baines, Graham

Abrégé

A method for performing wellbore correlation across multiple wellbores includes predicting a depth alignment across the wellbores based on a geological feature of the wellbores. Predicting a depth alignment includes selecting a reference wellbore, defining a control point in a reference signal of a reference well log for the reference wellbore, and generating an input tile from the reference signal, the control points, and a number of non-reference well logs corresponding to non-reference wellbores. The well logs include changes in a geological feature over a depth of a wellbore. The input tile is input into a machine-learning model to output a corresponding control point for each non-reference well log. The corresponding control point corresponds to the control point of the reference log. Based on the corresponding control points output from the machine-learning model, the non-reference well logs are aligned with the reference well log to correlate the multiple wellbores.

Classes IPC  ?

  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • E21B 47/04 - Mesure de la profondeur ou du niveau du liquide
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
  • G06N 20/00 - Apprentissage automatique

88.

CASING WEAR AND PIPE DEFECT DETERMINATION USING DIGITAL IMAGES

      
Numéro d'application US2021039482
Numéro de publication 2023/277868
Statut Délivré - en vigueur
Date de dépôt 2021-06-29
Date de publication 2023-01-05
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Samuel, Robello
  • Adari, Rishi

Abrégé

The disclosure presents solutions for determining a casing wear parameter. Image collecting or capturing devices can be used to capture visual frames of a section of drilling pipe during a trip out operation. The visual frames can be oriented to how the drilling pipe was oriented within the borehole during a drilling operation. The visual frames can be analyzed for wear, e.g., surface changes, of the drilling pipe. The surface changes can be classified as to the type, depth, volume, length, shape, and other characteristics. The section of drilling pipe can be correlated to a depth range where the drilling pipe was located during drilling operations. The surface changes, with the depth range, can be correlated to an estimated casing wear to generate the casing wear parameter. An analysis of multiple sections of drilling pipe can be used to improve the locating of sections of casing where wear is likely.

Classes IPC  ?

  • E21B 47/04 - Mesure de la profondeur ou du niveau du liquide
  • E21B 47/10 - Localisation des fuites, intrusions ou mouvements du fluide
  • E21B 44/02 - Commande automatique de l'avance de l'outil
  • E21B 12/02 - Indicateurs d'usure

89.

MACHINE LEARNING BASED RANKING OF HYDROCARBON PROSPECTS FOR FIELD EXPLORATION

      
Numéro d'application US2021039792
Numéro de publication 2023/277894
Statut Délivré - en vigueur
Date de dépôt 2021-06-30
Date de publication 2023-01-05
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Roy, Samiran
  • Chaki, Soumi

Abrégé

An ensemble of machine learning models is trained to evaluate seismic and risk -related data in order to evaluate, value, or otherwise rank various prospective hydrocarbon reservoir ("prospects") of a field. A classification machine learning model is trained to classify a prospect or region of a prospect based on the exploration risk level. From the seismic data, a frequency-filtered volume (FFV) for each prospect is calculated, where the FFV is a measure of reservoir volume which takes into account seismic resolution limits. Based on the risk classification and FFV, prospects of the field are ranked based on their economic value which is a combination of the risk associated with drilling and their potential reservoir volume.

Classes IPC  ?

90.

CALCULATING PULL FOR A STUCK DRILL STRING

      
Numéro d'application US2021039494
Numéro de publication 2023/277873
Statut Délivré - en vigueur
Date de dépôt 2021-06-29
Date de publication 2023-01-05
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Samuel, Robello
  • Adari, Rishi

Abrégé

The disclosure presents processes and methods for determining an overpull force for a stuck drill string in a borehole system. The fluid composition of a mud in the borehole at a specified depth can be broken down into a percentage of liquid and percentage of solids, as well as adjusting for material sag and settling factors. The fluid composition can be utilized to identify friction factors and drag in respective fluid composition zones. Each friction factor and drag can be summed to determine a total fluid drag on the drill string. In some aspects, the total fluid drag can be adjusted utilizing the relative positioning of casing collars and tool joints. The total fluid drag can be summed with the other force factors, such as a shear force and mechanical drag. The total drag can then be utilized as the overpull force applied to the stuck drill string.

Classes IPC  ?

  • E21B 44/04 - Commande automatique de l'avance de l'outil en réponse au couple fourni par le moyen d'entraînement
  • E21B 47/18 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage utilisant des ondes acoustiques à travers le fluide du puits
  • E21B 47/007 - Mesure des contraintes dans le cuvelage ou la tige de forage
  • E21B 47/04 - Mesure de la profondeur ou du niveau du liquide

91.

RESERVOIR SIMULATION UTILIZING HYBRID COMPUTING

      
Numéro d'application US2021039978
Numéro de publication 2023/277915
Statut Délivré - en vigueur
Date de dépôt 2021-06-30
Date de publication 2023-01-05
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Wang, Qinghua
  • Erdogan, Hanife Meftun
  • Li, Dong

Abrégé

Hybrid computing that utilizes a computer processor coupled to one or more graphical processing units (GPUs) is configured to perform computations that generate outputs related to reservoir simulations associated with formations that may include natural gas and oil reservoirs.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06F 9/50 - Allocation de ressources, p.ex. de l'unité centrale de traitement [UCT]
  • G06F 9/38 - Exécution simultanée d'instructions

92.

