A feed stream is flowed to a catalytic reactor. The catalytic reactor includes a non-thermal plasma and a catalyst. The feed stream includes hydrogen sulfide and carbon dioxide. The feed stream is contacted with the catalyst in the presence of the non-thermal plasma at a reaction temperature, thereby converting the hydrogen sulfide and the carbon dioxide in the feed stream to produce a product. The product includes a hydrocarbon and sulfur. The product is separated into a product stream and a sulfur stream. The product stream includes the hydrocarbon from the product. The sulfur stream includes the sulfur from the product.
F01N 3/10 - Silencieux ou dispositifs d'échappement comportant des moyens pour purifier, rendre inoffensifs ou traiter les gaz d'échappement pour rendre les gaz d'échappement inoffensifs par conversion thermique ou catalytique des composants nocifs des gaz d'échappement
C07C 1/02 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure à partir d'oxydes de carbone
F02M 21/02 - Appareils pour alimenter les moteurs en combustibles non liquides, p.ex. en combustibles gazeux stockés sous forme liquide en combustibles gazeux
B01D 53/14 - SÉPARATION Épuration chimique ou biologique des gaz résiduaires, p.ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
Upstream process equipment (102) transmits a predetermined fluid to downstream process equipment (103). A valve (109) fluidly couples the upstream process equipment (102) to the downstream process equipment (103). A first pressure sensor (104) and a first temperature sensor (105) are coupled to the upstream process equipment (102) and upstream from the valve (109). A second pressure sensor (106) and a second temperature sensor (107) are coupled to the downstream process equipment (103) and downstream from the valve (109). A control system (101) is coupled to the first pressure sensor (104), the first temperature sensor (105), the second pressure sensor (106), and the second temperature sensor (107). The control system (101) determines a first fluid flowrate (108) of the predetermined fluid using a fluid flow model (110) based on pressure data (112, 113) from the first pressure sensor (104) and the second pressure sensor (106), temperature data (112, 113) from the first temperature sensor (105) and the second temperature sensor (107), a size of the valve (109), at least one fluid parameter (111) regarding the predetermined fluid, and a valve flow coefficient of the valve (109).
G01F 1/36 - Mesure du débit volumétrique ou du débit massique d'un fluide ou d'un matériau solide fluent, dans laquelle le fluide passe à travers un compteur par un écoulement continu en utilisant des effets mécaniques en mesurant la pression ou la différence de pression la pression ou la différence de pression étant produite par une contraction de la veine fluide
G01F 15/08 - Séparateurs d'air ou de gaz en combinaison avec des compteurs de liquides; Séparateurs de liquide en combinaison avec des compteurs de gaz
E21B 43/34 - Aménagements pour séparer les matériaux produits par le puits
G01F 15/00 - MESURE DES VOLUMES, DES DÉBITS VOLUMÉTRIQUES, DES DÉBITS MASSIQUES OU DU NIVEAU DES LIQUIDES; COMPTAGE VOLUMÉTRIQUE - Détails des appareils des groupes ou accessoires pour ces derniers, dans la mesure où de tels accessoires ou détails ne sont pas adaptés à ces types particuliers d'appareils, p.ex. pour l'indication à distance
System and methods for delivering objects formed of a solid material into a circulation fluid of a subterranean well include a volume transfer container (58). The volume transfer container has an inlet port (60), an outlet port (62), and a charge access opening sized to provide for the filling of the volume transfer container with the objects. A discharge line extends from a pump assembly (72) to the volume transfer container (58). A transfer line (52) extends from the volume transfer container (58) to the drilling assembly, providing a fluid flow path from the volume transfer container to the drilling assembly (36) that is free of any pump.
E21B 21/00 - Procédés ou appareils pour nettoyer les trous de forage par jet de fluide, p.ex. en utilisant l'air d'échappement du moteur
E21B 33/138 - Plâtrage de la paroi du trou de forage; Injections dans la formation
E21B 21/06 - Dispositions pour traiter les fluides de forage à l'extérieur du trou de forage
C09K 8/50 - Compositions pour le plâtrage des parois de trous de forage, c. à d. compositions pour la consolidation temporaire des parois des trous de forage
4.
MULTIMODAL APPROACH TO TARGET STRATIGRAPHIC PLAYS THROUGH SEISMIC SEQUENCE STRATIGRAPHY, ROCK PHYSICS, SEISMIC INVERSION AND MACHINE LEARNING
Computer-implemented stratigraphic play quality generation is disclosed. Stratigraphic data can be processed from each of a plurality of respective data sources to generate conditioned stratigraphic data. From at least some of the conditioned stratigraphic data, attributes of at least one seismic sequence can be extracted, and at least one seismic surface and at least one structural element associated with at least some of the conditioned stratigraphic data can be determined. At least some of the conditioned stratigraphic data representing sedimentary layers can be correlated with seismic reflection data to ascertain a subsurface of the geologic area at a respective depth. Reservoir properties associated with the geologic area are linked to elastic properties, and a 2D model built. Moreover, 3D map can be generated that is usable for a prospective drilling plan.
A downhole autonomous jet cutting tool includes a main body with a generally cylindrical configuration. The main body includes a locking unit actuable to engage the tool to an inner surface of the pipe, a hydraulic motor with a rotor and a stator, and a rotatable jet cutting nozzle assembly operable to emit a stream of fluid to cut the pipe. The tool also includes a sensor module to detect interactions between the pipe and walls of the wellbore and a control unit in electronic communication with the sensor module and the locking unit. The control unit can identify, based on output of the sensor module, a location where interaction between the pipe and the walls of the wellbore limits downhole movement of the pipe, actuate the locking unit to engage the tool in the inner surface of the pipe, and initiate the stream of fluid from the nozzle assembly.
E21B 29/00 - Découpage ou destruction de tubes, packers, bouchons ou câbles, situés dans les trous de forage ou dans les puits, p.ex. découpage de tubes endommagés, de fenêtres; Déformation des tubes dans les trous de forage; Remise en état des tubages de puits sans les retirer du sol
E21B 47/09 - Localisation ou détermination de la position d'objets dans les trous de forage ou dans les puits; Identification des parties libres ou bloquées des tubes
E21B 29/02 - Découpage ou destruction de tubes, packers, bouchons ou câbles, situés dans les trous de forage ou dans les puits, p.ex. découpage de tubes endommagés, de fenêtres; Déformation des tubes dans les trous de forage; Remise en état des tubages de puits sans les retirer du sol au moyen d'explosifs ou par des moyens thermiques ou chimiques
6.
SULFUR RECOVERY BY SOLIDIFYING SULFUR ON REACTOR CATALYST
A system and method including a sulfur recovery system (SRU) having a Claus system, reacting hydrogen sulfide and oxygen in a furnace to give sulfur dioxide, performing a Claus reaction in the furnace to give elemental sulfur, performing the Claus reaction in a Claus reactor to give elemental sulfur at a temperature greater than a dew point of the elemental sulfur, performing the Claus reaction in a Claus cycling reactor to give elemental sulfur at a temperature less than a solidification temperature of the elemental sulfur, depositing the elemental sulfur as solid elemental sulfur on catalyst in the Claus cycling reactor, and regenerating (heating) the Claus cycling reactor thereby forming elemental sulfur vapor from the solid elemental sulfur.
A downhole tool (1) includes a bore isolation valve (4), a sensor (15) configured to receive a downlink signal, an annular pressure sensor (7), a valve actuation mechanism (12) coupled to the bore isolation valve (4) and responsive to the downlink signal, a pressure relief mechanism (9) configured to provide a negative pressure pulse signal indicative of the annular pressure by venting fluid from a bore (5) of the tool body, and a battery (17). A method includes drilling a well with a drill bit coupled to an on demand annular pressure tool (1) initially in a deactivated mode, and activating the tool (1) by a downlink signal when fluid flow out of the annulus drops below the fluid flow into the well to close a bore (5) of the tool (1), pressurizing the drill string, holding pressure in the drill string, measuring annular pressure with the tool (1), and sending a negative pressure pulse signal indicative of the annular pressure.
An electrostatic coalescer apparatus for separating water from a crude oil emulsion comprises a vessel housing having a cavity, an inlet for receiving a crude oil emulsion and outlets for water and purified crude oil. First and second pairs of electrodes are positioned in the vessel cavity. A first Scott- T transformer circuit is coupled to the first pair of electrodes and a second Scott-T transformer circuit is coupled to the second pair of electrodes. The first and second Scott- T transformer circuit receive as an input a 3 -phase power supply and output a 2 -phase high voltage signal pairs of electrodes. The 2-phase voltage generated between the first pair of electrodes is of the same amplitude and phase as the voltage generated between the second pair of electrodes via the respective Scott-T transformer circuits. A method comprises steps performed during operation of the apparatus.
In accordance with one or more embodiments of the present disclosure, a multi-stage process for upgrading pyrolysis oil comprising polyaromatic compounds to benzene, toluene, ethylbenzene, and xylenes (BTEX) includes upgrading the pyrolysis oil in a slurry-phase reactor zone to produce intermediate products, wherein the slurry-phase reactor zone comprises a mixed metal oxide catalyst; and hydrocracking the intermediate products in a fixed-bed reactor zone to produce the BTEX, wherein the fixed-bed reactor zone comprises a mesoporous zeolite-supported metal catalyst.
C10G 65/10 - Traitement des huiles d'hydrocarbures, uniquement par plusieurs procédés d'hydrotraitement uniquement par plusieurs étapes en série ne comprenant que des étapes de craquage
C10G 69/04 - Traitement des huiles d'hydrocarbures par au moins un procédé d'hydrotraitement et au moins un autre procédé de conversion uniquement par plusieurs étapes en série comprenant au moins une étape de craquage catalytique en l'absence d'hydrogène
C10G 69/06 - Traitement des huiles d'hydrocarbures par au moins un procédé d'hydrotraitement et au moins un autre procédé de conversion uniquement par plusieurs étapes en série comprenant au moins une étape de craquage thermique en l'absence d'hydrogène
An apparatus includes a funnel, a core, a first coating, a second coating, and a third coating. The funnel includes multiple inlet ports and an outlet port. The core is disposed within the funnel. The first coating is disposed on and surrounds an outer surface of the core. The first coating is configured to dissolve in response to being exposed to water. The second coating is disposed on and surrounds an outer surface of the first coating. The second coating is configured to dissolve in response to being exposed to water. The third coating is disposed on and surrounds an outer surface of the second coating. The third coating is configured to dissolve in response to being exposed to a hydrocarbon.
E21B 43/12 - Procédés ou appareils pour commander l'écoulement du fluide extrait vers ou dans les puits
E21B 34/08 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits sensibles à l'écoulement ou à la pression du fluide obtenu
11.
SMART CALIPER AND RESISTIVITY IMAGING LOGGING-WHILE-DRILLING TOOL (SCARIT)
Systems and methods include a system for deploying and using a customized logging-while-drilling (LWD) tool. A command is provided by a tool control system to a mechanical drive of a LWD tool to cause pads and caliper fingers of the LWD tool to extend radially, lock in place using a locking mechanism, and begin to capture downhole measurements while the LWD tool is deployed in a borehole of a well. Pressure pulse cycles produced by a series of distinct high and low flow rates by the tool control system are provided to create pulses to be detected downhole by pressure transducers. A measurement sequence for caliper and resistivity images is triggered by the tool control system. The measurement sequence is terminated by the tool control system to conserve energy.
