A glass container includes a glass body comprising an external surface, an internal surface opposite the external surface, a thickness T extending between the external surface and the internal surface, and an external surface layer extending from the external surface into the thickness of the glass body, wherein the external surface layer has a porosity greater than a porosity of a remainder of the glass body extending from the external surface layer to the internal surface.
B65D 1/02 - Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
B65D 1/40 - Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations p - Details of walls
C03C 15/00 - Surface treatment of glass, not in the form of fibres or filaments, by etching
2.
PHARMACEUTICAL CONTAINERS COMPRISING NECKS WITH NON-UNIFORM OUTER SURFACES AND METHODS REGARDING THE SAME
A pharmaceutical container comprises a glass body enclosing an interior volume of the pharmaceutical container. The glass body comprises a central axis extending through a geometric center of the interior volume, a wall thickness extending between an inner surface and an outer surface, a flange comprising an underside surface, a shoulder, and a neck extending between the flange and the shoulder. Within at least a portion of the neck, the outer surface extends inward toward the central axis such that at least a sloped portion of the outer surface is sloped inward towards the central axis adjacent the flange.
A composite structure, exhaust aftertreatment system, and method of manufacture. The composite structure includes a body that includes an array of intersecting walls that form a plurality of channels extending in an axial direction through the body such that adjacent channels are located on opposite sides of each wall. A composite material of the body includes a first phase of a porous glass or ceramic containing material. The first phase includes an internal interconnected porosity. A second phase of an electrically conductive material is included that is a continuous, three-dimensional, interconnected, electrically conductive phase at least partially filling the internal interconnected porosity of the first phase, which creates an electrical path through at least some of the walls in a lateral direction perpendicular to the axial direction between the opposite sides of the walls.
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
C22C 29/06 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
C22C 29/12 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on oxides
C22C 29/16 - Alloys based on carbides, oxides, borides, nitrides or silicides, e.g. cermets, or other metal compounds, e. g. oxynitrides, sulfides based on nitrides
C22C 32/00 - Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
F01N 3/20 - Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion
A forming tool for use during a process of converting a glass tube into a glass container, includes a base portion comprising a fluid cavity for containing a fluid and an insertion portion extending from the base portion. The insertion portion includes an external surface sized to fit into an opening of the glass tube. In embodiments, the insertion portion comprises a fluid opening extending from an interior surface thereof to the external surface, the fluid opening configured to deliver the fluid from the fluid cavity between the insertion portion and the glass tube. In embodiments, the forming tool comprises a thermally conductive insert extending through the base portion and the insertion portion, the thermally conductive insert extending through the fluid cavity such that the fluid in the fluid cavity regulates a temperature of the thermally conductive insert.
Methods for controlling a converter for converting glass tubes to glass articles include preparing condition sets including settings for a plurality of process parameters, operating the converter to produce glass articles, measuring attributes of the glass articles, operating the converter at each of the condition sets, associating each glass article with a condition set used to produce the glass article and the attributes measured, developing operational models from the attributes measured and the condition sets, determining run settings for each of the plurality of process parameters based on the operational models, and operating the converter with each of the process parameters set to the run settings determined from the operational models.
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control (DNC), flexible manufacturing systems (FMS), integrated manufacturing systems (IMS), computer integrated manufacturing (CIM)
A sealed pharmaceutical container (100) comprises a shoulder (130), a neck (128) extending from the shoulder, and a flange (126) extending from the neck. The flange comprises an outer surface (136) extending from the underside surface (132) and a contact surface (138) extending between the outer surface and an inner surface defining an opening (105) in the sealed pharmaceutical container. The contact surface comprises an outer peripheral edge (142) disposed proximate to the outer surface of the flange. The sealed pharmaceutical container comprises a sealing assembly (104) comprising a stopper (106) extending over the contact surface of the flange and covering the opening, and a cap (108) securing the stopper to the flange. The stopper comprises a sealing surface that is secured in contact with the contact surface of the flange to form a seal between the flange and the stopper. An outer peripheral edge of the sealing surface is disposed at or radially inward of the outer peripheral edge.
