Provided is a method for treating a sulfide, the method being suitable for obtaining nickel and/or cobalt from a sulfide containing copper and nickel and/or cobalt. The method relates to a method for treating a sulfide containing copper and nickel and/or cobalt, the method including pulverizing the sulfide by subjecting the sulfide to a pulverizing treatment so as to obtain a pulverized sulfide having a particle size of 800 μm or less; and leaching the pulverized sulfide by subjecting the pulverized sulfide to a leaching treatment with an acid under a condition in which a sulfurizing agent is present to obtain a leachate. For example, the sulfide to be treated is generated by reducing, heating, and melting a waste lithium-ion battery to obtain a molten body and adding a sulfurizing agent to the molten body to sulfurize the molten body.
H01M 10/54 - Récupération des parties utiles des accumulateurs usagés
C22B 3/46 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par des procédés chimiques par substitution, p.ex. par cémentation
2.
METHOD FOR RECOVERING LITHIUM AND METHOD FOR PRODUCING LITHIUM CARBONATE
Disclosed is A method for recovering lithium from slag containing at least aluminum and lithium, the slag being provided by melting a lithium-ion secondary battery to be disposed of to obtain molten metal containing valuable metal and molten slag containing at least aluminum and lithium and separating the slag containing at least aluminum and lithium from the molten metal containing valuable metal. The condition of the melting of the lithium-ion secondary battery is adjusted such that the slag has an aluminum to lithium mass ratio, Al/Lo, of 6 or less. The method includes: contacting the slag with an aqueous liquid to obtain a leachate containing lithium leached from the slag; and contacting the leachate with a basic substance to cause unwanted metal contained in the leachate to precipitate in the form of a slightly soluble substance, followed by solid-liquid separation to obtain a purified solution having lithium dissolved therein.
Provided is a method by which it is possible to safely and efficiently collect valuable metals from raw material including waste lithium-ion batteries or the like. The present invention is a method for producing, from raw materials containing valuable metals including Cu, Ni, and Co, said valuable metals. The method includes: a preparation step for preparing raw material including Li, Al, and valuable metals; a reduction melting step for subjecting the raw material to a reduction melting treatment using a melting furnace in which is provided a cooling means for cooling the furnace wall from the outside, to obtain a reduced material comprising slag and an alloy containing valuable materials; and a slag separation step for separating the slag from the reduced material to collect the alloy. A flux containing Ca is added to the raw material in one or both of the preparation step and the reduction melting step. In the reduction melting step, while the furnace wall of the melt furnace is cooled by the cooling means, the thickness of the slag layer is adjusted so that the interface temperature between the alloy layer and the slag layer becomes greater than the surface temperature of refractories on the furnace wall in the melt furnace.
C22B 23/02 - Obtention du nickel ou du cobalt par voie sèche
B09B 3/40 - Destruction de déchets solides ou transformation de déchets solides en quelque chose d'utile ou d'inoffensif impliquant un traitement thermique, p.ex. évaporation
H01M 10/54 - Récupération des parties utiles des accumulateurs usagés
4.
THICK FILM RESISTOR PASTE, THICK FILM RESISTOR, AND ELECTRONIC COMPONENT
To provide a thick film resistor paste for a resistor having a smaller resistance change rate and excellent surge resistance, a thick film resistor using the thick film resistor paste, and an electronic component provided with the thick film resistor. A thick film resistor paste comprises an organic vehicle and a conductive substance-containing glass powder comprising ruthenium oxide and lead ruthenate, the conductive substance-containing glass powder comprises 10 to 70 mass% of conductive substances, a glass composition of the conductive substance-containing glass powder comprises 3 to 30 mass% of silicon oxide, 30 to 90 mass% of lead oxide, 5 to 50 mass% of boron oxide relative to 100 mass% of glass components, and, a combined amount of silicon oxide, lead oxide and boron oxide by mass% is 50 mass% or more relative to 100 mass% of the glass components.
C03C 4/14 - Compositions pour verres ayant des propriétés particulières pour verre électro-conducteur
C03C 8/16 - Mélanges de frittes vitreuses contenant des additifs, p.ex. des agents opacifiants, des colorants, des agents de broyage agents vecteurs ou de suspension, p.ex. suspension
C03C 8/10 - Compositions en verre fritté, c. à d. broyées ou sous forme de poudre contenant du plomb
H01C 7/00 - Résistances fixes constituées par une ou plusieurs couches ou revêtements; Résistances fixes constituées de matériau conducteur en poudre ou de matériau semi-conducteur en poudre avec ou sans matériau isolant
5.
DARK POWDER DISPERSION LIQUID, DARK POWDER DISPERSION BODY AND COLORED LAYER-ATTACHED BASE MATERIAL
A dark powder dispersion liquid including a dark pigment, composite tungsten oxide particles and a solid medium, wherein a mass ratio of the dark pigment to the composite tungsten oxide particles (mass of dark-colored pigment/mass of composite tungsten oxide fine particles) is 0.01 or more and 5 or less.
Provided is copper powder, which has an average particle size of 250 nm or less and the surface of which is coated with organic matter, wherein the powder satisfies all of conditions (1)-(4) below, is provided with an organic coating film for preventing formation of oxide coating film, which may inhibit sintering, and is excellent in low temperature sinterability. (1) When the organic matter present on the surface of the copper powder is detected by GC/MS analysis, the predetermined organic matter described in the description is detected. (2) When the organic matter present on the surface of the copper powder is detected by LC/MS analysis, the predetermined organic matter described in the description is detected. (3) In the measurement of the heat shrinkage rate of the copper powder green compact, the temperature to give a heat shrinkage rate of 1% is 230°C or less. (4) In the measurement of the heat shrinkage rate of the copper powder green compact, the temperature difference between the temperature to give a heat shrinkage rate of 3% under an inert atmosphere and the temperature to give a heat shrinkage rate of 3% under a reducing atmosphere is less than 10°C.
B22F 9/24 - Fabrication des poudres métalliques ou de leurs suspensions; Appareils ou dispositifs spécialement adaptés à cet effet par un procédé chimique avec réduction de mélanges métalliques à partir de mélanges métalliques liquides, p.ex. de solutions
7.
POSITIVE ELECTRODE ACTIVE MATERIAL FOR ALL-SOLID-STATE LITHIUM ION SECONDARY BATTERY AND METHOD FOR MANUFACTURING THE SAME
A positive electrode active material for an all-solid-state lithium ion secondary battery includes a lithium-nickel composite oxide particle and a coating layer coating a surface of the particle. The lithium-nickel composite oxide particle has a crystal structure belonging to a space group R-3m, contains at least Li, Ni, an element M, and Nb, a molar ratio among the elements being represented by Li:Ni:M:Nb=a:(1-x-y):x:y (0.98≤a≤1.15, 0
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
METHOD OF PRODUCING NICKEL-CONTAINING HYDROXIDE, METHOD OF PRODUCING POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM ION SECONDARY BATTERY, POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM ION SECONDARY BATTERY, AND LITHIUM ION SECONDARY BATTERY
A method of producing a nickel-containing hydroxide includes a pre-reaction aqueous solution preparation step of preparing a pre-reaction aqueous solution, and a crystallization step of obtaining the nickel-containing hydroxide by adding at least a nickel salt as a metal salt, a neutralizing agent that reacts with the metal salt to form a metal hydroxide, and a complexing agent to the pre-reaction aqueous solution while stirring the pre-reaction aqueous solution, wherein the pre-reaction aqueous solution contains water and the neutralizing agent, and a concentration of dissolved oxygen in the pre-reaction aqueous solution is 0.1 mg/L or less when the crystallization step starts.
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
H01M 4/131 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Électrodes Électrodes composées d'un ou comprenant un matériau actif Électrodes pour accumulateurs à électrolyte non aqueux, p.ex. pour accumulateurs au lithium; Leurs procédés de fabrication Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p.ex. LiCoOx
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
Provided is a method by which it is possible to safely and efficiently collect valuable metals from raw material including waste lithium-ion batteries or the like. The present invention is a method for producing valuable metals from raw material containing valuable metals including Cu, Ni and Co. The method includes at least: a preparation step for preparing raw material containing Li, Al, and valuable metals; a reduction melting step for subjecting the raw material to reduction melting treatment using a melting furnace provided with a cooling means for cooling the furnace walls from the outside to obtain a reduced product comprising a valuable metals-containing alloy and slag; and a slag separation step for separating the slag from the reduced product to collect the alloy. One or both of the preparation step and the reduction melting step include adding Ca-containing flux to the raw material. In the reduction melting step, while the furnace walls of the melting furnace are cooled with the cooling means, a solid slag layer having a Ca/Al value smaller than the Ca/Al value of the slag or a solid slag layer containing 15 mass% or more Al and 3 mass% or more Li is formed on the inside surface of the melting furnace.
Provided are: an alloy powder in which nickel and cobalt can be easily dissolved in an acid and stably leached with an acid; a manufacturing method with which an alloy powder that enables stable acid leaching can be obtained at low cost; and a method for recovering a valuable metal using the manufacturing method. An alloy powder according to the present invention includes copper (Cu), nickel (Ni), and cobalt (Co) as constituents, has a 50% cumulative diameter (D50) of 30 µm to 85 µm in the volume particle size distribution, and has an oxygen content of 0.01 mass% to 1.00 mass%.
B22F 1/05 - Poudres métalliques caractérisées par la dimension ou la surface spécifique des particules
H01M 10/54 - Récupération des parties utiles des accumulateurs usagés
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensions; Appareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p.ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p.ex. des rognures, pour produire des métaux non ferreux ou leurs composés
C22B 3/06 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés par lixiviation dans des solutions inorganiques acides
C22C 9/06 - Alliages à base de cuivre avec le nickel ou le cobalt comme second constituant majeur
C22C 30/02 - Alliages contenant moins de 50% en poids de chaque constituant contenant du cuivre
Provided is a method which allows for strict control of an oxygen partial pressure required for the heating and melting of a raw material, and thereby more efficient recovery of a valuable metal. The method for recovering a valuable metal (Cu, Ni, and Co) includes the steps of: preparing a charge comprising at least phosphorus (P) and a valuable metal as a raw material; heating and melting the raw material to form a molten body and then converting the molten body into a molten product comprising an alloy and a slag; and separating the slag from the molten product to recover the alloy comprising the valuable metal, wherein the heating and melting of the raw material comprises directly measuring an oxygen partial pressure in the molten body using an oxygen analyzer, and regulating the oxygen partial pressure based on the obtained measurement result.