E21B 47/00 - Relevés dans les trous de forage ou dans les puits
E21B 47/002 - Relevés dans les trous de forage ou dans les puits par inspection visuelle
E21B 47/08 - Mesure du diamètre ou des dimensions correspondantes des trous de forage
E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
12.
CHEMICAL HYDROSTATIC BACKPRESSURE REDUCTION METHODOLOGY TO FLOW FLUIDS THROUGH DISPOSAL WELLS
To control hydrostatic backpressure of disposal wells (102a-f) connected to a disposal plant (108) surface network, density of water to be injected from a water disposal plant system into disposal wells formed in a subterranean zone (100), a density of a hydrostatic backpressure-modifying additive to modify a density of the water, a target total injection flow rate of the water, and a vertical depth of a portion of the subterranean zone through which the water is to be injected are identified. Injected water flow rate upstream of an injection point into the multiple disposal wells, wellhead injection pressure needed to achieve the target total injection flow rate and a total injection rate are periodically received. Based on these parameters, dosage rate of the additive to maintain the target total injection flow rate is periodically determined. An additive quantity is injected into the water and periodically modified based on the periodically determined dosage rate.
Systems and methods include a computer-implemented method for monitoring emissions in real time. Flaring emissions are determined in real time for a flare stack based on: 1) a flaring volume in conjunction with heat and material balances of systems that discharge to a flare system, and 2) a composition of each relief source that discharges to the flare system. A molar balance around the flare stack is performed in real time using the flaring emissions to determine the emissions.
G01N 33/00 - Recherche ou analyse des matériaux par des méthodes spécifiques non couvertes par les groupes
F23G 7/08 - Procédés ou appareils, p.ex. incinérateurs, spécialement adaptés à la combustion de déchets particuliers ou de combustibles pauvres, p.ex. des produits chimiques de gaz d'évacuation ou de gaz nocifs, p.ex. de gaz d'échappement utilisant des torchères, p.ex. dans des cheminées
14.
TREATING SULFUR DIOXIDE CONTAINING STREAM BY ACID AQUEOUS ABSORPTION
Provided herein are methods and systems for treating a tail gas of a Claus process to remove sulfur-containing compounds. The method includes combusting a tail gas of a Claus process in an excess of oxygen gas to yield a thermal oxidizer effluent. The thermal oxidizer effluent includes sulfur dioxide, water vapor, and oxygen. The effluent is routed to a quench tower and contacted with a dilute aqueous acid quench stream to yield sulfurous acid, hydrated sulfur dioxide, or both. The sulfurous acid or hydrated sulfur dioxide is oxidized with the excess oxygen from the thermal oxidizer effluent to yield sulfuric acid.
An exhaust gas carbon dioxide capture and recovery system that may be mounted on a mobile vehicle or vessel. The system may include an exhaust absorber system, a solvent regenerator, a solvent loop, a carbon dioxide compressor, and a carbon dioxide storage tank, among other components. The system may be configured and integrated such that energy in the exhaust may be used to power and drive the carbon dioxide capture while having minimal parasitic effect on the engine.
B01D 53/14 - SÉPARATION Épuration chimique ou biologique des gaz résiduaires, p.ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
16.
PROCESS FOR CAPTURING CO2 FROM A MOBILE SOURCE USING AN AMINO ACID SOLVENT
B01D 53/14 - SÉPARATION Épuration chimique ou biologique des gaz résiduaires, p.ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
Disclosed are methods, systems, and computer-readable medium to perform operations including: generating, based on production data for a wellbore, (i) a water-oil-ratio with respect to time (WOR) dataset for the wellbore, (ii) a time-derivative dataset (WOR') of the WOR dataset; generating a WOR log-log plot of the WOR dataset and a WOR' log-log plot of the WOR' dataset; identifying at least one trend in the WOR log-log plot and the WOR' log-log plot; determining, based on the at least one identified trend, a first type of water breakthrough; generating, based on pressure data from a build-up pressure test in the wellbore, a log-log plot of time-derivative pressure data with respect to time (P'); determining, based on the P' log-log plot, a second type of water breakthrough; correlating the first and second type of water breakthrough; and determining, based on the correlation, whether to perform a water treatment for the wellbore.
E21B 43/32 - Prévention des phénomènes de cône d'eau ou de gaz, c. à d. formation autour des puits d'une colonne conique d'eau ou de gaz
E21B 49/00 - Test pour déterminer la nature des parois des trous de forage; Essais de couches; Procédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits
18.
TARGET DELIVERY OF CHEMICAL TRACERS FOR SINGLE WELL CHEMICAL TRACER TESTS
A single well chemical tracer composition comprising core/shell tracer particles and an aqueous fluid is provided. The core/shell tracer particles 102 have a core 106 and a polymer shell 104. At least two tracer chemicals are encapsulated in the core/shell tracer particles. A method of determining residual oil in a reservoir is also provided. The method includes introducing a tracer fluid having the core/shell tracer particles into a wellbore. The reservoir is then maintained for a period of time such that the core/shell particle is ruptured, and the tracer chemicals are released into the reservoir. Then, the method includes producing a produced fluid from the reservoir, measuring the quantity of the tracer chemicals in the produced fluid, and determining a residual oil content of the reservoir based on the measured quantity of the tracer chemicals in the produced fluid.
C09K 8/588 - Compositions pour les méthodes de récupération assistée pour l'extraction d'hydrocarbures, c. à d. pour améliorer la mobilité de l'huile, p.ex. fluides de déplacement caractérisées par l'utilisation de polymères spécifiques
E21B 47/11 - Localisation des fuites, intrusions ou mouvements du fluide utilisant la radioactivité
19.
FLUORESCENT BARCODED QUANTUM DOTS FOR DRILLING DEPTH CORRELATION
A composition of matter includes a core-shell quantum dot particle (202) having an inorganic core (206) and an organic shell (204) and drilling fluid. A method includes introducing a core-shell quantum dot particle (202) having an inorganic core (206) and a polymer shell (204) into a drilling fluid, circulating the drilling fluid through a well during a drilling operation that creates formation cuttings such that the core-shell quantum dot particle interacts with the formation cuttings, creating tagged cuttings, collecting returned cuttings from the circulating drilling fluid at a surface of the well, detecting the presence of the core-shell quantum dot particle (202) on the returned cuttings to identify the tagged cuttings, and correlating the tagged cuttings with a drill depth in the well at a time during the drilling operation.
C09K 11/02 - Emploi de substances particulières comme liants, revêtements de particules ou milieux de suspension
C09K 8/03 - Additifs spécifiques à usage général dans les compositions pour le forage des puits
C09K 11/56 - Substances luminescentes, p.ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant du soufre
C09K 11/88 - Substances luminescentes, p.ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant du sélénium, du tellure ou des chalcogènes non spécifiés
20.
METHOD FOR MANUFACTURING ELECTRIFIED FIBER SORBENT, AND ELECTRICAL AND ELECTROMAGNETIC SWING ADSORPTION PROCESS
KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY (République de Corée)
SAUDI ARABIAN OIL COMPANY (Arabie saoudite)
Inventeur(s)
Koh, Dong Yeun
Lee, Young Hun
Jamal, Aqil
Kim, Kyunam
Jeong, Jinhong
Abrégé
Disclosed are: an electrified fiber sorbent formed from a support comprising a sorbent and a conductive material; and a manufacturing method therefor. The fiber sorbent according to the present invention can efficiently adsorb a relatively low concentration of carbon dioxide, particularly, carbon dioxide in the atmosphere, and has a freely-selectable energy source, which is required for the desorption of carbon dioxide, and can undergo direct sorbent heating, and thus has excellent energy efficiency.
B01J 20/22 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtration; Absorbants ou adsorbants pour la chromatographie; Procédés pour leur préparation, régénération ou réactivation contenant une substance organique
B01J 20/20 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtration; Absorbants ou adsorbants pour la chromatographie; Procédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant du carbone obtenu par des procédés de carbonisation
B01J 20/10 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtration; Absorbants ou adsorbants pour la chromatographie; Procédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant de la silice ou un silicate
B01J 20/30 - Procédés de préparation, de régénération ou de réactivation
B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtration; Absorbants ou adsorbants pour la chromatographie; Procédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
B01D 53/02 - SÉPARATION Épuration chimique ou biologique des gaz résiduaires, p.ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p.ex. chromatographie préparatoire en phase gazeuse
21.
SOLID OXIDE FUEL CELL SYSTEM AND METHOD FOR HEATING DURING A COLD START
KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY (République de Corée)
Inventeur(s)
Katikaneni, Sai P.
Bae, Joongmyeon
Oh, Jiwoo
Bae, Minseok
Kim, Dongyeon
Abrégé
A method of operating a solid oxide fuel cell system may comprise contacting a cathode gas comprising oxygen with a heating element to produce a heated cathode gas, passing the heated cathode gas through a cathode of a solid oxide fuel cell stack to increase the temperature of the solid oxide fuel cell stack to an operation temperature and reduce the oxygen to oxygen anions, and passing an anode gas through an anode of the solid oxide fuel cell stack to initiate the electrochemical oxidation of the oxygen anions within the anode. The passing of the anode gas through the anode of the solid oxide fuel cell stack may be initiated when the solid oxide fuel cell stack is heated to an operational temperature.
H01M 8/04089 - Dispositions pour la commande des paramètres des réactifs, p.ex. de la pression ou de la concentration des réactifs gazeux
H01M 8/0612 - Combinaison d’éléments à combustible avec des moyens de production de réactifs ou pour le traitement de résidus avec des moyens de production des réactifs gazeux à partir de matériaux contenant du carbone
H01M 8/04014 - Dispositions auxiliaires, p.ex. pour la commande de la pression ou pour la circulation des fluides relatives à l’échange de chaleur Échange de chaleur par combustion des réactifs
H01M 8/04302 - Procédés de commande des éléments à combustible ou des systèmes d’éléments à combustible appliqués pendant des périodes spécifiques appliqués pendant le démarrage
H01M 8/12 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Éléments à combustible; Leur fabrication Éléments à combustible avec électrolytes solides fonctionnant à haute température, p.ex. avec un électrolyte en ZrO2 stabilisé
22.
METHODS AND TOOLS FOR DETERMINING BLEED-OFF PRESSURE AFTER WELL SECUREMENT JOBS
A system for setting a wellhead pressure after a through tubing bridge plug (350) is installed in a wellbore (120) includes a slickline unit (356), a static bottomhole pressure gauge (358), and a pressure setting unit (130). The slickline unit includes the static bottomhole pressure gauge. The static bottomhole pressure gauge includes internal memory (360) that stores a measured bottomhole pressure. The pressure setting unit sets a wellhead pressure based on the measured bottomhole pressure stored in the internal memory of the static bottomhole pressure gauge. A related method includes installing a through tubing bridge plug in a wellbore (770), deploying a slickline unit into the wellbore, wherein the slickline unit includes a pressure gauge (774), measuring bottomhole pressure with the pressure gauge (776), and setting a wellhead pressure based on the measured bottomhole pressure (784).