RESERVOIR SIMULATION UTILIZING HYBRID COMPUTING

      
Numéro d'application 17305041
Statut En instance
Date de dépôt 2021-06-29
Date de la première publication 2022-12-29
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Wang, Qinghua
  • Erdogan, Hanife Meftun
  • Li, Dong

Abrégé

Hybrid computing that utilizes a computer processor coupled to one or more graphical processing units (GPUs) is configured to perform computations that generate outputs related to reservoir simulations associated with formations that may include natural gas and oil reservoirs.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G01V 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe

93.

MACHINE LEARNING BASED RANKING OF HYDROCARBON PROSPECTS FOR FIELD EXPLORATION

      
Numéro d'application 17304970
Statut En instance
Date de dépôt 2021-06-29
Date de la première publication 2022-12-29
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Roy, Samiran
  • Chaki, Soumi

Abrégé

An ensemble of machine learning models is trained to evaluate seismic and risk-related data in order to evaluate, value, or otherwise rank various prospective hydrocarbon reservoir (“prospects”) of a field. A classification machine learning model is trained to classify a prospect or region of a prospect based on the exploration risk level. From the seismic data, a frequency-filtered volume (FFV) for each prospect is calculated, where the FFV is a measure of reservoir volume which takes into account seismic resolution limits. Based on the risk classification and FFV, prospects of the field are ranked based on their economic value which is a combination of the risk associated with drilling and their potential reservoir volume.

Classes IPC  ?

94.

DEEP LEARNING MODEL WITH DILATION MODULE FOR FAULT CHARACTERIZATION

      
Numéro d'application 17359435
Statut En instance
Date de dépôt 2021-06-25
Date de la première publication 2022-12-29
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Jiang, Fan
  • Norlund, Philip

Abrégé

A system can receive seismic data that can correlate to a subterranean formation. The system can derive a set of seismic attributes from the seismic data. The seismic attributes can include discontinuity-along-dip. The system can determine parameterized results by analyzing the seismic data and the seismic attributes using a deep learning neural network. The deep learning neural network can include a dilation module. The system can determine one or more fault probabilities of the subterranean formation using the parameterized results. The system can output the fault probabilities for use in a hydrocarbon exploration operation.

Classes IPC  ?

  • G01V 1/30 - Analyse
  • G01V 1/18 - Eléments récepteurs, p.ex. sismomètre, géophone
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/04 - Architecture, p.ex. topologie d'interconnexion
  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forage; Essais de couches; Procédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits

95.

CALCULATING PULL FOR A STUCK DRILL STRING

      
Numéro d'application 17361586
Statut En instance
Date de dépôt 2021-06-29
Date de la première publication 2022-12-29
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Samuel, Robello
  • Adari, Rishi

Abrégé

The disclosure presents processes and methods for determining an overpull force for a stuck drill string in a borehole system. The fluid composition of a mud in the borehole at a specified depth can be broken down into a percentage of liquid and percentage of solids, as well as adjusting for material sag and settling factors. The fluid composition can be utilized to identify friction factors and drag in respective fluid composition zones. Each friction factor and drag can be summed to determine a total fluid drag on the drill string. In some aspects, the total fluid drag can be adjusted utilizing the relative positioning of casing collars and tool joints. The total fluid drag can be summed with the other force factors, such as a shear force and mechanical drag. The total drag can then be utilized as the overpull force applied to the stuck drill string.

Classes IPC  ?

  • E21B 31/00 - Repêchage ou dégagement d'objets dans les trous de forage ou dans les puits
  • E21B 47/09 - Localisation ou détermination de la position d'objets dans les trous de forage ou dans les puits; Identification des parties libres ou bloquées des tubes
  • E21B 49/08 - Prélèvement d'échantillons de fluides ou test des fluides dans les trous de forage ou dans les puits
  • E21B 47/04 - Mesure de la profondeur ou du niveau du liquide
  • E21B 44/04 - Commande automatique de l'avance de l'outil en réponse au couple fourni par le moyen d'entraînement

96.

DEEP LEARNING MODEL WITH DILATION MODULE FOR FAULT CHARACTERIZATION

      
Numéro d'application US2021039530
Numéro de publication 2022/271191
Statut Délivré - en vigueur
Date de dépôt 2021-06-29
Date de publication 2022-12-29
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Jiang, Fan
  • Norlund, Philip

Abrégé

A system can receive seismic data that can correlate to a subterranean formation. The system can derive a set of seismic attributes from the seismic data. The seismic attributes can include discontinuity-along-dip. The system can determine parameterized results by analyzing the seismic data and the seismic attributes using a deep learning neural network. The deep learning neural network can include a dilation module. The system can determine one or more fault probabilities of the subterranean formation using the parameterized results. The system can output the fault probabilities for use in a hydrocarbon exploration operation.