01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
06 - Métaux communs et minerais; objets en métal
09 - Appareils et instruments scientifiques et électriques
Produits et services
Unprocessed plastics in primary form for industrial
purposes; unprocessed resin compositions as raw materials of
bonded magnets; unprocessed artificial resins as raw
materials in the form of pellet for use in the manufacture
of bonded magnets; unprocessed artificial resins as raw
materials in the form of pellet; unprocessed artificial
resins; chemicals made of magnetic particles for use in
physical and chemical experiments; chemicals made of
magnetic particles. Iron and steel; non-ferrous metals and their alloys;
non-ferrous metals. Magnets; rare earth bonded magnets; magnets in powder form
for industrial purposes; magnet powder for industrial
purposes; magnet powder for laboratory use.
13.
NICKEL-MANGANESE COMPOSITE HYDROXIDE, METHOD FOR PRODUCING THE SAME, POSITIVE ELECTRODE ACTIVE MATERIAL FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
Provided are a positive electrode active material with which a nonaqueous electrolyte secondary battery having a high energy density can be obtained, a nickel-manganese composite hydroxide suitable as a precursor of the positive electrode active material, and production methods capable of easily producing these in an industrial scale. Provided is a nickel-manganese composite hydroxide represented by General Formula (1): NixMnyMz(OH)2+α and containing a secondary particle formed of a plurality of flocculated primary particles. The nickel-manganese composite hydroxide has a half width of a diffraction peak of a (001) plane obtained by X-ray diffraction measurement of at least 0.10° and up to 0.40° and has a degree of sparsity/density represented by [(void area within secondary particle/cross section of secondary particle)×100](%) of at least 0.5% and up to 10%. Also provided is a production method of the nickel-manganese composite hydroxide.
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
Provided is a method that allows for efficient removal of an impurity metal, and further, the recovery of a valuable metal with high efficiency. The method for recovering a valuable metal (Cu, Ni, and Co) includes the steps of: preparing a charge comprising at least a valuable metal as a raw material; heating and melting the raw material to form an alloy and a slag; and separating the slag to recover the alloy containing the valuable metal, wherein the heating and melting of the raw material comprises charging the raw material into a furnace of an electric furnace equipped with an electrode therein, and further melting the raw material by means of Joule heat generated by applying an electric current to the electrode, or heat generation of an arc itself, and thereby separating the raw material into a molten alloy and a molten slag present over the alloy.
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p.ex. des rognures, pour produire des métaux non ferreux ou leurs composés
H01M 10/54 - Récupération des parties utiles des accumulateurs usagés
B09B 3/40 - Destruction de déchets solides ou transformation de déchets solides en quelque chose d'utile ou d'inoffensif impliquant un traitement thermique, p.ex. évaporation
C22B 23/02 - Obtention du nickel ou du cobalt par voie sèche
15.
RARE EARTH-IRON-NITROGEN-BASED MAGNETIC POWDER, COMPOUND FOR BONDED MAGNET, BONDED MAGNET, AND METHOD FOR PRODUCING RARE EARTH-IRON-NITROGEN-BASED MAGNETIC POWDER
A rare earth-iron-nitrogen-based magnetic powder according to this invention contains, as main constituent components, a rare-earth element (R), iron (Fe), and nitrogen (N). Moreover, this magnetic powder has an average particle size of 1.0-10.0 μm, and contains 22.0-30.0 mass % of a rare-earth element (R) and 2.5-4.0 mass % of nitrogen (N). Further, this magnetic powder includes: a core part having any one crystal structure among a Th2Zn17 type, a Th2Ni17 type, and a TbCu7 type; and a shell layer provided on the surface of the core part and having a thickness of 1-30 nm. The shell layer contains a rare-earth element (R) and iron (Fe) so that the R/Fe atomic ratio is 0.3-5.0, and further contains 0-10 at % (exclusive of 0) of nitrogen (N). Furthermore, this magnetic powder contains compound particles composed of a rare-earth element (R) and phosphorus (P).
The present invention provides near-infrared absorbing particles each containing an intergrowth tungsten bronze crystal wherein: the amount-of-substance ratio of cesium (Cs) to tungsten (W) contained therein (Cs/W) is not less than 0.01 but less than 0.20; the amount-of-substance ratio of oxygen (O) to tungsten (W) contained therein (O/W) is not less than 2.6 but less than 2.99; and tungsten oxide and hexagonal tungsten bronze are mingled in the form of bands.
33 absorption edges are noted as peak A, peak B, and peak C from the lowest absorption energy, the absorption energy difference between the peak tops of peak A and peak C is 12.9 eV or more.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/131 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Électrodes Électrodes composées d'un ou comprenant un matériau actif Électrodes pour accumulateurs à électrolyte non aqueux, p.ex. pour accumulateurs au lithium; Leurs procédés de fabrication Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p.ex. LiCoOx
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p.ex. liants, charges
A bubble measurement device for measurement of bubbles moving in a liquid includes a measurement chamber having an image capturing surface; an image capturing device that captures an image of the bubbles passing along the image capturing surface; an introduction pipe that introduces the bubbles into the measurement chamber; a retaining tank that stores the liquid; a supply pump that draws up the liquid; a drain pipe that returns the liquid into the retaining tank; and a flow velocity adjusting mechanism that adjusts a flow velocity of the liquid passing along the image capturing surface. The flow velocity adjusting mechanism adjusts the flow velocity of the liquid passing along the image capturing surface to be within a range in which the bubbles are measurable. The range is obtained in advance in accordance with an image resolution and a shutter speed of the image capturing device.
The present invention provides a method which is capable of more strictly controlling the oxygen partial pressure required during the melting of a starting material, thereby being capable of recovering a valuable metal more efficiently. A method for recovering valuable metals (Cu, Ni, Co), said method comprising the following steps: a step for preparing, as a starting material, a charge that contains at least phosphorus (P), manganese (Mn) and valuable metals; a step for heating and melting the starting material into a melt, and subsequently forming the melt into a molten material that contains an alloy and slag; and a step for recovering the alloy that contains valuable metals by separating the slag from the molten material. With respect to this method for recovering valuable metals, the oxygen partial pressure in the melt is directly measured with use of an oxygen analyzer when the starting material is heated and melted.
The present invention provides a method which is capable of more strictly controlling the oxygen partial pressure required during the melting of a starting material, thereby being capable of recovering a valuable metal more efficiently. A method for recovering valuable metals (Cu, Ni, Co), said method comprising the following steps: a step for preparing, as a starting material, a charge that contains at least phosphorus (P), iron (Fe) and valuable metals; a step for heating and melting the starting material into a melt, and subsequently forming the melt into a molten material that contains an alloy and slag; and a step for recovering the alloy that contains valuable metals by separating the slag from the molten material. With respect to this method for recovering valuable metals, the oxygen partial pressure in the melt is directly measured with use of an oxygen analyzer when the starting material is heated and melted.
Provided is a method for producing lithium hydroxide by which it is possible to obtain a high-purity lithium hydroxide by reducing impurities to a predetermined level prior to an electrodialysis conversion step. The lithium hydroxide production method includes steps (1)-(5). (1) Bicarbonation step: a step for blowing carbon dioxide into a slurry in which water and a crude lithium hydroxide are mixed. (2) Decarboxylation step: a step for heating a lithium hydrogen carbonate solution. (3) Acid solution dissolution step: a step for dissolving purified lithium carbonate into an acid solution. (4) Impurities removal step: a step for removing a portion of metal ions from a first lithium-containing solution. (5) Conversion step: a step for converting a lithium salt contained in a second lithium-containing solution into lithium hydroxide by electrodialysis. In this production method, metals other than lithium can be reliably removed and as a result, the lithium hydroxide with higher degree of purity can be obtained.
KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION (Japon)
SUMITOMO METAL MINING CO., LTD. (Japon)
Inventeur(s)
Hirajima Tsuyoshi
Miki Hajime
Suyantara Gde Pandhe Wisnu
Sasaki Keiko
Tanaka Yoshiyuki
Takida Eri
Abrégé
Provided is an ore dressing method that can obtain a low-arsenic-grade concentrate from a high-arsenic-grade starting material. The ore dressing method has: a repulping step for obtaining a mineral slurry by adding water to a starting material that contains an arsenic-free sulfide mineral, i.e., a sulfide mineral that does not contain arsenic, and an arsenic-containing sulfide mineral, i.e., a copper sulfide mineral that contains arsenic; a pH adjustment step for adjusting the pH of the liquid phase of the mineral slurry to at least 10; a conditioning step for adding an oxidizing agent and an alkali metal xanthate to the mineral slurry; and a flotation step for carrying out flotation using the mineral slurry to effect separation of the starting material into: a floating ore that has a higher grade of arsenic-free sulfide mineral than the starting material, and a sedimented ore that has a higher grade of arsenic-containing sulfide mineral than the starting material. The starting material contains 4.4-5.8 weight parts of arsenic per 100 weight parts of copper.
Provided is a method for manufacturing granulated bodies for lithium adsorption that have high adsorption capabilities, are more durable, and easily maintain shape. This method for manufacturing granulated bodies for lithium adsorption includes: a kneading step for kneading together a powder of a precursor of a lithium adsorption agent, an organic binder, and a curing agent for promoting curing of the organic binder to obtain a kneaded article; a granulation step for molding the kneaded article to obtain granulated bodies; and a firing step for firing the granulated bodies at 90-120°C inclusive to obtain granulated bodies for lithium adsorption. In this state, it is possible to obtain granulated bodies for lithium adsorption that have high adsorption capabilities, are durable, and easily maintain shape.
Provided is a method for separating impurities and cobalt without using an electrolysis process from a cobalt chloride solution containing impurities and producing a high purity cobalt sulfate. The production method includes: a first solvent extraction step (S1) of bringing an organic solvent containing an alkyl phosphoric acid-based extractant into contact with a cobalt chloride solution containing impurities, and extracting zinc, manganese, and calcium into the organic solvent to separate to remove zinc, manganese, and calcium; a copper removal step (S2) of adding a sulfurizing agent to a cobalt chloride solution and generating a precipitate of sulfide of copper to separate to remove copper; a second solvent extraction step (S3) of bringing an organic solvent containing a carboxylic acid-based extractant into contact with a cobalt chloride solution and back extracting cobalt with sulfuric acid after extracting cobalt into the organic solvent to obtain cobalt sulfate solution; and a crystallization step (S4) of the cobalt sulfate solution obtained after having undergone through the second solvent extraction step (S3). These steps are sequentially executed. Without using an electrolysis process, a high purity cobalt sulfate is directly produced by separating cobalt and impurities containing manganese.