A method and a system for monitoring a mechanical device for internal corrosion are provided. An exemplary method includes placing a sampling thermoelectric polymer sheet (TEPS) on an external surface of the mechanical device to be monitored for internal corrosion, and placing a reference TEPS on an external surface of the mechanical device not susceptible to internal corrosion. A current from the sampling TEPS is measured, and a current from the reference TEPS is measured. Potential internal corrosion is identified from changes between the current from the sampling TEPS and the current from the reference TEPS.
A thermal diffusion unit (120, 200) is fluidly connected to a combustion engine (100) via a flue line (130, 132). The thermal diffusion unit (120, 200) has a plurality of plates (212, 214) assembled in a parallel configuration, including a pair of heating plates (212) having a heating fluid gap (226) extending therebetween and a pair of cooling plates (214) having a cooling fluid gap (236) extending therebetween. A diffusion sheet (240) is positioned between the pair of heating plates (212) and the pair of cooling plates (214), such that the diffusion sheet (240) interfaces on a first side with one of the heating plates (212) and interfaces on an opposite side with one of the cooling plates (214). The diffusion sheet (240) includes a plurality of interconnected thermal diffusion cells (310) arranged in a repeating pattern.
F01N 3/00 - Silencieux ou dispositifs d'échappement comportant des moyens pour purifier, rendre inoffensifs ou traiter les gaz d'échappement
B01D 53/92 - Epuration chimique ou biologique des gaz résiduaires des gaz d'échappement des moteurs à combustion
F01N 3/10 - Silencieux ou dispositifs d'échappement comportant des moyens pour purifier, rendre inoffensifs ou traiter les gaz d'échappement pour rendre les gaz d'échappement inoffensifs par conversion thermique ou catalytique des composants nocifs des gaz d'échappement
25.
GENERATING INPUT DATA FOR SIMULATING RESERVOIRS WITH VARIABLE FLUID CONTACT DEPTHS
Methods and systems, including computer programs encoded on a computer storage medium are described for generating data used to simulate properties of a target area in a subterranean region. A system obtains data describing a water-hydrocarbon interface of the target area and selects control parameters for processing the data based on a formation mechanism corresponding to a pressure or temperature of the target area. An objective function is determined that measures a delta between first values observed in the data and second values from simulations of the target area. Based on outputs of the function, the system calculates values for the control parameters that minimizes the delta between the first values observed in the data and the second values from simulations of the target area. The input data is generated to simulate properties of the target area based on calculated values of the control parameters.
A system (134) for controlling and optimizing hydrocarbon production may include sensors (136, 138, 216) that capture sensor data pertaining to wellhead pressure values in a well. The system may also include a multiphase flow meter that captures production data pertaining to multiphase production flow rates of the well (120). The system may include an access module (220) to access an estimated parameter value associated with a second time and a parameter that pertains to production. The estimated parameter value is predicted by a data-driven model (208) for describing production fluid dynamics of the well (120), based on the sensor data (204) and the production data (206) obtained at a first time. The system includes a processor (222) to update the data-driven model (208) using a data assimilation algorithm and the production data (206) received at the second time. The processor (222) generates, using the updated data-driven model, an optimal control setting of a control tool (212) for causing an adjustment to a production system.
E21B 43/00 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits
27.
OPTIMIZATION TOOL FOR SALES GAS SUPPLY, GAS DEMAND, AND GAS STORAGE OPERATIONS
Systems and methods include a computer-implemented method for optimizing supply, demand, and storage of gas. Project definitions for multiple projects of a sales gas supply-demand-storage operation are received by an optimization system configured to optimize gas supply, demand, and storage across the multiple projects. Current values including a date, a supply request, and a demand request are received by the optimization system for each project of the multiple projects. An analysis of the sales gas supply-demand-storage operation is performed by the optimization system using the project definitions and the current values. The analysis includes performing initial injections and production for the multiple projects based on surpluses and deficits.
A system and a method for producing hydrogen and electrical power from an aqueous ammonia solution are provided. An exemplary system includes a distillation unit to produce ammonia gas from the aqueous ammonia solution, a compression unit to boost the pressure of the ammonia gas, a membrane separator to catalytically convert the ammonia gas to nitrogen and hydrogen and remove the hydrogen as a permeate, and a micro turbine to combust a retentate to generate energy.
C01B 3/04 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés inorganiques, p.ex. de l'ammoniac
C01B 3/50 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p.ex. purification
B01J 19/24 - Réacteurs fixes sans élément interne mobile
F02C 6/18 - Utilisation de la chaleur perdue dans les ensembles fonctionnels de turbines à gaz à l'extérieur des ensembles eux-mêmes, p.ex. ensembles fonctionnels de chauffage à turbine à gaz
29.
SYSTEM AND METHOD FOR ESTIMATING POROSITY OF POROUS FORMATIONS USING PERMITTIVITY MEASUREMENTS
RPCPRRPCPRPR, associated with the isolated and connected porosities, where the second estimation model can be used (486, 488; 496B) with a total porosity of the porous formation to estimate or predict (498A) an isolated porosity and a connected porosity of a production porous formation.
E21B 21/08 - Commande ou surveillance de la pression ou de l'écoulement du fluide de forage, p.ex. remplissage automatique des trous de forage, commande automatique de la pression au fond
E21B 49/08 - Prélèvement d'échantillons de fluides ou test des fluides dans les trous de forage ou dans les puits
E21B 21/12 - Procédés ou appareils pour nettoyer les trous de forage par jet de fluide, p.ex. en utilisant l'air d'échappement du moteur utilisant des tubes de forage comprenant plusieurs passages pour les fluides, p.ex. systèmes en circuit fermé
A method of using a hybrid tool to perforate a formation comprising the steps of deploying a hybrid tool into a wellbore positioned in the formation; activating a laser beam from the swivel laser head of the hybrid tool; drilling a tunnel with the laser beam; reducing a power of the laser; operating the laser beam at the heating power such that a first spherical heat zone expands from the first point; drilling a second span of tunnel extending from the first point to a second point; reducing the power of the laser beam to the heating power; operating the laser beam at the heating power to increase the temperature at the second point such that a second spherical heat zone expands from the second point; and detonating the shaped charged aligned with a targeted perforation path with detonating cord.
A system for controlling and monitoring electrical energy loads includes a current transducer (111; 112; 113) configured to monitor values of electrical current in the system, wherein neutral and ground lines are monitored via separate current transducers (111; 112; 113). Additionally, the system includes a centralized programable logic controller, "PLC," (130) configured to receive measured values from the current transducer (111; 112; 113) in real time and a local PLC (121; 122; 123; 124) configured to receive the measured values from the centralized PLC (130). Further, the local PLC (121; 122; 123; 124) periodically compares the measured values of the electrical energy with predetermined thresholds and automatically redistributes the electrical energy to electrical energy loads among three phases based on the comparison.
H02J 3/26 - Dispositions pour l'élimination ou la réduction des asymétries dans les réseaux polyphasés
H02J 13/00 - Circuits pour pourvoir à l'indication à distance des conditions d'un réseau, p.ex. un enregistrement instantané des conditions d'ouverture ou de fermeture de chaque sectionneur du réseau; Circuits pour pourvoir à la commande à distance des moyens de commutation dans un réseau de distribution d'énergie, p.ex. mise en ou hors circuit de consommateurs de courant par l'utilisation de signaux d'impulsion codés transmis par le réseau
Systems and methods include a computer-implemented method for providing flare header information. Instantaneous flaring flowrate data is received from flaring sources of a flare network of a processing facility. The instantaneous flaring flowrate data is analyzed in conjunction with physical properties of relief sources obtained from a heat and material balance of the processing facility. A heating value and a molecular weight are determined for each relief source and flare header using a processing model associated with a relief source type, size, and identifications. The relief sources are connected using a data signal received and processed using the processing model. Reports are generated showing average daily heating values and molecular weights for each flare header. A real-time display is provided for monitoring instantaneous heating values and molecular weights for each flare header on a real-time basis.
F23G 7/08 - Procédés ou appareils, p.ex. incinérateurs, spécialement adaptés à la combustion de déchets particuliers ou de combustibles pauvres, p.ex. des produits chimiques de gaz d'évacuation ou de gaz nocifs, p.ex. de gaz d'échappement utilisant des torchères, p.ex. dans des cheminées
A sidetracking method includes lowering a sidetrack assembly (105) to a target zone of a wellbore comprising a casing. The sidetrack assembly comprising a cutting tool (104) coupled to a wellbore string (102) and a whipstock (106) releasably coupled to the cutting tool. The method includes setting the whipstock on a wall of the wellbore, pulling the wellbore string, decoupling the cutting tool (104) from the whipstock, actuating the cutter, cutting along a cut profile of the casing to cut free a portion (603) of the casing at the target zone, actuating mechanical fasteners (203), fastening the portion (603) of the casing to the cutting tool, pulling the wellbore string, detaching the portion of the casing from the wall of the wellbore, drilling, with a directional drill string a sidetrack wellbore (802) extending from the window to a downhole location of the sidetrack wellbore, and removing the whipstock from the wellbore.
An inhibitor injection spool 110 is provided. The spool 110 includes a segment of pipeline 202 configured to convey crude oil and to couple with a pipeline system conveying crude oil. The spool 110 also includes a valve on a top side or an underside of the segment of pipeline 202 such that an interior of the segment of pipeline is selectively accessible from an exterior of the segment of pipeline. A solid corrosion inhibitor 210 is configured to traverse an interior of die valve and such that it is positioned within tire interior of the segment of pipeline 202 such that at least a portion of the solid corrosion inhibitor 210 fluidly contacts the crude oil traversing the segment of pipeline 202. Two mesh screens 204 are coupled to the interior of the segment of pipeline such that crude oil traversing the segment of pipeline may not bypass either the first or second mesh screens.
A method, and related apparatus, involves providing one or more drill pipe segments (360) and disposing a quantity of lost circulation material objects (362) within the one or more drill pipe segments (360). A retention element (364) is provided to retain the lost circulation material objects (362) within the one or more drill pipe segments (360). The one or more drill pipe segments (360) are connected to a drill string at a wellbore, and drilling fluid (342) is flowed through the drill string. The flowing of drilling fluid (342) through the drill string causes the retention element (364) to release the lost circulation material objects (362) to propagate further.
A method may obtain (300) static reservoir data (611; 613) for a grid model (601). The method may further include determining (310), using the static reservoir data (611; 613), dynamic reservoir data (614; 615) for the grid model (601). The method may further include determining (315; 320) various storage capacities (636) and various flow capacities (637) for various model layers (260) within the grid model (601) using the static reservoir data (611; 613). The method may further include determining (330) various upscaling groups among the model layers (260) based on the flow capacities (637) and the storage capacities (636). The method may further include generating (340) upscaled static data (691; 692; 693; 694) using the upscaling groups (651; 652; 653), the static reservoir data (611; 613), and the grid model (601). The method may further include generating (345) upscaled dynamic data (695; 696) using the upscaling groups (651; 652; 653), the dynamic reservoir data (614; 615), and the grid model (601). The method may further include performing (350; 355) a reservoir simulation using a coarsened grid model (602) including the upscaled static data (691; 692; 693; 694) and the upscaled dynamic data (695; 696).
E21B 43/00 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits
Systems and methods include a computer-implemented method for real-time flare network monitoring. Real-time flaring volume data is received from relief devices connected to a flare network. The real-time flaring volume data is analyzed in conjunction with heat and material balance information of the relief devices. A comprehensive molar balance is performed based on the analyzing, the balancing including losses/feed percentages for each component of the flare network including the relief devices throughout the flare network. Flaring data for the components is aggregated for each flare header. Real-time flare network monitoring information, including instantaneous component-wise flaring for each flare header in the flare network is provided for display to a user in a user interface.