Classes IPC  ?

  • G01V 1/50 - Analyse des données
  • G01V 1/30 - Analyse
  • E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
  • G06N 3/08 - Méthodes d'apprentissage

97.

METHOD FOR GENERATING A GEOLOGICAL AGE MODEL FROM INCOMPLETE HORIZON INTERPRETATIONS

      
Numéro d'application 17537143
Statut En instance
Date de dépôt 2021-11-29
Date de la première publication 2022-12-08
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Baines, Graham
  • Liu, Yikuo
  • Possee, Daniel

Abrégé

In contrast to existing methods wherein derived horizons are interpreted in isolation, the disclosure provides a process that does not interpret patches themselves but determines the relationships between patches, in order to associate and link patches to derive a holistic geological interpretation. Predefined patches, such as from a pre-interpreted suite, are received as inputs to determine the relationships and derive an interpretation for a complete volume. In one aspect the disclosure provides an automated method of generating a geological age model for a subterranean area. In one example, the automated method includes: (1) abstracting seismic data of a subsurface into a limited number of patches, (2) abstracting the patches by defining patch-links between the patches, and (3) generating a geological age model of the subsurface by solving for the relative geological age of each of the patches using the patch-links.

Classes IPC  ?

98.

LITHOLOGY PREDICTION IN SEISMIC DATA

      
Numéro d'application 17775460
Statut En instance
Date de dépôt 2020-01-23
Date de la première publication 2022-12-08
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Davies, Andrew
  • Baines, Graham
  • Jaramillo, Alejandro Alberto
  • Liu, Yikuo
  • Adeyemi, Olutobi

Abrégé

A lithology prediction that uses a geological age model as an input to a machine learning model. The geological age model is capable of separating and recoding different seismic packages derived from the horizon interpretation. Once the machine learning model has been trained, a validation may be performed to determine the quality of the machine learning model. The quality may be improved by refining the training of the machine learning model. The lithology prediction generated by the machine learning model that utilizes the geological age model provides an improved lithology prediction that more accurately reflects the subterranean formation of an area of interest.

Classes IPC  ?

  • G06N 5/02 - Représentation de la connaissance; Représentation symbolique
  • G01V 1/50 - Analyse des données

99.

A METHOD FOR GENERATING A GEOLOGICAL AGE MODEL FROM INCOMPLETE HORIZON INTERPRETATIONS

      
Numéro d'application US2021061071
Numéro de publication 2022/256039
Statut Délivré - en vigueur
Date de dépôt 2021-11-30
Date de publication 2022-12-08
Propriétaire LANDMARK GRAPHICS CORPORATION (USA)
Inventeur(s)
  • Baines, Graham
  • Liu, Yikuo
  • Possee, Daniel

Abrégé

In contrast to existing methods wherein derived horizons are interpreted in isolation, the disclosure provides a process that does not interpret patches themselves but determines the relationships between patches, in order to associate and link patches to derive a holistic geological interpretation. Predefined patches, such as from a pre-interpreted suite, are received as inputs to determine the relationships and derive an interpretation for a complete volume. In one aspect the disclosure provides an automated method of generating a geological age model for a subterranean area. In one example, the automated method includes: (1) abstracting seismic data of a subsurface into a limited number of patches, (2) abstracting the patches by defining patch-links between the patches, and (3) generating a geological age model of the subsurface by solving for the relative geological age of each of the patches using the patch-links.

Classes IPC  ?

  • G01V 1/28 - Traitement des données sismiques, p.ex. pour analyse, pour interprétation, pour correction
  • G01V 1/30 - Analyse
  • G01V 1/32 - Transformation d'un mode d'enregistrement en un autre
  • G01V 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe

100.

Formation-cutting analysis system for detecting downhole problems during a drilling operation

      
Numéro d'application 17334177
Numéro de brevet 11802474
Statut Délivré - en vigueur
Date de dépôt 2021-05-28
Date de la première publication 2022-12-01
Date d'octroi 2023-10-31
Propriétaire Landmark Graphics Corporation (USA)
Inventeur(s)
  • Badis, Chafaa
  • Souza, Welton
  • Sabharwal, Perminder
  • Yasir, Muhammad

Abrégé

A system is disclosed for detecting a problem associated with a drilling operation based on the properties of a formation cutting. The system can include a camera for generating an image of the formation cutting extracted from a subterranean formation. The system can include one or more sensors for detecting one or more characteristics of the subterranean formation or a well tool. The system can provide the image as input to a first model for determining one or more properties of the formation cutting based on the image. The system can provide the one or more properties and the one or more characteristics as input to a second model for detecting a downhole problem associated with the drilling operation. The system can transmit an alert indicating the downhole problem and optionally a recommended solution to a user.

Classes IPC  ?

  • E21B 47/002 - Relevés dans les trous de forage ou dans les puits par inspection visuelle
  • G01V 8/00 - Prospection ou détection par des moyens optiques
  • G08B 21/18 - Alarmes de situation
  • G06T 7/00 - Analyse d'image
  1     2     3     ...     16        Prochaine page