A positive electrode active material that can achieve high thermal stability at low cost is provided.
A positive electrode active material that can achieve high thermal stability at low cost is provided.
Provided is a positive electrode active material for a lithium ion secondary battery, the positive electrode active material containing a lithium-nickel-manganese composite oxide, in which metal elements constituting the lithium-nickel-manganese composite oxide include lithium (Li), nickel (Ni), manganese (Mn), cobalt (Co), titanium (Ti), niobium (Nb), and optionally zirconium (Zr), an amount of substance ratio of the elements is represented as Li:Ni:Mn:Co:Zr:Ti:Nb=a:b:c:d:e:f:g (provided that, 0.97≤a≤1.10, 0.80≤b≤0.88, 0.04≤c≤0.12, 0.04≤d≤0.10, 0≤e≤0.004, 0.003g are satisfied, and an amount of lithium to be eluted in water when the positive electrode active material is immersed in water is 0.20% by mass or less with respect to the entire positive electrode active material.
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/131 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Électrodes Électrodes composées d'un ou comprenant un matériau actif Électrodes pour accumulateurs à électrolyte non aqueux, p.ex. pour accumulateurs au lithium; Leurs procédés de fabrication Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p.ex. LiCoOx
The method for producing a positive electrode active material for a lithium ion secondary battery includes preparing a mixture containing at least a nickel-manganese composite compound, a lithium compound, and optionally one or both of a titanium compound and a niobium compound. The method also includes firing the mixture from 750° C. to 1000° C. so as to obtain the lithium-nickel-manganese composite oxide, in which the nickel-manganese composite compound contains at least nickel, manganese, and an element M, an amount of substance ratio (z) of titanium and an amount of substance ratio (w) of niobium to a total amount of substance of nickel, manganese, the element M, titanium, and niobium in the mixture satisfy 0.005≤z≤0.05, 0.001w, and at least a part of the niobium is segregated to a grain boundary between primary particles.
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
27.
POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM ION SECONDARY BATTERIES, METHOD FOR PRODUCING SAID POSITIVE ELECTRODE ACTIVE MATERIAL, AND LITHIUM ION SECONDARY BATTERY
A positive electrode active material for a lithium ion secondary battery including a coating layer, wherein, a substance quantity ratio is represented by Li:Ni:Co:M=t:1−x−y:x:y (wherein, M is at least one element selected from Mg and else, 0.95≤t≤1.20, 0
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/131 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Électrodes Électrodes composées d'un ou comprenant un matériau actif Électrodes pour accumulateurs à électrolyte non aqueux, p.ex. pour accumulateurs au lithium; Leurs procédés de fabrication Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p.ex. LiCoOx
The present invention provides a method for efficiently obtaining a solution that contains nickel and/or cobalt from lithium ion battery waste or the like, which is an alloy that contains nickel and/or cobalt and copper. The present invention is a treatment method for an alloy, the method being used for the purpose of obtaining a solution that contains nickel and/or cobalt from an alloy that contains nickel and/or cobalt and copper. This treatment method for an alloy comprises a leaching step in which the alloy is subjected to a leaching treatment by adding an acid solution to the alloy in the coexistence of a sulfurizing agent, thereby obtaining a leachate and a leaching residue; and in the leaching step, the leaching treatment is carried out while maintaining the copper concentration in the reaction solution within the range of 0.5 g/L to 15 g/L by adding a divalent copper ion source thereto. Moreover, in the leaching step, the leaching treatment is carried out while maintaining the redox potential of the reaction solution at 50 mV or more, using a silver/silver chloride electrode as a reference electrode.
C22B 3/06 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés par lixiviation dans des solutions inorganiques acides
C22B 3/44 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par des procédés chimiques
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p.ex. des rognures, pour produire des métaux non ferreux ou leurs composés
Provided is a method for producing a lithium-containing solution that allows increasing a content rate of lithium in a solution after an eluting step, and suppressing an amount of an eluted solution used in a process after the eluting step, thus suppressing production cost of lithium.
Provided is a method for producing a lithium-containing solution that allows increasing a content rate of lithium in a solution after an eluting step, and suppressing an amount of an eluted solution used in a process after the eluting step, thus suppressing production cost of lithium.
A method for producing a lithium-containing solution includes an adsorption step of bringing a lithium adsorbent obtained from lithium manganese oxide in contact with a low lithium-containing solution to obtain post-adsorption lithium manganese oxide, an eluting step of bringing the post-adsorption lithium manganese oxide in contact with an acid-containing solution to obtain an eluted solution, and a manganese oxidation step of oxidating manganese to obtain a lithium-containing solution with a suppressed manganese concentration. The adsorption step, the eluting step, and the manganese oxidation step are performed in this order, and the acid-containing solution includes the eluted solution with acid added. The method allows the usage amount of the acid in the eluting step to be suppressed, the content rate of lithium in the eluted solution after the eluting step to be increased, and thus the production cost of the lithium-containing solution to be suppressed.
B01J 49/53 - Régénération ou réactivation des échangeurs d'ions; Appareillage à cet effet caractérisés par les réactifs de régénération pour échangeurs cationiques
30.
METHOD FOR MEASURING STATE OF SUBSTANCE AND DEVICE FOR MEASURING STATE OF SUBSTANCE
NATIONAL UNIVERSITY CORPORATION CHIBA UNIVERSITY (Japon)
Inventeur(s)
Naito, Motoyuki
Sri Sumantyo, Josaphat Tetuko
Takahashi, Ayaka
Abrégé
This method for measuring the state of a substance comprises: an irradiation step for irradiating a substance in a closed space with electromagnetic waves; a reception step for receiving the electromagnetic waves; and a data processing step for performing data processing of the electromagnetic waves received in the reception step. In the irradiation step, a chirped pulse wave is used as the electromagnetic wave.
G01N 22/00 - Recherche ou analyse des matériaux par l'utilisation de micro-ondes ou d'ondes radio, c. à d. d'ondes électromagnétiques d'une longueur d'onde d'un millimètre ou plus
To provide a thick film resistor paste for a resistor having a smaller resistance change rate and excellent surge resistance, a thick film resistor using the thick film resistor paste, and an electronic component provided with the thick film resistor. A thick film resistor paste comprises a lead-ruthenate-containing glass powder and an organic vehicle, the lead-ruthenate-containing glass powder comprises 10 to 70 mass % of lead ruthenate, a glass composition of the lead-ruthenate-containing glass powder comprises 3 to 30 mass % of silicon oxide, 30 to 90 mass % of lead oxide. 5 to 50 mass % of boron oxide relative to 100 mass % of glass components, and, a combined amount of silicon oxide, lead oxide and boron oxide by mass % is 50 mass % or more relative to 100 mass % of the glass components.
H01C 17/065 - Appareils ou procédés spécialement adaptés à la fabrication de résistances adaptés pour déposer en couche le matériau résistif sur un élément de base par des techniques de film épais, p.ex. sérigraphie
H01C 7/00 - Résistances fixes constituées par une ou plusieurs couches ou revêtements; Résistances fixes constituées de matériau conducteur en poudre ou de matériau semi-conducteur en poudre avec ou sans matériau isolant
An alloy treatment method is provided, in which a solution containing nickel and/or cobalt is obtained from an alloy containing nickel and/or cobalt and also containing copper and zinc, the method comprising: a leaching step for subjecting the alloy to a leaching treatment with an acid under the condition where a sulfating agent is present to produce a leachate; a reduction step for subjecting the leachate to a reduction treatment using a reducing agent to produce a reduced solution; an oxidation/neutralization step for adding an oxidizing agent and a neutralizing agent to the reduced solution to produce a neutralized solution containing nickel and/or cobalt and also containing zinc; and a solvent extraction step for subjecting the neutralized solution to a solvent extraction procedure using an acidic phosphorus compound-based extractant to produce a solution containing nickel and/or cobalt.
C22B 3/00 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p.ex. des rognures, pour produire des métaux non ferreux ou leurs composés
C22B 3/38 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par extraction liquide-liquide utilisant des composés organiques contenant du phosphore
The thick film resistor paste for a resistor has no abnormalities of cracks in appearance and sufficient surge resistance, especially for low resistance, while using lead borosilicate glass. The thick film resistor paste comprises a silver powder or a palladium powder, or a mixture of both of the silver powder and the palladium powder, a ruthenium-oxide-containing glass powder and an organic vehicle, the ruthenium-oxide-containing glass powder comprises 10 to 60 mass % of ruthenium oxide, a glass composition of the ruthenium-oxide-containing glass powder comprises 3 to 60 mass % of silicon oxide, 30 to 90 mass % of lead oxide, 5 to 50 mass % of boron oxide relative to 100 mass % of glass components, and, a combined amount of silicon oxide, lead oxide and boron oxide by mass % is 50 mass % or more relative to 100 mass % of the glass components.
C03C 4/14 - Compositions pour verres ayant des propriétés particulières pour verre électro-conducteur
C03C 8/16 - Mélanges de frittes vitreuses contenant des additifs, p.ex. des agents opacifiants, des colorants, des agents de broyage agents vecteurs ou de suspension, p.ex. suspension
C03C 8/10 - Compositions en verre fritté, c. à d. broyées ou sous forme de poudre contenant du plomb
H01C 7/00 - Résistances fixes constituées par une ou plusieurs couches ou revêtements; Résistances fixes constituées de matériau conducteur en poudre ou de matériau semi-conducteur en poudre avec ou sans matériau isolant
The present invention is a method for treating an alloy, by which a solution that contains nickel and/or cobalt is obtained from an alloy that contains copper, zinc, and nickel and/or cobalt, said method comprising: a leaching process wherein a leachate is obtained by subjecting the alloy to a leaching treatment by means of an acid in the coexistence of a sulfurizing agent; a reduction process wherein the leachate is subjected to a reduction treatment with use of a reducing agent; and an ion exchanging process wherein a solution that contains nickel and/or cobalt is obtained by bringing a solution, which has been obtained in the reduction process, into contact with an amino phosphoric acid-based chelate resin, thereby having zinc adsorbed on the amino phosphoric acid-based chelate resin.