F23G 7/08 - Procédés ou appareils, p.ex. incinérateurs, spécialement adaptés à la combustion de déchets particuliers ou de combustibles pauvres, p.ex. des produits chimiques de gaz d'évacuation ou de gaz nocifs, p.ex. de gaz d'échappement utilisant des torchères, p.ex. dans des cheminées
38.
METHOD AND SYSTEM FOR MANAGING MODEL UPDATES FOR PROCESS MODELS
A method may include obtaining acquired process data (173; 183; 193) regarding a plant process that is performed by a plant system. The method may further include obtaining from a process model (174; 184; 194), simulated process data (172; 182; 192) regarding the plant process. The method may further include determining drift data (141) for the process model (174; 184; 194) based on a difference between the acquired process data (173; 183; 193) and the simulated process data (172; 182; 192). The drift data (141) may correspond to an amount of model drift associated with the process model (174; 184; 194). The method may further include determining whether the drift data (141) satisfies a predetermined criterion. The method further includes determining, in response to determining that the drift data (141) fails to satisfy the predetermined criterion, a model update (142) for the process model (174; 184; 194).
A method for generating a geophysical image of a subsurface region includes defining a computational sub-volume for the geophysical image including a predetermined number of seismic traces of a plurality of seismic traces and a predetermined number of samples per each one of the plurality of seismic traces, generating a data matrix corresponding to a first sub-volume of the subsurface region based on the defined computational sub-volume, the data matrix comprising the predetermined number of samples for the predetermined number of traces of a portion of a seismic dataset corresponding to the first sub-volume. The method also includes estimating a coherence between the predetermined number of traces of the data matrix by performing a sum of a variance of the predetermined number of samples of the data matrix, and assigning the estimated coherence to a location in the geophysical image.
In accordance with one or more embodiments of the present disclosure, a process includes introducing a mixture comprising polypropylene carbonate (PPC) polyol, carbon dioxide, propylene oxide, and at least one dibasic ester to a quenching vessel to separate the PPC polyol from the carbon dioxide and the propylene oxide; introducing additional dibasic ester to the separation vessel, thereby separating the carbon dioxide from the propylene oxide and the dibasic ester such that a mixture of propylene oxide and the dibasic ester is formed; and introducing the mixture of propylene oxide and the dibasic ester to a recovery vessel, wherein the propylene oxide is separated from the dibasic ester in the recovery vessel.
C08G 65/26 - Composés macromoléculaires obtenus par des réactions créant une liaison éther dans la chaîne principale de la macromolécule à partir d'éthers cycliques par ouverture d'un hétérocycle à partir d'éthers cycliques et d'autres composés
C08G 65/30 - Traitement de post-polymérisation, p.ex. obtention, purification, séchage
41.
IGNITION DEVICE FOR GASOLINE COMPRESSION IGNITION COMBUSTION IN INTERNAL COMBUSTION ENGINES
This disclosure presents, in one or more embodiments, an ignition device (3) for a gasoline compression ignition engine (1). The ignition device (3) includes a shuttle plunger (21) with a gas chamber (37). The gas chamber (37) is delimited by at least one sidewall of the shuttle plunger (21) and captures exhaust gases. The ignition device (3) also includes an electromagnetic coil (33) that actuates the shuttle plunger (21) in a first direction, a main body (17) with a cavity (19) containing the shuttle plunger (21) and the electromagnetic coil (33), and a center electrode (29), fixed to the shuttle plunger (21), that ignites a fuel mixture.
F02B 9/02 - Moteurs caractérisés par d'autres types d'allumage avec allumage par compression
H01T 13/24 - Bougies d'allumage caractérisées par les particularités des électrodes ou de l'isolement avec des électrodes mobiles
H01T 13/54 - Bougies d'allumage avec des électrodes arrangées dans une chambre d'allumage partiellement close
F02M 26/37 - Aménagement ou disposition des passages RGE, p.ex. par rapport à des pièces spécifiques du moteur ou pour l’incorporation d’accessoires avec stockage temporaire du gaz d’échappement recyclé
F02M 26/51 - Soupapes RGE combinées avec d’autres dispositifs, p.ex. avec des soupapes d’admission ou des compresseurs
F02P 3/00 - Autres systèmes d'allumage par étincelle électrique caractérisés par le type de production ou de stockage de l'énergie nécessaire
F02P 13/00 - Bougies structurellement combinées avec d'autres parties de moteurs à combustion interne
H01T 13/32 - Bougies d'allumage caractérisées par les particularités des électrodes ou de l'isolement caractérisées par les particularités de l'électrode de masse
F02B 47/08 - Mode de fonctionnement des moteurs comportant addition de substances non combustibles ou d'agents antidétonants à l'air comburant, au combustible ou au mélange d'air et de combustible les substances étant autres que l'eau ou la vapeur d'eau uniquement les substances comprenant les gaz d'échappement
A shell assembly (100) for protecting a portion of a pipeline (106) from an impact, the shell assembly comprising: two half cylinders (102), each half cylinder comprising: a pipe cover shell (126) sized to conform to an outer surface of the pipeline; an inner shell (128) spaced apart from the pipe cover shell, the inner shell coupled to the pipe cover shell by a plurality of radially extended inner supports (132), each inner support including a crumple component (134) that is weaker than adjacent portions of the inner support; and an outer shell (130) spaced apart from the inner shell with the inner shell disposed between the outer shell and the pipe cover shell; and a plurality of fasteners (104) to couple the two half cylinders together.
F16L 1/06 - Accessoires à cet effet, p.ex. piquets d'ancrage
F16F 15/06 - Suppression des vibrations dans les systèmes non rotatifs, p.ex. dans des systèmes alternatifs; Suppression des vibrations dans les systèmes rotatifs par l'utilisation d'organes ne se déplaçant pas avec le système rotatif utilisant des moyens élastiques avec ressorts métalliques
F16L 55/035 - Absorbeurs de bruit sous forme de potences ou de supports spécialement adaptés
F16L 57/00 - Protection des tuyaux ou d'objets de forme similaire contre les dommages ou les usures internes ou externes
F16L 57/02 - Protection des tuyaux ou d'objets de forme similaire contre les dommages ou les usures internes ou externes contre la fissuration ou le flambement
43.
METHODS AND APPARATUSES FOR GAINING REENTRY BELOW ABANDONED PACKERS
A reentry guide tool includes an overshot defining a lower end and comprises a bowl and grapple. The bowl defines an interior space of the overshot, and the grapple is disposed in the bowl and is operable to engage a tubular. A tubular guide nipple has a downhole and an uphole end, the downhole end complementary to the overshot and the uphole end complementary to the reentry guide. The guide nipple is operable to connect and provide a transition between the overshot and reentry guide. The reentry guide is a tubular piece having an uphole end with a bevel. A deployment mechanism is defined on the overshot, reentry guide, or guide nipple, and is operable to connect the reentry guide to a running tool for deployment. A method of providing a transition from a first to a second tubular in a wellbore is also provided.
A system and methods for quantitative hydraulic fracturing surveillance from fiber optic sensing using machine learning is described herein. An exemplary method provides capturing distributed acoustic sensing (DAS) data, distributed temperature sensing (DTS) data, and microseismic data over monitored stages. Operation states and variables at a respective stage are predicted, based on, at least in part, the DAS data, DTS data, or microseismic data. At least one event associated with the predicted operation states and variables is localized at the respective stage.
A system and a method for water purification are provided. An exemplary system includes a multimedia filter, an ozone generator, an ozone contactor coupled to the ozone generator, and a ceramic membrane filter coupled to an air scouring system, wherein the air scouring system is coupled to the ozone generator. A storage tank is coupled to a purified water line from the ceramic membrane filter, wherein the storage tank is coupled to a backwashing line coupled to the multimedia filter.
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS (Arabie saoudite)
ARAMCO SERVICES COMPANY (USA)
Inventeur(s)
Jaseer, Ea
Barman, Samir
Villalta, Nestor, Garcia
Khawaji, Motaz
Xu, Wei
Almalki, Fahad
Abrégé
Catalyst systems suitable for tetramerizing ethylene to form 1-octene may include a catalyst comprising a chromium compound coordinated with a ligand and a co-catalyst comprising an organoaluminum compound. The ligand may include have a chemical structure according to formula (I), wherein at least one of R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, and R12 have the structure according to formula (II) wherein RA, RB, RC, and RD and the remainder of R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, and R12 are independently chosen from a hydrogen or a (C1-C50) hydrocarbyl group.
B01J 31/14 - Catalyseurs contenant des hydrures, des complexes de coordination ou des composés organiques contenant des composés organiques ou des hydrures métalliques contenant des composés organométalliques ou des hydrures métalliques d'aluminium ou de bore
A system and a method embodiment or automatic inspection of branch wells is provided. An exemplary system includes a scanning head including an ultrasonic probe, wherein the ultrasonic probe includes a convex crystal. A track is mounted to a branch pipe welded to a main pipe, wherein the scanning head mounts to the track, and wherein the scanning head moves the ultrasonic probe along the track. The system includes a controller configured to display an image based on data provided from the ultrasonic probe.
G01N 29/06 - Visualisation de l'intérieur, p.ex. microscopie acoustique
G01N 29/22 - Recherche ou analyse des matériaux par l'emploi d'ondes ultrasonores, sonores ou infrasonores; Visualisation de l'intérieur d'objets par transmission d'ondes ultrasonores ou sonores à travers l'objet - Détails
Processes for producing olefins include passing a hydrocarbon feed to a hydrocarbon cracking unit that cracks the hydrocarbon feed to produce a cracker effluent, passing the cracker effluent to a cracker effluent separation system that separates the cracker effluent to produce at least a cracking C4 effluent including 1-butene, 1,3-butadiene, and isobutene, passing the cracking C4 effluent to an SHIU that contacts the cracking C4 effluent with hydrogen in the presence of a selective hydrogenation catalyst to produce a hydrogenation effluent having a 2-butenes concentration greater than or equal to the sum of the concentrations of 1-butene and isobutene. The processes include passing the hydrogenation effluent to a metathesis unit that contacts the hydrogenation effluent with a metathesis catalyst and a cracking catalyst downstream of the metathesis catalyst to produce a metathesis reaction effluent comprising at least propene.
C07C 5/03 - Préparation d'hydrocarbures à partir d'hydrocarbures contenant le même nombre d'atomes de carbone par hydrogénation de liaisons doubles carbone-carbone non aromatiques
C07C 5/13 - Préparation d'hydrocarbures à partir d'hydrocarbures contenant le même nombre d'atomes de carbone par hydrogénation avec isomérisation simultanée
C07C 6/04 - Réactions de métathèse sur une liaison carbone-carbone non saturée sur une double liaison carbone-carbone
C07C 9/10 - Hydrocarbures saturés acycliques de un à quatre atomes de carbone à quatre atomes de carbone
A method includes designing a lower completion string for a multi-stage hydraulic fracturing job for a wellbore drilled into a subterranean zone. The lower completion string includes a plurality of stages and a plurality of packers configured to isolate each of the stages. Each stage of the plurality of stages includes a respective tubular stage assembly, and each stage is configured to be placed within a respective one of a plurality of frac intervals of the wellbore defined by the plurality of packers. Designing the lower completion string includes, for each stage of the plurality of stages, receiving a measured hole diameter of the respective one of the plurality of frac intervals and performing an axial safety factor analysis of the stage. The axial safety factor analysis includes a comparison of a yield strength in tension or compression of the respective tubular stage assembly of the stage with calculated effective axial tensile or compressive forces to which the respective tubular stage assembly of the stage would be subject when positioned in the frac interval in the wellbore. The axial safety factor analysis uses a predicted anchored status of the lower completion string, which includes an extent to which the respective tubular stage assembly would be predicted to elongate or contract when the lower completion string is positioned in the wellbore and the plurality of packers are set. The axial safety factor analysis also uses a distance between a first packer of the plurality of packers isolating the stage and a second packer of the plurality of packers isolating the stage, and the measured hole diameter of the respective frac interval. The method also includes determining that the axial safety factor analysis for each stage of the plurality of stages satisfies a threshold and, in response to the determining that the threshold is satisfied for each stage of the plurality of stages, inserting the lower completion string into the wellbore and performing the multi-stage hydraulic fracturing job.
Disclosed are methods, systems, and computer-readable medium to perform operations including: receiving real-time drilling data of a drilling operation of drilling a wellbore; using the drilling data to calculate at least one indicator of a borehole cleaning efficiency of the drilling operation; detecting, based on the least one indicator of the borehole cleaning efficiency, a drilling problem with the drilling operation; determining a corrective action to avoid or mitigate the drilling problem; and performing the corrective action to avoid or mitigate the drilling problem.
E21B 21/08 - Commande ou surveillance de la pression ou de l'écoulement du fluide de forage, p.ex. remplissage automatique des trous de forage, commande automatique de la pression au fond
E21B 44/02 - Commande automatique de l'avance de l'outil
51.
METHOD AND SYSTEM FOR DETERMINING LIQUID LEVELS IN SAND FILTERS AND EFFECTIVE AIR SCOURING DURING BACKWASH
C02F 1/00 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout
G05D 9/12 - Commande du niveau, p.ex. en commandant la quantité du matériau emmagasiné dans un réservoir caractérisée par l'utilisation de moyens électriques
B01D 24/00 - Filtres à substance filtrante non agglomérée, c. à d. à substance filtrante sans aucun liant entre les particules ou les fibres individuelles qui la composent
B01D 24/14 - Filtration vers le bas, le récipient comportant des tuyaux collecteurs ou distributeurs ou des tuyaux perméables
B01D 24/46 - Régénération de la substance filtrante dans le filtre
A method of cleaning a condensate thermosyphon reboiler including modifying a flow rate of a hot oil stream introduced into the tube-side of a first condensate thermosyphon reboiler, modifying a flow rate of a condensate hydrocarbon stream introduced into the shell-side of the first condensate thermosyphon reboiler, and maintaining an operation of the condensate stabilizer system until the value of an overhead temperature of the first condensate thermosyphon reboiler is detected to have been modified from the first overhead temperature to a second overhead temperature. The method further includes modifying the flow rate of the condensate hydrocarbon stream from the second condensate flow rate to the first condensate flow rate, and modifying the flow rate of the hot oil stream from the second hot oil flow rate to the first hot oil flow rate.
B01D 3/32 - Autres caractéristiques de colonnes de fractionnement
F28D 1/00 - Appareils échangeurs de chaleur comportant des ensembles de canalisations fixes pour une seule des sources de potentiel calorifique, les deux sources étant en contact chacune avec un côté de la paroi de la canalisation, dans lesquels l'autre source d
A surface safety valve (130) for a well system includes a main valve body (202) with a central bore (204) through it. A gate (208) is positioned within the main valve body (202) and is configured to move from an open position in which the gate (208) does not block a flow of fluid through the central bore to a closed position in which the gate (208) blocks a flow of wellbore fluid through the central bore (204). The gate includes a gate front end (210) positioned on a first side of the centerline bore axis and a gate back end (212) positioned on a second side of the centerline bore axis opposite the first side. An actuator (220) is positioned on the first side of the centerline bore axis and a spring (240) is positioned on the second side of the centerline bore axis.
Methods and systems for determining an image of a subterranean region of interest (102) are disclosed. The method includes obtaining a seismic dataset and a geological dip (440) model for the subterranean region of interest (102) and determining a set of input seismic gathers from the seismic dataset. The method further includes determining a central seismic gather (432) and a set of neighboring seismic gathers in a vicinity of the central seismic gather (432) from the set of seismic gathers, determining a set of dip- corrected neighboring seismic gathers based, at least in part, on the set of neighboring seismic gathers and a geological dip (440) from the geological dip (440) model, and determining a noise-attenuated central seismic gather (604) by combining the dip- corrected neighboring seismic gathers and the central seismic gather (432). The method still further includes forming the image (704) of the subterranean region of interest (102) based, at least in part, on the noise-attenuated central seismic gather (604).
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p.ex. correction de l'étalement; Etablissement d'une corrélation entre signaux sismiques; Elimination des effets produits par un excès d'énergie
A method and a system for collecting data at a fixed point in a wellbore are provided. An exemplary method includes dropping an untethered measurement tool (UMT) in the wellbore, switching a first magnet to drop a ballast from the UMT at a ballast drop condition, switching a second magnet to attach the UMT to a wall of the wellbore at a wall attachment condition. Data is collected in the UMT while the UMT is attached to the wall of the wellbore. The second magnet is switched to release the UMT from the wall of the wellbore at a wall release condition. The UMT is collected from the wellbore and the data is downloaded from the UMT.
E21B 47/26 - Stockage des données en fond de puits, p.ex. dans une mémoire ou sur un support d'enregistrement
E21B 47/12 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p.ex. pour la diagraphie pendant le forage
56.
COATED PROPPANTS AND METHODS OF MAKING AND USE THEREOF
Coated proppants include a proppant particle, a surface copolymer layer surrounding the proppant particle, and a resin layer surrounding the surface copolymer layer. The surface copolymer layer includes a copolymer of at least two monomers chosen from styrene, methyl methacrylate, ethylene, propylene, butylene, imides, urethanes, sulfones, carbonates, and acrylamides, where the copolymer is crosslinked by divinyl benzene. The resin layer includes a cured resin. Methods of preparing the coated proppants include preparing a first mixture including at least one polymerizable material, an initiator, and a crosslinker including divinyl benzene; contacting the first mixture to a proppant particle to form a polymerization mixture; heating the polymerization mixture to cure the polymerizable material and form a polymer-coated particulate; preparing a second mixture including the polymer-coated substrate, an uncured resin, and a solvent; and adding a curing agent to the second mixture to cure the uncured resin and form the coated proppant.
A system includes a fusible cap (200), an adapter (300), and a hydraulic valve (104). The fusible cap (200) includes a fusible body (202) having a first box end (204). The first box end (204) has first box threads (208). The adapter (300) includes a first pin end (304) and a second box end (306). The first pin end (304) has first pin threads (308), and the second box end (306) has second box threads (310). The hydraulic valve (104) includes a second pin end (400) having second pin threads (408). The first box threads (208) mate with the first pin threads (308) to form a first connection (500) and the second box threads (310) mate with the second pin threads (408) to form a second connection (502).
E21B 34/02 - Aménagements des vannes pour les trous de forage ou pour les puits dans les têtes de puits
E21B 34/16 - Moyens de commande situés à l'extérieur du trou de forage
E21B 35/00 - Procédés ou dispositifs pour empêcher ou éteindre les incendies
F16K 3/02 - Robinets-vannes ou tiroirs, c. à d. dispositifs obturateurs dont l'élément de fermeture glisse le long d'un siège pour l'ouverture ou la fermeture à faces d'obturation planes; Garnitures d'étanchéité à cet effet
F16K 17/38 - Soupapes ou clapets de sûreté; Soupapes ou clapets d'équilibrage fonctionnant sous l'action de circonstances extérieures, p.ex. un choc, un changement de position d'une température excessive
58.
METHOD TO DETERMINE POST-WELD HEAT TREATMENT REQUIREMENTS FOR EXTERNAL WELDED ATTACHMENT TO AVOID ENVIRONMENTAL STRESS CORROSION CRACKING
A method is provided for determining whether post-weld heat treatments should be required for external attachment welds in applications where stress corrosion cracking is a possibility. According to the method, residual stress values are measured in test samples welded at high input heat levels and test samples welded at low input heat levels for a variety of different wall thickness. A threshold residual stress level is determined according to a method of selecting a common pipe used in industry and measuring the residual stress level in the longitudinal seam of the pipe. The measured residual stress values for the high and low heat input welds are compared against the threshold to determine whether for a particular wall thickness, the high and low input data exceeds the threshold, indicating whether post-weld heat treatments are required.
B23K 31/12 - Procédés relevant de la présente sous-classe, spécialement adaptés à des objets ou des buts particuliers, mais non couverts par un seul des groupes principaux relatifs à la recherche des propriétés, p.ex. de soudabilité, des matériaux
C21D 9/50 - Traitement thermique, p.ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliers; Fours à cet effet pour joints de soudure
Systems and method are claimed for forming an artifact attenuated seismic image (432). The method includes obtaining an input seismic image (402), selecting a seismic partition (420a) from the input seismic image (402) and determining a seismic dip for the seismic partition (420a). The method further includes determining flattened seismic partition (420b) from the seismic partition (420a) based, at least in part, on the seismic dip, determining a filtered seismic partition (420c) from the flattened seismic partition (420b), and determining an unflattened seismic segment (420d) based on the filtered seismic partition (420c). The method still further includes determining the artifact attenuated seismic image (432) based on the unflattened seismic segment (420d). The system includes a seismic source, a plurality of seismic receivers for detecting and recording an observed seismic dataset generated by the radiated seismic wave; and a seismic processor configured form the artifact attenuated seismic image (432).
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p.ex. correction de l'étalement; Etablissement d'une corrélation entre signaux sismiques; Elimination des effets produits par un excès d'énergie
A retrievable whipstock assembly for a wellbore (102) includes a whipstock (200) including a longitudinal body (209) and an anchor connection (208), a deflection surface (202) provided on the longitudinal body (209) with a first engagement element (205), and a drilling assembly (210) including a drill housing (214) and a second engagement element (218). The second engagement element (218) is selectively extendible between a recessed position and an extended position. In the extended position the second engagement element (218) is engageable with the first engagement element (205).
E21B 7/06 - Modification de la direction du trou de forage
E21B 10/32 - Trépans avec une partie pilote, c. à d. trépans comportant un organe coupant pilote; Trépans pour élargir le trou de forage, p.ex. alésoirs à organes coupants expansibles
E21B 23/02 - Appareils pour déplacer, mettre en place, verrouiller, libérer ou retirer, les outils, les packers ou autres éléments dans les trous de forage pour verrouiller les outils ou autres éléments sur des supports ou dans des retraits entre sections adjacentes du tubage
61.
MULTILATERAL WELL ACCESS SYSTEMS AND RELATED METHODS OF PERFORMING WELLBORE INTERVENTIONS
A method of performing an intervention operation at a multilateral well includes deploying a directional guide to an axial position within the multilateral well at which a lateral section of the multilateral well is located, installing a main body of the directional guide to an inner surface profile arranged along a casing that surrounds the directional guide at the axial position, closing a bore that passes through the main body along an elongate axis of the main body, deflecting an intervention assembly along a guide surface of the main body into the lateral section, and controlling the intervention assembly to perform the intervention operation within the lateral section.