To provide a thick film resistor paste for a resistor having no abnormalities of cracks in appearance and sufficient surge resistance, especially for low resistance, while using lead borosilicate glass, a thick film resistor using the thick film resistor paste, and an electronic component provided with the thick film resistor. A thick film resistor paste comprises a ruthenium-oxide-containing glass powder and an organic vehicle, the ruthenium-oxide-containing glass powder comprises 10 to 60 mass % of ruthenium oxide, a glass composition of the ruthenium-oxide-containing glass powder comprises 60 mass % or less of silicon oxide, 30 to 90 mass % of lead oxide, 5 to 50 mass % of boron oxide relative to 100 mass % of glass components, and, a combined amount of silicon oxide, lead oxide and boron oxide by mass % is 50 mass % or more relative to 100 mass % of the glass components.
H01C 17/065 - Appareils ou procédés spécialement adaptés à la fabrication de résistances adaptés pour déposer en couche le matériau résistif sur un élément de base par des techniques de film épais, p.ex. sérigraphie
H01C 7/00 - Résistances fixes constituées par une ou plusieurs couches ou revêtements; Résistances fixes constituées de matériau conducteur en poudre ou de matériau semi-conducteur en poudre avec ou sans matériau isolant
Provided is a thermally conductive composition that is capable of effectively suppressing pump out. Specifically provided is a thermally conductive composition that contains a base oil composition and an inorganic powder filler, wherein: the base oil composition contains a base oil, a thermoplastic resin that has a softening point of 50-150° C., and a thixotropic agent; and when shaped into a thermally conductive sheet of the thermally conductive composition at a temperature not less than the softening point of the thermoplastic resin, the type-A hardness (in compliance with JIS K 6253-3) of the thermally conductive sheet as measured using a durometer is 30-80.
The purpose is to provide a method for recovering a valuable metal at low cost. The present invention is a method for recovering a valuable metal, the method comprising a step of preparing a burden material containing at least a valuable metal to obtain a raw material, a step of subjecting the raw material to an oxidation treatment and a reductive melting treatment to produce a reduced product containing an alloy and a slag, and a step of separating the slag from the reduced product to collect the alloy, in which the copper grade, which is a ratio of the mass of copper (Cu) to the total mass of nickel (Ni), cobalt (Co) and copper (Cu) contained in the alloy (i.e., a Cu/(Ni+Co+Cu) ratio), is adjusted to 0.250 or more.
Provided is a thermally conductive paste which can be applied satisfactorily using conventional coating methods due to the ability to be formed into a paste, and which effectively suppresses pump out. Specifically provided is a thermally conductive paste containing a base oil composition and an inorganic powder filler, wherein the base oil composition contains a base oil, a thermoplastic resin that has a softening point of 50-150° C., and a volatile solvent, and the solubility parameter of the volatile solvent as predicted using Fedor’s method is 9.0-12.0 cal(½)/cm(3/2).
Provided is a thermally conductive composition that can easily be shaped into a sheet or the like, and is capable of effectively suppressing pump out. Specifically provided is a thermally conductive composition that includes a base oil composition and an inorganic powder filler, wherein: the base oil composition contains a base oil, a thermoplastic resin that has a softening point of 50-150° C., and a thixotropic agent; the inorganic powder filler contains a first inorganic powder filler having an average particle size in the range of 10-100 µm, a second inorganic powder filler, and a third inorganic powder filler; and the thermoplastic resin is included at a proportion of 50-200 parts by mass and the thixotropic agent is included at a proportion of 1-10 parts by mass per 100 parts by mass of the base oil.
METAL COMPOSITE HYDROXIDE, METHOD FOR PRODUCING SAME, POSITIVE ELECTRODE ACTIVE MATERIAL FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERIES, METHOD FOR PRODUCING SAID POSITIVE ELECTRODE ACTIVE MATERIAL, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY USING SAID POSITIVE ELECTRODE ACTIVE MATERIAL
A method for producing a metal composite hydroxide, which includes a first crystallization process of obtaining first metal composite hydroxide particles by supplying a first raw material aqueous solution containing a metal element and an ammonium ion donor to a reaction tank, adjusting a pH of a reaction aqueous solution in the reaction tank, and performing a crystallization reaction and a second crystallization process of forming a tungsten-concentrated layer on a surface of the first metal composite hydroxide particles and obtaining second metal composite hydroxide particles by supplying a second raw material aqueous solution containing a metal element and a more amount of tungsten than the first raw material aqueous solution and an ammonium ion donor to a reaction aqueous solution containing the first metal composite hydroxide particles, adjusting a pH of the reaction aqueous solution, and performing a crystallization reaction, and the like.
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
42.
METHOD FOR PRODUCING LITHIUM-CONTAINING SOLUTION AND METHOD FOR PRODUCING LITHIUM HYDROXIDE
Provided are a method for producing a lithium-containing solution and a method for producing lithium hydroxide that make it possible to raise the purity of a lithium compound finally obtained. This method for producing a lithium-containing solution includes an ion exchange step for obtaining a lithium-containing solution containing less of a prescribed metal element than a pre-treatment lithium-containing solution by using an ion-exchange resin. In the ion exchange step, the pre-treatment lithium-containing solution is passed through a column equipped with the ion-exchange resin to remove the prescribed metal element. A predetermined amount of the pre-treatment lithium-containing solution from when the pre-treatment lithium-containing solution begins to flow through the column is not included in the lithium-containing solution. This makes it possible to remove the metal element to be removed that is included in the solution passing through in the initial stage while suppressing the amount of pre-treatment lithium-containing solution wasted and to reduce the metal content to be removed in the lithium-containing solution.
B01J 45/00 - Echange d'ions dans lequel se forme un complexe ou un chélate; Utilisation d'une substance comme échangeur d'ions formant des complexes ou des chélates; Traitement d'une substance en vue d'améliorer ses propriétés d'échange d'ions formant des complexes ou des chélates
C02F 1/42 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par échange d'ions
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
Provided is an infrared absorbing fiber comprising a fiber and organic/inorganic hybrid infrared absorbing particles. The organic/inorganic hybrid infrared absorbing particles include: infrared absorbing particles; and a coating resin coating at least a part of the surface of the infrared absorbing particles. The content ratio of the infrared absorbing particles is 15-55% by mass. The organic/inorganic hybrid infrared absorbing particles are provided to at least one section selected from the inside and the surface of the fibers.
Provided is a simulation device for analyzing the behavior of a granular material that includes a plurality of particles, said simulation device having an adhesive force calculation unit that calculates the adhesive force of the particles, and a particle behavior analysis unit that uses the adhesive force calculated by the adhesive force calculation unit to analyze the behavior of the plurality of particles, wherein the adhesive force calculation unit calculates the adhesive force on the basis of the contact radius of contact surfaces between the particles and a contact object that comes into contact with the particles.
G16Z 99/00 - Matière non prévue dans les autres groupes principaux de la présente sous-classe
G01N 15/00 - Recherche de caractéristiques de particules; Recherche de la perméabilité, du volume des pores ou de l'aire superficielle effective de matériaux poreux
45.
METHOD FOR RECOVERING VALUABLE METALS FROM WASTE BATTERY
Provided is a method for recovering valuable metals contained in waste batteries, wherein valuable metals can be efficiently recovered while suppressing a reduction in recovery rate. The method according to the present invention for recovering valuable metals from waste batteries comprises: a roasting step S1 for roasting a waste battery; a crushing step S2 for inserting an obtained roasted material into a crushing container, and crushing the roasted material using a chain mill; and a sieving step S3 for sieving an obtained crushed material and separating the crushed material into sieve upper material and sieve lower material. A chain mill equipment that is used in the crushing process is provided with: a rotating axial rod vertically erected with respect to a bottom surface of a crushing container; and a chain attached to a side surface of the rotating axial rod.
H01M 10/54 - Récupération des parties utiles des accumulateurs usagés
B02C 13/16 - Désagrégation par appareils à batteurs rotatifs à arbre du rotor vertical, p.ex. combinés avec des dispositifs de tamisage à batteurs articulés sur le rotor
B02C 23/10 - Séparation ou triage de matériaux, associé au broyage ou à la désagrégation au moyen d'un séparateur situé dans le passage de décharge de la zone de broyage ou de désagrégation
B03B 9/06 - Disposition générale d'un atelier de séparation, p.ex. schéma opératoire spécialement adapté aux ordures
B09B 3/40 - Destruction de déchets solides ou transformation de déchets solides en quelque chose d'utile ou d'inoffensif impliquant un traitement thermique, p.ex. évaporation
B09B 3/70 - Traitement chimique, p.ex. ajustement du pH ou oxydation
Provided is a method for efficiently obtaining a solution containing nickel and/or cobalt from alloys containing nickel and/or cobalt and copper, such as waste lithium-ion batteries. The present invention pertains to an alloy treatment method for obtaining a solution containing nickel and/or cobalt from alloys containing nickel and/or cobalt and copper, the method comprising: a leaching step S1 in which an acid solution is added to the alloys in the presence of a sulfurizing agent to perform a leaching treatment and obtain a leachate and a leaching residue; and a cementation step S2 in which a reducing agent and a sulfurizing agent are added to the resulting leachate to perform a copper removal treatment for sulfurizing at least copper contained in the leachate and obtain a post-copper removal solution and a copper removal residue, wherein the copper removal residue obtained through the copper removal treatment in the cementation step S2 is repeatedly subjected to the leaching step S1 and subjected to a leaching treatment together with the alloys.
C22B 3/06 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés par lixiviation dans des solutions inorganiques acides
C22B 3/44 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par des procédés chimiques
C22B 3/46 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par des procédés chimiques par substitution, p.ex. par cémentation
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p.ex. des rognures, pour produire des métaux non ferreux ou leurs composés
Provided is a method for producing lithium hydroxide that enables an increase in the purity of the obtained lithium hydroxide. This method for producing lithium hydroxide comprises a lithium adsorption step, a lithium elution step, an impurity removal step, and a conversion step. The impurity removal step comprises: a carbonation step (3A) : a step for obtaining a crude lithium carbonate by the addition of a carbonate source to a second lithium-containing solution; a bicarbonation step (3B) : a step for obtaining a lithium bicarbonate solution by blowing carbon dioxide into a slurry containing the crude lithium carbonate; a decarbonation step (3C) : a step for obtaining purified lithium carbonate by heating the lithium bicarbonate solution; and an acid solution dissolution step (3D) : a step for obtaining a third lithium-containing solution by dissolving the purified lithium carbonate in an acid solution. According to this embodiment, metals other than lithium can be reliably removed and as a consequence the purity of the resulting lithium hydroxide can be increased.