A multilateral well access system includes a directional guide and a mating surface profile. The directional guide includes a main body and an outer surface profile disposed on the main body. The main body defines a guide surface oriented non-parallelly to an elongate axis of the main body and a bore passing through the main body along the elongate axis. The mating surface profile is formed complementary to the outer surface profile of the directional guide and is engaged with the outer surface profile to secure the directional guide in a fixed position.
A system includes a sleeved valve (200) disposed within a casing (202) string. The sleeved valve (200) has a first cement port (206) configured to open and close to an annulus (204) and a first opening (210). The first opening (210) and the first cement port (206) are hydraulically connected within the sleeved valve (200). The system further includes a tool (300) made of a tubular body (302) having an outer diameter (306) smaller than an inner diameter of the casing (202) string. The tool (300) includes a tool orifice (304) and a cement injection needle (308) in hydraulic communication with the tool orifice (304). The cement injection needle (308) fits inside the first opening (210) and, upon entering the first opening (210), a first hydraulic connection is created between the tool orifice (304) and the first cement port (206).
E21B 33/14 - Procédés ou dispositifs de cimentation, de bouchage des trous, des fissures ou analogues pour la cimentation des tubes dans les trous de forage ou de sondage
64.
SOLID OXIDE FUEL CELL USING ZEOLITE-TEMPLATED CARBON AS ELECTROCATALYST
A solid oxide fuel cell assembly (SOFC) and a method for making the SOFC are provided. An exemplary method includes forming a functionalized zeolite templated carbon (ZTC). The functionalized ZTC is formed by forming a CaX zeolite, depositing carbon in the CaX zeolite using a chemical vapor deposition (CVD) process to form a carbon/zeolite composite, treating the carbon/zeolite composite with a solution comprising hydrofluoric acid to form a ZTC, and treating the ZTC to add catalyst sites. The functionalized ZTC is incorporated into electrodes by forming a mixture of the functionalized ZTC with a calcined solid oxide electrolyte and calcining the mixture. The method includes forming an electrode assembly, forming the SOFC assembly, and coupling the SOFC assembly to a cooling system.
H01M 4/90 - Emploi de matériau catalytique spécifié
H01M 8/04007 - Dispositions auxiliaires, p.ex. pour la commande de la pression ou pour la circulation des fluides relatives à l’échange de chaleur
H01M 8/0637 - Reformage interne direct à l’anode de l’élément à combustible
H01M 8/1253 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Éléments à combustible; Leur fabrication Éléments à combustible avec électrolytes solides fonctionnant à haute température, p.ex. avec un électrolyte en ZrO2 stabilisé caractérisés par le procédé de fabrication ou par le matériau de l’électrolyte l'électrolyte étant constitué d’oxydes l'électrolyte contenant de l’oxyde de zirconium
65.
OIL API DETERMINATION OF RESERVOIR ROCKS BY OXIDATION
A method of determining an API gravity of a crude oil is provided. The method includes obtaining a reservoir sample containing the crude oil and heating the sample to a first temperature using an oxidative testing apparatus. The sample is then heated to a second temperature, which is greater than the first temperature, over a period using a fixed heating rate. The rate of carbon dioxide emission from the sample is detected during the period of heating to the second temperature. The peak rate of carbon dioxide emission from the sample is then determined and the peak carbon dioxide emission temperature associated with the peak rate of carbon dioxide emission is also determined. The API gravity of the crude oil in the reservoir sample is determined using an empirical correlation between API gravity and the peak carbon dioxide emission temperature associated with the fixed heating rate.
A polymer electrolyte membrane (PEM) fuel cell assembly, and a method for making the assembly, are provided. An exemplary method includes forming a functionalized zeolite templated carbon (ZTC), including forming a CaX zeolite, depositing carbon in the CaX zeolite using a chemical vapor deposition (CVD) process to form a carbon/zeolite composite, treating the carbon/zeolite composite with a solution including hydrofluoric acid to form a ZTC, and treating the ZTC to add catalyst sites, forming the functionalized ZTC. The method further includes incorporating the functionalized ZTC into electrodes, forming a membrane electrode assembly (MEA), and forming the PEM fuel cell assembly.
Solid oxide electrolytic cell assembly (SOEC) and methods for making SOECs are provided. An exemplary method includes forming a functionalized zeolite templated carbon (ZTC). The functionalized ZTC is formed by forming a CaX zeolite, depositing carbon in the CaX zeolite using a chemical vapor deposition (CVD) process to form a carbon/zeolite composite, treating the carbon/zeolite composite with a solution including hydrofluoric acid to form a ZTC, and treating the ZTC to add catalyst sites. In the method, the functionalized ZTC is incorporated into electrodes by forming a mixture of the functionalized ZTC with a calcined solid oxide electrolyte, and calcining the mixture. The method includes forming an electrode assembly, forming the SO electrolytic cell assembly, and coupling the SO electrolytic cell assembly to a heat source.
H01M 4/90 - Emploi de matériau catalytique spécifié
H01M 8/04007 - Dispositions auxiliaires, p.ex. pour la commande de la pression ou pour la circulation des fluides relatives à l’échange de chaleur
H01M 8/0637 - Reformage interne direct à l’anode de l’élément à combustible
H01M 8/1253 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Éléments à combustible; Leur fabrication Éléments à combustible avec électrolytes solides fonctionnant à haute température, p.ex. avec un électrolyte en ZrO2 stabilisé caractérisés par le procédé de fabrication ou par le matériau de l’électrolyte l'électrolyte étant constitué d’oxydes l'électrolyte contenant de l’oxyde de zirconium
68.
POLYMER ELECTROLYTE MEMBRANE (PEM) ELECTROLYTIC CELLS USING ZEOLITE-TEMPLATED CARBON (ZTC) AS ELECTROCATALYST
A polymer electrolyte membrane (PEM) electrolytic cell assembly, and a method for making the assembly, are provided. An exemplary method includes forming a functionalized zeolite templated carbon (ZTC), including forming a CaX zeolite, depositing carbon in the CaX zeolite using a chemical vapor deposition (CVD) process to form a carbon/zeolite composite, treating the carbon/zeolite composite with a solution including hydrofluoric acid to form a ZTC, and treating the ZTC to add catalyst sites, forming the functionalized ZTC. The method further includes incorporating the functionalized ZTC into electrodes, forming a membrane electrode assembly (MEA), and forming the PEM electrolytic cell assembly. The method further includes coupling the PEM electrolytic cell assembly to a heat source.
Systems and methods include a computer-implemented method for predicting hydraulic fracture initiation. A fracking operations dataset is prepared using historical field information for fracking wells. A set of hyper-parameters is tuned for use in a machine learning algorithm configured to predict fracture initiation for new fracturing wells. The dataset is divided into training and test datasets. A regression algorithm is applied to train the training dataset and to validate with the test dataset. A target variable of a breakdown pressure for a new hydraulic fracturing treatment is determined. A prediction dataset is updated using at least the target variable. The training dataset is trained using a classifier of the machine learning algorithm. A prediction is made using the prediction dataset whether the new hydraulic fracturing treatment can be initiated or not. The breakdown pressure is incrementally adjusted, and the method is repeated until successful hydraulic fracture initiation is predicted.
A method may include generating (320) a first well intervention plan (260) for a well site automatically based on a predetermined scheduling criterion (261). The first well intervention plan (262) is generated using a first set of data inputs regarding one or more well intervention providers and one or more well conditions. The method may further include obtaining (305) first well data (263) regarding the well site. The method may further include adjusting (335) the predetermined scheduling criterion (261) to produce an adjusted scheduling criterion (412) using the first well data (263). The adjusted scheduling criterion (412) corresponds to a second set of data inputs that are different from the first set of data inputs. The method may further include generating (320) a second well intervention plan (262) for the well site based on the adjusted scheduling criterion (412). The method may further include transmitting (350) a command (295) to the well site that adjusts well operations based on the second well intervention plan (262).
E21B 44/00 - Systèmes de commande automatique spécialement adaptés aux opérations de forage, c. à d. systèmes à fonctionnement autonome ayant pour rôle d'exécuter ou de modifier une opération de forage sans l'intervention d'un opérateur humain, p.ex. systèmes de ; Systèmes spécialement adaptés à la surveillance de plusieurs variables ou conditions de forage
71.
METHOD OF HYDROCARBON RESERVOIR SIMULATION USING STREAMLINE CONFORMAL GRIDS
A system and method of simulating fluid flow in a hydrocarbon reservoir is disclosed. The method includes obtaining a coarse grid model of the hydrocarbon reservoir and a trajectory of a wellbore that penetrates the hydrocarbon reservoir, and determining an initial grid geometry surrounding the trajectory. The method further includes constructing a reservoir simulation grid, conformal to the initial grid geometry in a first region in a vicinity of the wellbore and conformal with the coarse grid model in a second region more distant from the wellbore than the first region, and performing a hydrocarbon reservoir simulation, modeling a flow of fluid in the hydrocarbon reservoir based, at least in part, on the reservoir simulation grid.
E21B 43/00 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits
G01V 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
72.
QUICK CONNECTION INTERFACE FOR ELECTRICAL SUBMERSIBLE PUMP COMPONENTS
A system includes an upper connection (206) having a ring shape with an external surface, where upper splines (222) are formed on the external surface and the upper connection (206) is fixed to the upper section (200). The system also includes a lower connection (208) having a ring shape with an internal surface, where lower splines (232) are formed on the internal surface and the lower splines (232) are configured to mate with the upper splines (222) of the upper connection (206). Further, the system includes a fishing sub having a first lateral end (254) and a second lateral end (256), where the first lateral end (254) is fixed to the lower connection (208) by shear pins (250) configured to shear when a pre-determined tension is applied to the system, and the second lateral end (256) is fixed to the lower section (202). The upper connection (206) is inserted into the lower connection (208) to form an engagement between the upper section (200) and the lower section (202).
B01D 53/04 - SÉPARATION Épuration chimique ou biologique des gaz résiduaires, p.ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p.ex. chromatographie préparatoire en phase gazeuse avec adsorbants fixes
A method for recovering hydrocarbons from a hydrocarbon bearing formation (1008) includes introducing a first solution having a first salt into the hydrocarbon bearing formation. A second solution is also introduced into the hydrocarbon bearing formation, wherein the second solution has a second salt and a foaming agent. The first salt and the second salt produces a nitrogen gas, and the nitrogen gas and the foaming agent produces a foam (210) formed in-situ within the formation. The foam forms a foam barrier (212), and carbon dioxide is introduced into the formation to form a gas cap (222), wherein the carbon dioxide gas cap has a gas front that is separated from the hydrocarbons by the foam barrier (212).
A method may include obtaining a P-wave velocity model (476) and velocity ratio data (411) regarding a geological region of interest. The method may further include generating, based on the P-wave velocity model (476) and the velocity ratio data (411), an initial S-wave velocity model (420) regarding the geological region of interest. The method may further include determining various velocity boundaries within the initial S-wave velocity model (420) using a trained model. The method may further include updating the initial S- wave velocity model (420) using the velocity boundaries, an automatically- selected cross-correlation lag value based on various seismic migration gathers, and a migration- velocity analysis to produce an updated S-wave velocity model (470). The method further includes generating a combined velocity model for the geological region of interest using the updated S-wave velocity model (470) and the P-wave velocity model (476).
KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY (Arabie saoudite)
SAUDI ARABIAN OIL COMPANY (Arabie saoudite)
Inventeur(s)
Tung, Vincent Chun-Chih
Wei, Xuan
Fu, Jui-Han
Xu, Wei
Ding, Lianhui
Abrégé
An architected transitional metal dichalcogenides, TMD, foam (300) includes plural layers (602i) of TMD arranged on top of each other along a given first direction Z, each layer (602i) including plural cells (400), each cell (400) being defined by one or more struts (412) made of the TMD; plural channels (420) extending along a given second direction M, which makes an angle α with the first given direction Z; and plural pores (410) formed on sides of the plural channels (420).
Systems and methods are disclosed. The method includes obtaining a plurality of raw seismic datasets (202) for a subterranean region of interest (102), where each raw' seismic dataset (202) is generated by a high-speed train (110) traversing a train track (118) at a unique speed, and determining, using a seismic processing system (1204), a plurality of processed seismic datasets (700a~c) by processing each of the plurality of raw seismic datasets (202). The method further includes determining, using the seismic processing system (1204), a final seismic dataset (1000) by combining the plurality of processed seismic datasets (700a-c); and identifying, using a seismic interpretation workstation (1208), subterranean features within the subterranean, region (102) of interest using the final seismic dataset (1000).
A system and method for generating base water and precipitate, including combining produced water with seawater to precipitate barium sulfate from barium in the produced water and from sulfate in the seawater, and separating the precipitate to give the base water and the precipitate. The base water may have less than a specified amount of sulfate and be utilized for hydraulic fracturing fluid. The precipitate may give a weighting agent for drilling.
A fluid processing system is configured for use in a wellbore in a hydrocarbon- bearing rock formation. The system includes a casing liner disposed in an open hole section of a well for providing a separation zone in a flow of materials from a first reservoir The system includes a downhole separator operatively coupled to the casing liner for separating the first material and the second material within the flow of materials. The flow of materials includes at least a first material and a second material.
A self-retaining shear pin tool and methods for connecting downhole tubulars in a wellbore are disclosed. The self-retaining shear pin tool includes a cap having an inner side and an outer side opposite the inner side, the cap defining a first recess formed in the inner side of the cap, the first recess of the cap having a cylindrical portion and a frustoconical portion extending from the cylindrical portion towards the outer side of the cap, and a shear pin disposed partially in the first recess of the cap and extending out of the first recess of the cap. The shear pin includes a body, a first recess extending inward from a first end of the body, a second recess extending inward from a second end of the body, a first swage, and a second swage die.
Embodiments may include a hydrogen sulfide scrubber system (100) that includes a charging chamber (140), a reaction vessel (150), and a treated gas trap (170). Embodiments may include a mobile vehicle (405), vessel, or platform that includes a mobile vehicle (405), vessel, or platform with a mounted hydrogen sulfide scrubber system (100). The hydrogen sulfide scrubber system (100) is configured as previously described. Embodiments may include a method of using a hydrogen sulfide scrubber system (100).
An example method is for producing a seismic wave velocity model of a subsurface area. The method includes receiving, by a processor of a computing system, from a seismic receiver, seismic data input comprising a recorded seismic wave field. The method includes receiving, by the processor, an initial 1D velocity model of the subsurface area. The method includes determining, by the processor, a Laplace-Fourier transform of the recorded seismic wave field. The method includes regenerating, by the processor, the current 1D velocity model to generate inverted data representing the subsurface area. The method may include performing, by the processor, an upscaling of a plurality of 1D velocity models to produce a 3D velocity model.
A computer-implemented method may include obtaining seismic data acquired in a time-domain for a subterranean region of interest (300). The method may further include obtaining a property model for the subterranean region of interest (305). The method may further include determining one or more time shifts using a segment dynamic image warping function based on the seismic data and the property model (320). The method may further include determining an adjoint source operator using the derived time shift and one-way wave equation (325). The method may further include updating the property model using a gradient solver in a data-domain reflection traveltime inversion (335). The method may further include outputting the updated property model for the subterranean region of interest (345). The method may further include generating a seismic image for the subterranean region of interest using the updated property model (345).
Systems and methods for crude oil separations including degassing, dewatering, desalting, and stabilization, one method including separating crude oil into a crude oil off-gas and a partially degassed crude oil output; compressing the crude oil off-gas; applying the compressed crude oil off-gas for indirect heating of the partially degassed crude oil output; further heating the partially degassed crude oil output indirectly with compressed low pressure gas; directly mixing with the partially degassed crude oil output a compressed atmospheric pressure gas; separating from the partially degassed crude oil output a low pressure gas for use in the step of further heating; and separating from the partially degassed crude oil output an atmospheric pressure gas for use in the step of directly mixing.
C10G 31/06 - Raffinage des huiles d'hydrocarbures, en l'absence d'hydrogène, par des méthodes non prévues ailleurs par chauffage, refroidissement ou traitement par la pression
A process for treating a feed oil in the presence of in situ produced catalyst particles comprising the steps of mixing the supercritical water feed with the pressurized precursor solution in a catalyst mixer to produce a supercritical water stream; withdrawing the supercritical water stream to a process line, where the catalyst precursor is converted to catalyst particles in the process line; mixing the supercritical water stream and the hot oil stream in the mixer to produce a mixed stream; introducing the mixed stream to a reactor; processing the heavy oil in the reactor in the presence of the catalyst particles to produce a reactor effluent; reducing a temperature of the reactor effluent to produce a cooled effluent; reducing a pressure of the cooled effluent to produce a depressurized effluent; and separating the depressurized effluent to produce a product gas, a product oil, and a product water.
B01J 3/00 - Procédés utilisant une pression supérieure ou inférieure à la pression atmosphérique pour obtenir des modifications chimiques ou physiques de la matière; Appareils à cet effet
C10G 47/32 - Craquage des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, pour obtenir des fractions à point d'ébullition inférieur en présence de composés donneurs d'hydrogène
C10G 49/04 - Traitement des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, non prévu dans un seul des groupes , , , ou caractérisé par le catalyseur utilisé contenant du nickel, du cobalt, du chrome, du molybdène ou du tungstène, ou leurs composés
C10G 49/18 - Traitement des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, non prévu dans un seul des groupes , , , ou en présence de composés donneurs d'hydrogène, p.ex. d'ammoniac, d'eau, de sulfure d'hydrogène
C10G 51/04 - Traitement des huiles d'hydrocarbures, en l'absence d'hydrogène, uniquement par plusieurs procédés de craquage uniquement par plusieurs étapes en série ne comprenant que des étapes de craquage thermique et catalytique
86.
LIQUID NMR SIGNAL BOOST DURING NMR FLOW METERING OF WET GAS FLOW USING ENHANCED SIGNAL RELAXATION AND/OR DYNAMIC NUCLEAR POLARISATION USING IMMOBILISED RADICALS
A multiphase flow metering device may have a conduit (100) through which a multiphase fluid can flow and a structured packing insert (102) positioned in the conduit. The structured packing insert may have a water-wet packing structure zone (104) and/or an oil-wet packing structure zone (106). The multiphase flow metering device may also have a Halbach pre-polarizing magnet array 108 positioned around the conduit (100), an RF coil (110), an electromagnet (112), an NMR console (114) adapted to detect NMR signals from the multiphase fluid, and a control system (116) configured to vary a polarization of the Halbach pre-polarizing magnet array (108). The Halbach pre-polarizing magnet array (108) may be positioned or positionable over one or both of the oil-wet and water-wet packing structure zones. In some embodiments, the structured packing insert (102) may include immobilized radicals, providing for dynamic nuclear polarization of the multiphase fluid.
G01F 1/716 - Mesure du temps de parcours d'une distance déterminée utilisant la résonance paramagnétique électronique (RPE) ou la résonance magnétique nucléaire (RMN)
87.
METHOD OF SCREENING FOR FOAMING AGENTS AND SURFACTANTS
Methods of evaluating a surfactant (100) may include ultrasonicating a mixture of oil, water, and the surfactant to form at least one of the following: a sub-macroemulsion, a macroemulsion phase or a combination of the aforementioned (101); separating the sub-macroemulsion from the macroemulsion phase (102); introducing the sub-macroemulsion into a foam container (103); performing a first automated phase identification of the sub-macroemulsion (104); introducing a gas into the sub-macroemulsion to generate a column of foam, where the column of foam has a height in the foam container (105); performing a second automated phase identification of the sub-macroemulsion (106); and measuring the height of the column of foam in the foam container (107). In these methods, the first and second automated phase identifications may be configured to quantify one or more liquid phases and a foam phase in the column.
G01N 15/04 - Recherche de la sédimentation des suspensions de particules
G01N 13/00 - Recherche des effets de surface ou de couche limite, p.ex. pouvoir mouillant; Recherche des effets de diffusion; Analyse des matériaux en déterminant les effets superficiels, limites ou de diffusion
C09K 8/03 - Additifs spécifiques à usage général dans les compositions pour le forage des puits
C09K 8/584 - Compositions pour les méthodes de récupération assistée pour l'extraction d'hydrocarbures, c. à d. pour améliorer la mobilité de l'huile, p.ex. fluides de déplacement caractérisées par l'utilisation de tensio-actifs spécifiques
G01N 33/00 - Recherche ou analyse des matériaux par des méthodes spécifiques non couvertes par les groupes
A method may include obtaining (400) first pressure data regarding a first pressure sensor (351) upstream from a restricted orifice (340) and second pressure data regarding a second pressure sensor (353) downstream from the restricted orifice (340). The method may further include obtaining (410) temperature data regarding a temperature sensor (352) coupled to the restricted orifice (340). The method may further include obtaining (420) various gas parameters regarding a predetermined gas flowing through the restricted orifice (340) and various orifice parameters regarding the restricted orifice (340). The method may further include determining (430) a first gas flow rate of the predetermined gas based on a gas flow model (376), the first pressure data, the second pressure data, the temperature data, the gas parameters, and the orifice parameters.
G01F 15/04 - Compensation ou correction des variations de pression, de poids spécifique ou de température des gaz à mesurer
G01F 1/36 - Mesure du débit volumétrique ou du débit massique d'un fluide ou d'un matériau solide fluent, dans laquelle le fluide passe à travers un compteur par un écoulement continu en utilisant des effets mécaniques en mesurant la pression ou la différence de pression la pression ou la différence de pression étant produite par une contraction de la veine fluide
G01F 1/50 - Moyens de correction ou de compensation
G01F 15/063 - Dispositifs d'indication ou d'enregistrement pour l'indication à distance utilisant des moyens électriques
G01F 15/075 - Intégration pour obtenir le débit total, p.ex. en utilisant un mécanisme intégrateur actionné mécaniquement en utilisant des moyens d'intégration actionnés électriquement
E21B 41/00 - Matériel ou accessoires non couverts par les groupes
F23G 7/08 - Procédés ou appareils, p.ex. incinérateurs, spécialement adaptés à la combustion de déchets particuliers ou de combustibles pauvres, p.ex. des produits chimiques de gaz d'évacuation ou de gaz nocifs, p.ex. de gaz d'échappement utilisant des torchères, p.ex. dans des cheminées
89.