A simulation device for analyzing behavior of a granular material that includes a plurality of particles includes a first parameter acquisition unit that acquires a first parameter including a parameter relating to the granular material, a second parameter calculation unit that calculates a second parameter, when a particle group including the plurality of particles is coarsely viewed as a single coarse-view particle, the second parameter relating to the coarse-view particle, and a coarse-view particle behavior analysis unit that analyzes a behavior of the coarse-view particle based on the first parameter and the second parameter. The second parameter calculation unit calculates the second parameter by solving a characteristic equation that uses a relationship between an elastic energy of the particle group and an elastic energy of the coarse-view particle.
A method for producing lithium hydroxide that allows reducing a load of removing divalent or more ions with an ion-exchange resin is provided. The method for producing lithium hydroxide includes steps (1) to (3) below. (1) a neutralization step: a step of adding an alkali to a first lithium chloride containing liquid to obtain a post-neutralization liquid, (2) an ion-exchange step: a step of bringing the post-neutralization liquid into contact with an ion-exchange resin to obtain a second lithium chloride containing liquid, and (3) a conversion step: a step of electrodialyzing the second lithium chloride containing liquid to obtain a lithium hydroxide containing liquid. Since this producing method allows roughly removing divalent or more ions in the neutralization step, a load of metal removal with the ion-exchange resin is reducible.
B01D 15/36 - Adsorption sélective, p.ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction ionique, p.ex. échange d'ions, paire d'ions, suppression d'ions ou exclusion d'ions
A method is provided which enables selectively leaching nickel and/or cobalt from an alloy that contains copper and nickel and/or cobalt in a waste lithium ion battery. This alloy processing method involves obtaining a solution that contains nickel and/or cobalt from an alloy that contains copper and nickel and/or cobalt, wherein the alloy processing method involves a leaching step for adding an acid solution to the alloy in a state in which a sulfurizing agent is also present, and obtaining a leachate and a leaching residue by performing leaching processing while controlling the redox potential (the reference electrode being a silver / silver chloride electrode) to at least 100mV and less than 250mV. In the leaching processing in the leaching step, an operation is performed that temporarily decreases the redox potential to less than or equal to -100mV.
C22B 3/06 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés par lixiviation dans des solutions inorganiques acides
C22B 3/44 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par des procédés chimiques
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p.ex. des rognures, pour produire des métaux non ferreux ou leurs composés
An electromagnetic wave absorbing particle dispersion includes electromagnetic wave absorbing particles containing cesium tungsten oxide represented by a general formula CsxW1-yO3-z and having a crystal structure of an orthorhombic crystal structure or a hexagonal crystal structure, x, y, and z being 0.2≤x≤0.4, 0
A magnetostrictive member is formed of a crystal of an iron-based alloy having magnetostrictive characteristics and is a plate-like body having a long-side direction and a short-side direction. At least one of a front face and a back face of the plate-like body has a plurality of grooves extending in the long-side direction.
H01L 41/47 - Procédés ou appareils spécialement adaptés à l'assemblage, la fabrication ou au traitement de dispositifs magnétostrictifs, ou de leurs parties constitutives
Provided is a method for treating an alloy by which nickel and/or cobalt can be selectively isolated from an alloy that contains copper as well as nickel and/or cobalt, in a waste lithium ion battery. The present invention is a method for treating an alloy, by which a solution that contains nickel and/or cobalt is obtained from an alloy that contains copper as well as nickel and/or cobalt, the method including: a leaching step in which a leachate is obtained by subjecting an alloy to an acid-based leaching treatment under conditions in which a sulfurizing agent is also present; a reduction step in which a reduced solution is obtained by subjecting the leachate to a reduction treatment using a reducing agent; and an oxidation/neutralization step in which a solution that contains nickel and/or cobalt is obtained by adding an oxidizing agent and also a neutralizing agent to the reduced solution.
The present invention provides a method for producing a valuable metal at a low cost. A method according to the present invention comprises at least: a preparation step in which a starting material that contains Li, Mn, Al and a valuable metal is prepared; a reduction melting step in which the starting material is subjected to a reduction melting process so as to obtain a reduced product that contains slag and an alloy containing the valuable metal; and a slag separation step in which the slag is separated from the reduced product, thereby recovering the alloy. In one or both of the preparation step and the reduction melting step, a flux that contains calcium (Ca) is added; the molar ratio of Li to Al (Li/Al ratio) in the slag that is obtained by the reduction melting process is set to 0.25 or more, while the molar ratio of Ca to Al (Ca/Al ratio) in the slag is set to 0.30 or more; the Mn amount in the slag is set to 5.0% by mass or more; and the oxygen partial pressure in a melt that is obtained by melting the starting material is controlled to be 10-14to 10-11 in the reduction melting process.
Provided is a method for effectively obtaining a solution containing nickel and/or cobalt from an alloy that contains copper as well as nickel and/or cobalt, in a waste lithium-ion battery or the like. The present invention is an alloy processing method for obtaining a solution containing nickel and/or cobalt from an alloy that contains copper as well as nickel and/or cobalt, said method including a leaching step for carrying out an acid solution leaching treatment on an alloy-containing slurry in the presence of a sulfurising agent to obtain a leachate and a leaching residue. In the leaching step, the leaching treatment is carried out with the initial concentration of the alloy-containing slurry adjusted to between 100 g/L and 250 g/L. Moreover, in the leaching step, the leaching treatment is preferably carried out while controlling the redox potential (using a silver/silver chloride electrode as a reference electrode) to 200 mV or less. Furthermore, in the leaching step, the leaching treatment is preferably carried out in the presence of the sulfurising agent in an amount in the range of 1.05 to 1.25 equivalent weight (S-mol/Cu-mol) in relation to the amount of copper contained in the alloy.
C22B 3/06 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés par lixiviation dans des solutions inorganiques acides
C22B 3/44 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par des procédés chimiques
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p.ex. des rognures, pour produire des métaux non ferreux ou leurs composés
56.
POSITIVE ELECTRODE ACTIVE MATERIAL, HIGH-TEMPERATURE OPERATION TYPE LITHIUM-ION POLYMER SECONDARY BATTERY, HIGH-TEMPERATURE OPERATION TYPE LITHIUM ION INORGANIC ALL-SOLID-STATE SECONDARY BATTERY
A positive electrode active material that is used in a high-temperature operation type lithium ion solid secondary battery, wherein the positive electrode active material is made of oxide particles, which contains a first transition element and does not include an alkali metal.
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p.ex. liants, charges
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
H01M 10/0565 - Matériaux polymères, p.ex. du type gel ou du type solide
H01M 4/52 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer
H01M 4/50 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse
H01M 4/48 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques
The present invention provides a conductive paste for gravure printing, the conductive paste being able to be suppressed in separation between a conductive powder and a ceramic powder, thereby having good viscosity stability over time. The present invention provides a conductive paste for gravure printing, the conductive paste containing a conductive powder, a ceramic powder, a dispersant, a binder resin and an organic solvent, wherein: the dispersant contains a carboxylic acid-based polymer dispersant that has a weight average molecular weight of 5,000 or more; and the carboxylic acid-based polymer dispersant is contained in an amount of not less than 0.01% by mass but less than 2.0% by mass relative to the total amount of the conductive paste.
Provided is a slurry treatment apparatus includes: a treatment tank for performing any treatment of a solid-liquid reaction, a solid-gas reaction, a gas-liquid reaction, and solid-liquid separation on a slurry containing a metal or a metal compound; a first pipe; a second pipe; and a pump, in which one end of the first pipe has a suction opening for sucking the slurry from the treatment tank, the other end of the first pipe is connected to a suction port of the pump, one end of the second pipe is linked to a discharge port of the pump, the other end of the second pipe is connected to a microbubble generator, and the microbubble generator includes a throttle that throttles a flow of the slurry and a gas supply tube for supplying gas to the throttle, and supplies microbubbles to the slurry in the treatment tank.
B01J 8/08 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solides; Appareillage pour de tels procédés avec des particules mobiles
C22B 3/22 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par des procédés physiques, p.ex. par filtration, par des moyens magnétiques
C22B 3/00 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés
B01F 23/00 - Mélange, p.ex. dispersion ou émulsion, selon les phases à mélanger
B01F 23/2326 - Mélange de gaz avec des liquides en introduisant des gaz dans des milieux liquides, p.ex. pour produire des liquides aérés en utilisant des moyens de mélange à écoulement pour introduire les gaz, p.ex. des chicanes en ajoutant le composant principal de l’écoulement par des moyens d'aspiration, p. ex. en utilisant un éjecteur
Provided is a method for recovering valuable metals that makes it possible to efficiently recover valuable metals at a high recovery rate. The present invention is a method for recovering the valuable metal from a raw material that contains the valuable metal. This method comprises: a preparation step for preparing a raw material; a melting step for introducing the raw material into a melting furnace and heating and melting the raw material to yield an alloy and a slag; and a slag separation step for separating the slag and recovering a valuable metal-containing alloy. The redox degree is adjusted in the melting step by introducing, as a reducing agent, scrap of a wound body, the wound body being an electrode assembly in which a positive electrode and a negative electrode are wound insulated from each other by a separator and carbon is used in the negative electrode.
Provided is a technology for executing stable processing by extending the furnace refractory life in an electric furnace for heating and melting a raw material containing a valuable metal. The present invention provides an electric furnace 1 for heating and melting a raw material 2 containing a valuable metal, the electric furnace 1 including: a furnace body 11; and a plurality of electrodes 12 that are provided so as to hang down into the interior of the furnace body 11 from a top section thereof. The raw material 2 is heated and melted in the furnace body 11 by energizing the electrodes 12 and a molten material consisting of a slag 3 and a metal 4 is generated. The electric furnace 1 is configured so that the overall heat transfer coefficient of a side wall 11B of the furnace body 11 is lower than the overall heat transfer coefficient of a side wall 11A of the furnace body 11, the side wall 11B coming into contact with a layer of the metal 4 formed in a bottom layer, the side wall 11A coming into contact with a layer of the slag 3 formed in a top layer, and said layers being formed in the molten material due to gravity separation.
xyzz (wherein the element M represents one or more elements that are selected from among H, He, an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi and I; W represents tungsten; O represents oxygen; 0.001 ≤ x/y ≤ 1; and 3.0 < z/y).
C09D 11/101 - Encres spécialement adaptées aux procédés d’imprimerie mettant en œuvre la réticulation par énergie ondulatoire ou par radiation de particules, p.ex. réticulation par UV qui suit l’impression
62.
POSITIVE ELECTRODE ACTIVE MATERIAL, HIGH-TEMPERATURE OPERATION TYPE LITHIUM-ION POLYMER SECONDARY BATTERY, HIGH-TEMPERATURE OPERATION TYPE LITHIUM ION INORGANIC ALL-SOLID-STATE SECONDARY BATTERY
A positive electrode active material that is used in a high-temperature operation type lithium ion solid secondary battery, wherein the positive electrode active material is made of oxide particles, which contains a first transition element and does not include an alkali metal.
H01M 10/39 - Accumulateurs non prévus dans les groupes fonctionnant à haute température
H01M 4/131 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Électrodes Électrodes composées d'un ou comprenant un matériau actif Électrodes pour accumulateurs à électrolyte non aqueux, p.ex. pour accumulateurs au lithium; Leurs procédés de fabrication Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p.ex. LiCoOx
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
Provided are an antifungal emulsion coating and an antifungal fine particle dispersion that exhibit an excellent long-term antifungal effect even when exposed to moist hot environments. This antifungal emulsion coating comprises a resin emulsion and composite tungsten oxide fine particles (surface-treated composite tungsten oxide fine particles) having a surface coated with a coating film that contains at least one selection from hydrolysis products of metal chelate compounds, polymers of hydrolysis products of metal chelate compounds, hydrolysis products of metal cyclic oligomer compounds, and polymers of hydrolysis products of metal cyclic oligomer compounds. The surface-treated composite tungsten oxide fine particles maintain excellent photothermal conversion characteristics even when exposed to moist hot environments, and due to this the antifungal emulsion coating comprising a resin emulsion and the surface-treated composite tungsten oxide fine particles has the ability to exhibit excellent antifungal effects on a long-term basis.
NATIONAL UNIVERSITY CORPORATION YAMAGATA UNIVERSITY (Japon)
Inventeur(s)
Igari, Atsushi
Chonan, Takeshi
Kawaguchi, Seigou
Kudo, Takumi
Abrégé
Provided are organic-inorganic hybrid infrared ray-absorbing particles which comprise a resin capsule and infrared ray-absorbing particles placed in the resin capsule, in which the content ratio of the infrared ray-absorbing particles is 15 to 55% by mass inclusive.
NONAQUEOUS ELECTROLYTE SECONDARY BATTERY POSITIVE ELECTRODE ACTIVE MATERIAL AND METHOD FOR PRODUCING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY WHICH USES POSITIVE ELECTRODE ACTIVE MATERIAL
The present invention provides a composite oxide that can achieve a high low-temperature output characteristic, a method for manufacturing the same, and a positive electrode active material in which the generation of soluble lithium is suppressed and a problem of gelation is not caused during the paste preparation. A positive electrode active material for non-aqueous electrolyte secondary batteries, including a lithium-metal composite oxide powder including a secondary particle configured by aggregating primary particles containing lithium, nickel, manganese, and cobalt, or a lithium-metal composite oxide powder including both the primary particles and the secondary particle. The secondary particle has a porous structure inside as a main inside structure, the slurry pH is 11.5 or less, the soluble lithium content rate is 0.5 [% by mass] or less, the specific surface area is 3.0 to 4.0 [m2/g], and the porosity is more than 50 to 80 [%].
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
G01N 15/08 - Recherche de la perméabilité, du volume des pores ou de l'aire superficielle des matériaux poreux
G01N 21/71 - Systèmes dans lesquels le matériau analysé est excité de façon à ce qu'il émette de la lumière ou qu'il produise un changement de la longueur d'onde de la lumière incidente excité thermiquement
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
68.
GOLD ORE PRETREATMENT METHOD AND GOLD RECOVERY METHOD
KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION (Japon)
SUMITOMO METAL MINING CO., LTD. (Japon)
Inventeur(s)
Sasaki Keiko
Konadu Kojo Twum
Mendoza Florez Diedgo Moizes
Sakai Ryotaro
Suyama Ikumi
Hirajima Tsuyoshi
Aoki Yuji
Murase Nana
Abrégé
Provided are: a gold ore pretreatment method capable of facilitating recovery of gold even when a gold ore contains a sulfide or a carbonaceous component; and a gold recovery method exhibiting a high gold recovery rate. The pretreatment method includes a biological oxidation step in which a gold ore containing a sulfide and iron-oxidizing bacteria are brought into contact with each other and held for a prescribed time. The gold recovery method includes: a pretreatment step for applying pretreatment to a gold ore by means of a pretreatment method; a leaching step for leaching gold from the gold ore to obtain a leachate; an adsorption step for allowing activated carbon to adsorb gold in the leachate; and an elution step for eluting gold from the activated carbon to obtain a gold solution. Because the sulfide enclosing gold particles is oxidatively decomposed by the action of the iron-oxidizing bacteria, the gold particles are liberated, whereby gold recovery is facilitated. As a result, the gold recovery rate can be increased.
C22B 1/00 - Traitement préliminaire de minerais ou de débris ou déchets métalliques
C22B 3/04 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés par lixiviation
C22B 3/18 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés à l'aide de micro-organismes ou d'enzymes, p.ex. de bactéries ou d'algues
C22B 3/24 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par des procédés physiques, p.ex. par filtration, par des moyens magnétiques par adsorption sur des substances solides, p.ex. par extraction avec des résines solides
69.
POSITIVE ELECTRODE ACTIVE MATERIAL FOR ALL-SOLID-STATE LITHIUM ION SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND ALL-SOLID-STATE LITHIUM ION SECONDARY BATTERY
A positive electrode active material for an all-solid-state lithium ion secondary battery, containing: a lithium-metal composite oxide particle having a niobium solid solution layer and a center other than the niobium solid solution layer; and a coating layer coating at least a part of a surface of the lithium-metal composite oxide particle and formed of a compound containing lithium and niobium, an average thickness of the coating layer is 2 nm or more and 1 μm or less, and an average thickness of the niobium solid solution layer is 0.5 nm or more and 20 nm or less.
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
C09D 11/037 - Encres d’imprimerie caractérisées par des particularités autres que la nature chimique du liant caractérisées par le pigment
C09D 11/101 - Encres spécialement adaptées aux procédés d’imprimerie mettant en œuvre la réticulation par énergie ondulatoire ou par radiation de particules, p.ex. réticulation par UV qui suit l’impression
71.
NEAR-INFRARED ABSORBING MATERIAL PARTICLES, NEAR-INFRARED ABSORBING MATERIAL PARTICLE DISPERSING SOLUTION, AND NEAR-INFRARED ABSORBING MATERIAL PARTICLE DISPERSION
Near-infrared absorbing material particles contain composite tungsten oxide particles represented by a general formula MxWyOz, wherein the element M is one or more of elements selected from H, He, an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, wherein the W is tungsten, wherein the O is oxygen, and wherein the x, y, and z satisfy 0.001≤x/y≤1 and 3.0
The present invention provides a method that is capable of selectively obtaining nickel and/or cobalt from an alloy, which contains copper as well as nickel and/or cobalt, in a waste lithium ion battery or the like. A method for processing an alloy according to the present invention comprises: a leaching step S1 in which an alloy that contains copper as well as nickel and/or cobalt is subjected to a leaching treatment by means of an acid solution in the coexistence of a sulfurizing agent, thereby obtaining a leachate and a leaching residue; and a reduction step S2 in which a reducing agent is added to the thus-obtained leachate so as to reduce the leachate, thereby obtaining a post-reduction solution and a reduction residue. This method for processing an alloy is characterized in that the reduction is carried out in the reduction step S2, while controlling the addition amount of the reducing agent so that the redox potential of the leachate is 0 mV or less as determined where a silver/silver chloride electrode is the reference electrode.
C22B 3/04 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés par lixiviation
C22B 3/44 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par des procédés chimiques
C22B 3/46 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par des procédés chimiques par substitution, p.ex. par cémentation
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p.ex. des rognures, pour produire des métaux non ferreux ou leurs composés
Provided is a method for obtaining a solution having a high concentration of nickel and/or cobalt from an alloy that contains copper as well as nickel and/or cobalt, in a waste lithium-ion battery or the like. A method for treating an alloy according to the present invention comprises: a leaching step S1 for subjecting an alloy that contains copper as well as nickel and/or cobalt to a leaching treatment by using an acid solution in the presence of a sulfiding agent to obtain a leachate and a leaching residue; and a reduction step S2 for adding a reducing agent to a part of the obtained leachate and performing a reduction treatment to obtain a post-reduction solution and a reduction residue, wherein in the leaching step S1, the leachate that has not been provided in the reduction treatment in the reduction step S2, is repeatedly used as part or all of the acid solution added in the leaching treatment.
Provided is a method for safely and efficiently recovering a valuable metal from a material including waste lithium ion batteries or the like. The present invention is for producing a valuable metal from a material including the valuable metal, the method comprising: a preparation step for preparing a material including at least Li, Al, and a valuable metal; a reduction and melting step for carrying out a reduction and melting process on the material to obtain a reduced product including a slag and an alloy containing a valuable metal; and a slag separation step for separating the slag from the reduced product to recover the alloy. In the preparation step and/or the reduction and melting step, a flux containing Ca is added to the material. In the reduction and melting step, the reduction and melting process is carried out such that the mass ratio of aluminum oxide / (aluminum oxide + calcium oxide + lithium oxide), in the generated slag, is set to 0.5-0.65, and the slag heating temperature is set to 1400-1600ºC.
C22B 5/02 - Procédés généraux de réduction appliqués aux métaux par voie sèche
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p.ex. des rognures, pour produire des métaux non ferreux ou leurs composés
F27D 1/12 - Carcasses; Garnissages; Parois; Voûtes comportant des dispositifs de refroidissement
C22B 9/10 - Procédés généraux d'affinage ou de refusion des métaux; Appareils pour la refusion des métaux sous laitier électroconducteur ou à l'arc avec des agents d'affinage ou fondants; Emploi de substances pour ces procédés
C22B 23/02 - Obtention du nickel ou du cobalt par voie sèche
C22B 9/10 - Procédés généraux d'affinage ou de refusion des métaux; Appareils pour la refusion des métaux sous laitier électroconducteur ou à l'arc avec des agents d'affinage ou fondants; Emploi de substances pour ces procédés
76.