CONTACTLESS REAL-TIME 3D MAPPING OF SURFACE EQUIPMENT
Systems and methods include a computer-implemented method for providing a photonic sensing system to perform an automated method to characterize displacement of equipment surfaces and monitor changes in real-time. A three-dimensional (3D) point cloud of one or more objects is generated by an analysis and presentation system using light information collected through structured light illumination by an array of structured-light sensors (SLSes) directed toward the one or more objects. Generating the point cloud includes defining points of the 3D point cloud that are relative to reference points on the one or more objects. Real-time contactless 3D surface measurements of the one or more objects are performed using the 3D point cloud. Changes in one or more parts of the one or more objects are determined by the an analysis and presentation system by analyzing the real-time contactless 3D surface measurements.
G01B 11/25 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des contours ou des courbes en projetant un motif, p.ex. des franges de moiré, sur l'objet
G01B 11/245 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des contours ou des courbes en utilisant plusieurs transducteurs fixes fonctionnant simultanément
G01B 11/16 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la déformation dans un solide, p.ex. indicateur optique de déformation
A method for determining and tracking an edge of first breaks is provided. The method includes obtaining seismic data associated with subsurface formations, the seismic data relating to a vibration contacting a plurality of portions of the subsurface formations, processing the seismic data to produce processed seismic data comprising one or more attributes, wherein the processed seismic data defines an edge characterizing a plurality of onset times, iteratively performing, using a level sets algorithm, a plurality of tracking operations on the processed seismic data to identify the edge characterizing a plurality of first breaks' onset times, and determining the edge as first breaks.
An integrated catalytic process for upgrading a feed oil comprises the steps of introducing a catalyst precursor solution to a supercritical water (SCW) process unit, where the catalyst precursor solution comprises a catalyst precursor dissolved in liquid water; introducing a feed water to the SCW process unit; introducing the feed oil to the SCW process unit; treating the catalyst precursor solution, the feed water, and the feed oil in the SCW process unit to produce a SCW effluent, where the catalyst precursor is converted to catalyst particles; separating the SCW effluent in a separator unit to produce a SCW distillate product, a SCW residue product; introducing the SCW residue product to a slurry hydroprocessing unit, where the SCW residue product comprises the catalyst particles; treating the SCW residue product and the hydrogen gas in the slurry hydroprocessing unit to produce a product gas stream and an upgraded oil product.
B01J 3/00 - Procédés utilisant une pression supérieure ou inférieure à la pression atmosphérique pour obtenir des modifications chimiques ou physiques de la matière; Appareils à cet effet
C10G 47/32 - Craquage des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, pour obtenir des fractions à point d'ébullition inférieur en présence de composés donneurs d'hydrogène
C10G 49/04 - Traitement des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, non prévu dans un seul des groupes , , , ou caractérisé par le catalyseur utilisé contenant du nickel, du cobalt, du chrome, du molybdène ou du tungstène, ou leurs composés
C10G 49/18 - Traitement des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, non prévu dans un seul des groupes , , , ou en présence de composés donneurs d'hydrogène, p.ex. d'ammoniac, d'eau, de sulfure d'hydrogène
C10G 51/04 - Traitement des huiles d'hydrocarbures, en l'absence d'hydrogène, uniquement par plusieurs procédés de craquage uniquement par plusieurs étapes en série ne comprenant que des étapes de craquage thermique et catalytique
C10G 45/16 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour éliminer des hétéro-atomes sans modifier le squelette de l'hydrocarbure mis en œuvre et sans craquage en hydrocarbures à point d'ébullition inférieur; Hydrofinissage avec des particules solides en mouvement dispersés dans l'huile, p.ex. sous forme de bouillie
C10G 47/26 - Craquage des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, pour obtenir des fractions à point d'ébullition inférieur avec des particules solides en mouvement en suspension dans de l'huile, p.ex. sous forme de bouillie
Some implementations of the present disclosure provide a laser drilling tool assembly comprising: (i) a body that includes: a first segment configured to receive an input beam from a laser source and couple the input beam to provide an irradiation beam to irradiate a downhole target, and a second segment housing one or more purging pipes; and (ii) a tool head that includes: a retractable nozzle; and one or more optical sensing elements mounted on the retractable nozzle, wherein when the downhole target is being irradiated by the irradiation beam, the retractable nozzle is extended towards the downhole target such that the one or more optical sensing elements are positioned closer to the downhole target.
A downhole pump includes a housing, a plunger that is disposed within the housing, and a rod that is secured to the plunger. The housing includes a magnet that is disposed at an uphole end of the housing. The plunger includes a traveling valve that is disposed at a downhole end of the plunger. The rod includes a conducting shaft that is attached to an uphole end of the plunger. The conducting shaft is configured to extend a magnetic field generated by the magnet when the conducting shaft is positioned adjacent the magnet to magnetically force the traveling valve into an open state.
A process for drilling a well into a subsurface formation includes receiving data representing depth maps for a given subsurface region, each depth map being generated from seismic data acquired in a seismic survey at a subsurface region. The process includes determining, for depth maps of the plurality, respective weight values; generating data representing a combination of the depth maps based on the respective weight values; generating a cumulative distribution function (CDF) for a particular location in the subsurface region based on the data representing a combination of the depth maps; determining, based on the CDF for that particular location, a probability value representing a depth at which a geological layer occurs in the subsurface region at the particular location; and drilling the well into the subsurface formation at the particular location to a target depth based on the probability value.
A method of forming a model (230) of a porous structure includes three dimensionally printing a mold (200) of the porous structure using a polycaprolactone mold material, filling the mold with a polymer mixture (220), and heating the filled mold at a temperature above a melting temperature of the mold material to cure the polymer mixture, where the cured polymer mixture (224) forms the model (230) of the porous structure.
B29C 39/00 - Moulage par coulée, c. à d. en introduisant la matière à mouler dans un moule ou entre des surfaces enveloppantes sans pression significative de moulage; Appareils à cet effet
B29C 39/10 - Moulage par coulée, c. à d. en introduisant la matière à mouler dans un moule ou entre des surfaces enveloppantes sans pression significative de moulage; Appareils à cet effet pour la fabrication d'objets de longueur définie, c. à d. d'objets séparés en incorporant des parties ou des couches préformées, p.ex. coulée autour d'inserts ou sur des objets à recouvrir
B29C 35/02 - Chauffage ou durcissement, p.ex. réticulation ou vulcanisation
B33Y 80/00 - Produits obtenus par fabrication additive
B29C 64/106 - Procédés de fabrication additive n’utilisant que des matériaux liquides ou visqueux, p.ex. dépôt d’un cordon continu de matériau visqueux
B29C 37/00 - FAÇONNAGE OU ASSEMBLAGE DES MATIÈRES PLASTIQUES; FAÇONNAGE DES MATIÈRES À L'ÉTAT PLASTIQUE NON PRÉVU AILLEURS; POST-TRAITEMENT DES PRODUITS FAÇONNÉS, p.ex. RÉPARATION - Eléments constitutifs, détails, accessoires ou opérations auxiliaires non couverts par le groupe ou
97.
SYSTEM AND METHOD FOR FORMING A SEISMIC VELOCITY MODEL AND IMAGING A SUBTERRANEAN REGION
Methods of and systems for forming an image of a subterranean region of interest (102) are disclosed. The method includes obtaining an observed seismic dataset (200, 302) and a seismic velocity model for the subterranean region of interest and generating a simulated seismic dataset (304) based on the seismic velocity model and the source (106) and receiver (120) geometry of the observed seismic dataset (200). The method also includes forming a plurality of time-windowed trace pairs from the simulated and the observed seismic datasets, and forming an objective function (308) based on a penalty function and a cross-correlation between the members of each pair. The method further includes determining a seismic velocity increment based on the extremum (314) of the objective function (308) and forming an updated seismic velocity model (720) by combining the seismic velocity increment and the seismic velocity model, and forming the image of the subterranean region (102) of interest based on the updated seismic velocity model (720).
Spoolable composite pipes (100) for oil and gas flowlines may include an inner extruded tubular liner (101), a reinforcement layer (102) surrounding the inner extruded tubular liner (101), and an outer extruded tubular (103) cover surrounding the reinforcement layer (102). In these spoolable composite pipes (100), the inner extruded tubular liner (101) may include an aliphatic polyketone. Internally lined pipes (200) for oil and gas flowlines may include inner extruded tubular liner (201) containing an aliphatic poly ketone, and a carbon steel pipe (202) surrounding the inner extruded tubular liner (201). The spoolable composite pipes (100) and the internally lined pipes (200) may be configured to operate at temperatures of up to about 110°C, and to carry hydrocarbons having an aromatic content of up to about 35% by volume of the total hydrocarbons content.
B32B 7/12 - Liaison entre couches utilisant des adhésifs interposés ou des matériaux interposés ayant des propriétés adhésives
B32B 27/08 - Produits stratifiés composés essentiellement de résine synthétique comme seul composant ou composant principal d'une couche adjacente à une autre couche d'une substance spécifique d'une résine synthétique d'une sorte différente
B32B 27/28 - Produits stratifiés composés essentiellement de résine synthétique comprenant des copolymères de résines synthétiques non complètement couverts par les sous-groupes suivants
An apparatus for producing in-situ steam comprising a rotational joint, the steam generating tool comprising an optics unit configured to shape and manipulate laser energy delivered to the optics unit through the fiber optic cable to produce a laser beam, an optical cover, an activated carbon case configured to contain activated carbon, the activated carbon case comprising a laser end configured to allow the laser beam to pass while containing the activated carbon, a reinforced end configured to stop the laser beam while containing the activated carbon, wherein the laser beam travels from the optical cover to the laser end of the activated carbon case through the activated carbon case and ends at the reinforced end, and activated carbon, an outer case, wherein an annulus is formed between the outer case and the activated carbon case, and water supply pipes configured to carry water to the annulus.
E21B 36/04 - Aménagements pour le chauffage, le refroidissement, l'isolation, dans les trous de forage ou dans les puits, p.ex. pour être utilisés dans les zones de permagel utilisant des réchauffeurs électriques
E21B 43/24 - Procédés de récupération assistée pour l'extraction d'hydrocarbures utilisant la chaleur, p.ex. injection de vapeur
E21B 36/02 - Aménagements pour le chauffage, le refroidissement, l'isolation, dans les trous de forage ou dans les puits, p.ex. pour être utilisés dans les zones de permagel utilisant des brûleurs
100.
HEATING A FORMATION OF THE EARTH WHILE DRILLING A WELLBORE
A method and an assembly for heating and evaluating a formation of the Earth while drilling a wellbore filled with drilling mud are described. A first drilling mud temperature at a depth in the wellbore is received from a first sensor by a controller. The formation proximal to the depth is heated by a heat source mounted to the assembly to a temperature greater than a formation temperature as the drilling assembly drills the wellbore. A second drilling mud temperature is received from a second sensor by the controller. The heat source is positioned in between the first sensor and the second sensor. A difference between the first drilling mud temperature and the second drilling mud temperature is compared to a threshold drilling mud temperature difference value by the controller. Based on a result of the comparison, the drilling assembly is controlled and directed in the formation.
E21B 36/00 - Aménagements pour le chauffage, le refroidissement, l'isolation, dans les trous de forage ou dans les puits, p.ex. pour être utilisés dans les zones de permagel