METHOD FOR MANUFACTURING GRANULATED BODY FOR LITHIUM ADSORPTION
Provided is a method for manufacturing a granulated body for lithium adsorption with which it is possible to sufficiently suppress elution of manganese in an elution step in production of lithium on a commercial basis. This method for manufacturing a granulated body for lithium adsorption comprises: a step for kneading a powder of a precursor of a lithium adsorbent and a binder to obtain a kneaded product; a granulating step for molding the kneaded product to obtain a first granulated body; and a sintering step for sintering the first granulated body to obtain a second granulated body. This configuration makes it possible to change the valence of manganese included in the precursor of the lithium adsorbent from 2 to 4, thereby suppressing elution of manganese in the elution step. This configuration also makes it possible to repeatedly use the lithium adsorbent in the production on a commercial basis. In addition, since the concentration of manganese in an eluent obtained in the elution step can be made low, the load in steps after the elution step can be reduced.
B01J 20/30 - Procédés de préparation, de régénération ou de réactivation
B01J 2/00 - Procédés ou dispositifs pour la granulation de substances, en général; Traitement de matériaux particulaires leur permettant de s'écouler librement, en général, p.ex. en les rendant hydrophobes
Provided are infrared absorbing composite microparticles which are surface-treated infrared absorbing microparticles in each of which the surface of an infrared absorbing microparticle is coated with a coating film containing at least one component selected from a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, and a polymer of a hydrolysis product of a metal cyclic oligomer compound, in which a silicon compound is present in at least one location selected from a location inside the coating film, a location on the coating film and a location in the vicinity of the coating film in each of the infrared absorbing composite microparticles.
Provided is a method for producing high-purity cobalt sulfate by separating impurities and cobalt from a cobalt chloride solution containing impurities without using an electrolysis step. The method involves sequentially performing: a copper removal step (S1) for adding a sulfurizing agent to a cobalt chloride solution containing at least one impurity selected from among copper, zinc, manganese, calcium, and magnesium to produce a precipitate of a sulfide of copper and separate and remove copper; a neutralization step (S2) for adding a neutralizing agent or a carbonizing agent to the cobalt chloride solution, which has been subjected to the copper removal step (S1), to produce cobalt hydroxide or basic cobalt carbonate and separate magnesium; and a leaching step (S3) for adding sulfuric acid to the cobalt hydroxide or basic cobalt carbonate to obtain a cobalt sulfate solution; and a solvent extraction step (S4) for bringing an organic solvent containing an alkylphosphoric acid-based extractant into contact with the cobalt sulfate solution to extract zinc, manganese, and calcium into the organic solvent and separate and remove zinc, manganese, and calcium. The addition of the neutralizing agent or the carbonizing agent in the neutralization step (S2) is performed by a countercurrent flow multistage process.
C22B 3/38 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par extraction liquide-liquide utilisant des composés organiques contenant du phosphore
C22B 3/44 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par des procédés chimiques
79.
ANTIBACTERIAL MATERIAL, ANTIBACTERIAL MATERIAL LIQUID DISPERSION, ANTIBACTERIAL MATERIAL DISPERSION, AND METHOD FOR PRODUCING SAME
Provided is an antibacterial material containing composite tungsten oxide microparticles characterized by being represented by the general formula MxWyOz.
In a bubble measurement device for measuring bubbles moving in a liquid, the bubble measurement device includes a measurement chamber in which the bubbles in the liquid containing solid materials are introduced into the measurement chamber from below the measurement chamber, and providing a transparent slope facing diagonally downward at a position where the introduced bubbles rise, an image capturing device to capture an image of the bubbles passing the transparent slope, an introduction pipe provided below the measurement chamber to introduce the bubbles into the measurement chamber, and a bubble introduction valve that is immersed in the liquid to be measured and performs the introduction and blocking of the bubbles into the introduction pipe.
The present invention provides a method by which a valuable metal is able to be recovered with a high recovery rate by effectively and efficiently separating impurities, in particular iron, from a starting material to be processed. A method for producing a valuable metal that contains cobalt (Co), the method comprising: a preparation step in which a starting material that contains at least iron (Fe) and a valuable metal is prepared; a melting step in which a melt is obtained by heating and melting the starting material, and the melt is subsequently formed into a molten material that contains an alloy and slag; and a slag separation step in which the slag is separated from the molten material, thereby recovering the alloy that contains the valuable metal. In the preparation step, the Fe/Co mass ratio in the starting material is controlled to 0.5 or less; and in the melting step, the Co content in the slag that is obtained by heating and melting the starting material is set to 1% by mass or less.
Woven fabrics, namely, cotton fabrics, jute fabric, ramie fabric; silk cloth; silk fabrics for printing patterns; silk base mixed fabrics; woollen fabric; chemical fiber fabrics; knitted fabrics of wool yarn; knitted fabrics of silk yarn; knitted fabrics of cotton yarn; knitted fabrics of chemical fiber yarn; felt and non-woven textile fabrics; kakebuton, namely, futon quilts; banners of textile; banners of plastic; cloth banners; cloth bunting; flags of textile; flags of plastic; curtains of textile; curtains of plastic; fabric valances; curtains made of textile fabrics; sleeping bags Clothing, namely, coats, sweaters, shirts, suits; skirts, trousers, smocks, overcoats, topcoats; nightwear; pyjamas; bath robes; underwear; corsets being underclothing; brassieres; petticoats; bathing suits; bathing caps; camisoles; tank tops; tee-shirts; sleep masks; aprons being clothing; socks; leg gaiters; fur stoles; shawls; scarves; gloves being clothing; winter gloves; neckties; neckerchiefs; bandanas being neckerchiefs; mufflers as neckscarves; ear muffs being clothing; earbands being clothing; nightcaps; hats; caps being headwear; visors being headwear; waistbands being clothing; headbands being clothing; clothing belts; clothing belts of textile; clothing waist belts; footwear; shoes; slippers; sports shoes; ski boots; gymnastic shoes; riding boots; clothing for sports, namely, athletic uniforms, sport coats, sport shirts, sports skirts, sports pants, sports jackets, sports dresses, sports shirts with short sleeves, sports vests, and sports underwear; ski gloves; cycling gloves; sports jerseys; wet suits for surface watersports
84.
NICKEL COMPOSITE HYDROXIDE AND MANUFACTURING METHOD THEREOF, CATHODE ACTIVE MATERIAL FOR NONAQUEOS-ELECTROLYTE SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF, AND NONAQUEOUS-ELECTROLYTE SECONDARY BATTERY
Provided are a cathode active material having a suitable particle size and high uniformity, and a nickel composite hydroxide as a precursor of the cathode active material. When obtaining nickel composite hydroxide by a crystallization reaction, nucleation is performed by controlling a nucleation aqueous solution that includes a metal compound, which includes nickel, and an ammonium ion donor so that the pH value at a standard solution temperature of 25° C. becomes 12.0 to 14.0, after which, particles are grown by controlling a particle growth aqueous solution that includes the formed nuclei so that the pH value at a standard solution temperature of 25° C. becomes 10.5 to 12.0, and so that the pH value is lower than the pH value during nucleation. The crystallization reaction is performed in a non-oxidizing atmosphere at least in a range after the processing time exceeds at least 40% of the total time of the particle growth process from the start of the particle growth process where the oxygen concentration is 1 volume % or less, and with controlling an agitation power requirement per unit volume into a range of 0.5 kW/m3 to 4 kW/m3 at least during the nucleation process.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
Provided is a method of effectively and efficiently separating impurities, in particular, iron contained in a raw material to be processed, and recovering valuable metal at a high rate of recovery. Provided is a method of producing valuable metal including cobalt (Co), comprising: a preparation step for preparing a raw material containing at least iron (Fe) and the valuable metal; a fusing step for heating and fusing the raw material into a melt and thereafter making the melt into a fusion containing alloy and slag; and a slag separation step for separating the slag out from the fusion to recover alloy containing the valuable metal. In the preparation step, the mass ratio of Fe/Co in the raw material is controlled to 0.5 or less. In the fusion step, the oxygen partial pressure in the melt generated by heating and fusing the raw material is made to be 10-9.0 atm or less.
C22B 5/10 - Procédés généraux de réduction appliqués aux métaux par voie sèche par des agents réducteurs carbonés solides
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p.ex. des rognures, pour produire des métaux non ferreux ou leurs composés
C22B 23/02 - Obtention du nickel ou du cobalt par voie sèche
86.
Nickel manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
2+α and contains a secondary particle formed of a plurality of flocculated primary particles. The primary particles have an aspect ratio of at least 3, and at least some of the primary particles are disposed radially from a central part of the secondary particle toward an outer circumference thereof. The secondary particle has a ratio I(101)/I(001) of a diffraction peak intensity I(101) of a 101 plane to a peak intensity I(001) of a 001 plane, measured by an X-ray diffraction measurement, of up to 0.15.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
H01M 4/02 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Électrodes Électrodes composées d'un ou comprenant un matériau actif
87.
CONDUCTIVE PASTE FOR GRAVURE PRINTING, ELECTRONIC COMPONENT, AND LAMINATE CERAMIC CAPACITOR
Provided is conductive paste which is for gravure printing, and which can suppress separation between a conductive powder and a ceramic powder. This conductive paste for gravure printing includes a conductive powder, a ceramic powder, a dispersant, a binder resin, and organic solvents. The organic solvents include a first organic solvent, and a solvent other than the first organic solvent. The binder resin contains a butyral-based resin. The first organic solvent is at least one selected from the group consisting of ester-based solvents and ether-based solvents. An HSP distance between an HSP value of the first organic solvent and an HSP value of the butyral-based resin is less than that between an HSP value of the solvent other than the first organic solvent and the HSP value of the butyral-based resin.
A positive electrode active material is constituted by lithium transition metal-containing composite oxide particles having a layered rock salt type crystal structure and are composed of secondary particles each formed of an aggregation of primary particles. The secondary particles have a d50 of 3.0 to 7.0 μm, a BET specific surface area of 1.8 to 5.5 m2/g, a pore peak diameter of 0.01 to 0.30 μm, and a log differential pore volume [dV/d(log D)] of 0.2 to 0.6 ml/g within a range of the pore peak diameter. In each of a plurality of primary particles having a primary particle size of 0.1 to 1.0 μm, a coefficient of variation of the concentration of an additive element M is 1.5 or less.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/50 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
89.
SPUTTERING TARGET AND METHOD FOR FORMING CESIUM TUNGSTEN OXIDE FILM
C04B 35/495 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base d'oxydes à base d'oxydes de vanadium, de niobium, de tantale, de molybdène ou de tungstène ou de leurs solutions solides avec d'autres oxydes, p.ex. vanadates, niobates, tantalates, molybdates ou tungstates
The positive electrode active material is capable of reducing positive electrode resistance, exhibiting better output characteristics, and having high mechanical strength when the positive electrode active material is used in a lithium ion secondary battery. Secondary particles have a d50 of 3.0 to 7.0 μm, a BET specific surface area of 2.0 to 5.0 m2/g, a tap density of 1.0 to 2.0 g/cm3, and an oil absorption amount of 30 to 60 ml/100 g. In each of a plurality of primary particles having a primary particle size of 0.1 to 1.0 μm, a coefficient of variation of the concentration of an additive element M is 1.5 or less. The volume of a linking section between the primary particles per primary particle, obtained from the total volume of the linking section and the number of primary particles constituting the secondary particles, is 5×105 to 9×107 nm3.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
H01M 4/485 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques d'oxydes ou d'hydroxydes mixtes pour insérer ou intercaler des métaux légers, p.ex. LiTi2O4 ou LiTi2OxFy
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
H01M 50/46 - Séparateurs, membranes ou diaphragmes caractérisés par leur combinaison avec des électrodes
91.
POSITIVE-ELECTRODE ACTIVE MATERIAL FOR LITHIUM-ION SECONDARY BATTERY AND LITHIUM-ION SECONDARY BATTERY
A positive-electrode active material for a lithium-ion secondary battery, wherein an average pore size of the positive-electrode active material is 0.2 μm to 1.0 μm when a pore size is measured in a range of 0.0036 μm to 400 μm.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
A positive electrode active material that can achieve high thermal stability at low cost is provided.
A positive electrode active material that can achieve high thermal stability at low cost is provided.
Provided is a positive electrode active material for a lithium ion secondary battery, the positive electrode active material containing a lithium-nickel-manganese composite oxide, in which metal elements constituting the lithium-nickel-manganese composite oxide include lithium (Li), nickel (Ni), manganese (Mn), cobalt (Co), titanium (Ti), niobium (Nb), and optionally zirconium (Zr), an amount of substance ratio of the elements is represented as Li:Ni:Mn:Co:Zr:Ti:Nb=a:b:c:d:e:f:g (provided that, 0.97≤a≤1.10, 0.80≤b≤0.88, 0.04≤c≤0.12, 0.04≤d≤0.10, 0≤e≤0.004, 0.003g are satisfied.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
93.
POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY
A positive electrode active material includes lithium transition metal-containing composite oxide particles containing an additive element M1 and includes a coating layer formed of a metal composite oxide of Li and a metal element M2 on a part of a surface of the particles. The particles have a d50 of 3.0 to 7.0 μm, a BET specific surface area of 2.0 to 5.0 m2/g, a tap density of 1.0 to 2.0 g/cm3, and an oil absorption amount of 30 to 60 ml/100 g. For each of a plurality of primary particles having a primary particle size within a range of 0.1 to 1.0 μm among the primary particles, a coefficient of variation of the concentration of M1 is 1.5 or less, and the amount of M2 is 0.1 to 1.5 atom % with respect to the total number of atoms of Ni, Mn, and Co contained in the composite oxide particles.
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION (Japon)
SUMITOMO METAL MINING CO., LTD. (Japon)
Inventeur(s)
Hirajima, Tsuyoshi
Miki, Hajime
Sasaki, Keiko
Suyantara, Gde Pandhe Wisnu
Semoto, Yuki
Kuroiwa, Shigeto
Aoki, Yuji
Tanaka, Yoshiyuki
Abrégé
Provided is a mineral processing method that can efficiently separate a copper mineral and a molybdenum mineral. A mineral processing method includes a conditioning step of adding a disulfite to a mineral slurry containing a copper mineral and a molybdenum mineral and a flotation step of performing flotation using the mineral slurry after the conditioning step. By selectively enhancing hydrophilicity of the copper mineral with the disulfite, the hydrophilicity between the copper mineral and the molybdenum mineral can be differentiated. Thus, the molybdenum mineral can be selectively floated, and the copper mineral and the molybdenum mineral can be efficiently separated.
The positive electrode active material has high capacity and high output and exhibiting excellent cycle characteristics when being used for a positive electrode of a non-aqueous electrolyte secondary battery. A positive electrode active material for a lithium ion secondary battery contains: a lithium-metal composite oxide containing secondary particles with a plurality of aggregated primary particles; and a compound containing lithium and tungsten present on surfaces of the primary particles. The amount of tungsten contained in the compound containing lithium and tungsten is 0.5 atom % or more and 3.0 atom % or less in terms of a ratio of the number of atoms of W with respect to the total number of atoms of Ni, Co, and an element M, and a conductivity when the positive electrode active material is compressed to 4.0 g/cm3 as determined by powder resistance measurement is 6×10−3 S/cm or less.
H01M 4/131 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Électrodes Électrodes composées d'un ou comprenant un matériau actif Électrodes pour accumulateurs à électrolyte non aqueux, p.ex. pour accumulateurs au lithium; Leurs procédés de fabrication Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p.ex. LiCoOx
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
POSITIVE ELECTRODE ACTIVE MATERIAL FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERIES, METHOD FOR PRODUCING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
Provided is a positive electrode active material for a nonaqueous electrolyte secondary battery including a LiNi composite oxide having low internal resistance and excellent thermal stability. The positive electrode active material is obtained by performing a water washing process using a water spray on a LiNi composite oxide powder obtained by a firing step until the filtrate has an electric conductivity of 30 to 60 mS/cm, and then dried, where the LiNi composite oxide is represented by the composition formula (1): LibNi1-aM1aO2, where M1 represents at least one kind of element selected from transition metal elements other than Ni, group 2 elements, and group 13 elements, and 0.01≤a≤0.5, and 0.85≤b≤1.05.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/133 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Électrodes Électrodes composées d'un ou comprenant un matériau actif Électrodes pour accumulateurs à électrolyte non aqueux, p.ex. pour accumulateurs au lithium; Leurs procédés de fabrication Électrodes à base de matériau carboné, p.ex. composés d'intercalation du graphite ou CFx
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
98.
MAGNETOSTRICTIVE MEMBER AND METHOD FOR PRODUCING MAGNETOSTRICTIVE MEMBER
[Problem] To provide: a magnetostrictive member having a high magnetostrictive constant and parallel magnetostriction, with little variation in the magnetostrictive constant and parallel magnetostriction between members; and a method for producing a magnetostrictive member. [Solution] This magnetostrictive member is a plate-shaped body that is composed of crystals of an iron-based alloy having magnetostrictive characteristics and that has obverse and reverse surfaces. In one of the front and rear surfaces, the surface roughness Ra and the thickness of the magnetostrictive member satisfy formula (1). Formula (1): log Ra≥0.48t−0.62 (in formula (1), log represents a common logarithm, Ra represents the surface roughness (μm), and t represents the thickness (mm) of the magnetostrictive member.)
B24B 7/22 - Machines ou dispositifs pour meuler les surfaces planes des pièces, y compris ceux pour le polissage des surfaces planes en verre; Accessoires à cet effet caractérisés par le fait qu'ils sont spécialement étudiés en fonction des propriétés de la matière des objets non métalliques à meuler pour meuler de la matière inorganique, p.ex. de la pierre, des céramiques, de la porcelaine
H01L 41/20 - Emploi de matériaux spécifiés pour des éléments magnétostrictifs
H01L 41/47 - Procédés ou appareils spécialement adaptés à l'assemblage, la fabrication ou au traitement de dispositifs magnétostrictifs, ou de leurs parties constitutives
99.
POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY
To provide a positive electrode active material capable of further reducing positive electrode resistance and exhibiting better output characteristics.
To provide a positive electrode active material capable of further reducing positive electrode resistance and exhibiting better output characteristics.
A positive electrode active material includes a coating layer formed of a metal composite oxide of Li and one or more metal elements selected from Al, Ti, Zr, Nb, Mo, and W on at least a part of a surface of lithium transition metal-containing composite oxide particles, and has d50 of 3.0 to 7.0 μm, a BET specific surface area of 2.0 to 5.0 m2/g, a tap density of 1.0 to 2.0 g/cm3, and an oil absorption amount of 30 to 60 ml/100 g, in which the amount of metal elements other than Li contained in the coating layer is 0.1 to 1.5 atom % with respect to the total number of atoms of Ni, Mn, and Co contained in the composite oxide particles.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p.ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p.ex. batteries à insertion ou intercalation de lithium dans les deux électrodes; Batteries à l'ion lithium
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p.ex. LiMn2O4 ou LiMn2OxFy
Provided is a method for producing high-purity cobalt sulfate by separating impurities and cobalt from a cobalt chloride solution containing impurities without using an electrolysis step. The present invention involves sequentially executing: a first solvent extraction step (S1) for bringing an organic solvent containing an alkylphosphoric acid-based extraction agent into contact with a cobalt chloride solution containing impurities and extracting, from the solution, zinc, manganese, and calcium, by using the organic solvent to separate and remove the zinc, manganese, and calcium; a copper removal step (S2) for adding a sulfiding agent to the cobalt chloride solution and causing precipitation of copper sulfide to separate and remove the same; a second solvent extraction step (S3) for bringing an organic solvent containing a carboxylic acid extraction agent into contact with the cobalt chloride solution to extract cobalt therefrom by using the organic solvent, and thereafter, back-extracting cobalt using sulfuric acid to obtain a cobalt sulfate solution; and a step (S4) for crystallizing the cobalt sulfate solution obtained through the second solvent extraction step (S3). According to the present invention, high-purity cobalt sulfate can be directly produced by separating cobalt and impurities including magnesium, without using an electrolysis step.
C22B 3/38 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par extraction liquide-liquide utilisant des composés organiques contenant du phosphore
C22B 3/44 - Traitement ou purification de solutions, p.ex. de solutions obtenues par lixiviation par des procédés chimiques