A61J 1/14 - Containers specially adapted for medical or pharmaceutical purposes - Details; Accessories therefor
B65B 7/28 - Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons by applying separate preformed closures, e.g. lids, covers
B65D 1/02 - Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
A method of forming an antimicrobial film, including providing a substrate with a polymer coating disposed thereon, the polymer coating including: an antimicrobial material, an inner surface contacting the substrate, and an outer surface opposite the inner surface; and extracting ions from the antimicrobial material toward the outer surface, such that the outer surface interacts with surface microorganisms. A composition, including a polymer; an antimicrobial material; and at least one of an organic solvent and an additive. The antimicrobial material comprises at least one of copper-containing glass particles, copper oxide particles, copper metal particles, copper salts, copper coordination complexes, cuprite crystals, and a combination thereof. Further, the additive can be selected to increase the oxidation resistance of the antimicrobial material.
Durable calibration standards are described herein for inspection systems for manufactured vials, such as glass pharmaceutical vials, and methods of using the same. A grayscale calibration standard is provided for calibration of camera settings of imaging components in an inspection system. The grayscale calibration standard comprises a vial having a laser etched gradient image on a portion of the vial. A region of interest (ROI) calibration standard is provided for calibration of spatial difference of imaging components and to align imaging components in an inspection system to capture desired regions of interest. The ROI calibration standard comprises a vial comprising laser etchings on one or more portions of the vial, wherein the laser etchings comprise laser markings formed in a geometric pattern. By providing laser-marked calibration standards, the calibration standards may be used in many different modes of metrology.
In various embodiments of the present disclosure, a fenestration apparatus is provided, including: a glazing comprising a LC panel having: a first glass layer; a second glass layer, and a liquid crystal cell therebetween; a frame, configured perimetrically around a corresponding perimetrical edge of the LC panel; and an attachment member configured to the frame, wherein the attachment member is configured to be removably fixable to an existing window, wherein the attachment member is configured to define a gap between the frame, the at least one LC panel, and the existing window.
E06B 3/66 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges
Apparatus and related methods are provided for a laminate glass article, comprising: a first layer of a first material, the first sheet having a thickness less than 2 mm and a first coefficient of thermal expansion (CTE) measured over a range of from 0-300 °C; a second layer of a second material, the second sheet having a thickness greater than 2 mm and a second CTE greater than the first CTE; and a polymer interlayer between the first and second layers, wherein the first glass sheet has a surface compressive stress greater than 4 MPa.
In various embodiments of the present disclosure, a fenestration apparatus is provided, comprising: a laminate having a thickness of not greater than 3 mm; a frame, configured perimetrically around a corresponding perimetrical edge of the glass pane; a seal, configured between the frame and the glass pane; and an attachment member configured to the frame, wherein the attachment member is configured to be removably fixable to an existing window wherein the attachment member is configured to define a gap between the frame, the at least one glass pane, and the existing window.
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
12.
GLASS CONTAINERS AND SEALING ASSEMBLIES FOR MAINTAINING SEAL INTEGRITY AT LOW STORAGE TEMPERATURES
A sealed glass container comprises a glass container and a sealing assembly. The glass container comprises a flange comprising an underside surface, an outer surface extending from the underside surface, and a sealing surface (140) extending between the outer surface to an inner surface of the sealed glass container that defines an opening. The sealing assembly comprises a stopper (106) extending over the sealing surface of the flange and covering the opening; and a metal-containing cap (108) crimped to the flange. The metal-containing cap compresses the stopper. The compression is maintained on the sealing surface as the sealed glass container is cooled to a temperature of less than or equal to -80°C. In embodiments, the sealing surface comprises an inclined sealing surface extending at an angle (150) of greater than 5 degrees relative to a plane extending perpendicular to the inner surface.
An apparatus for holding glassware during processing includes a plurality of ware keepers, each ware keeper configured to receive a piece of glassware during the processing. Each ware keeper comprises a glass contact surface comprising a silicate material having a Knoop hardness less than or equal to 400 HK200 and a specific gravity greater than or equal to 1.5 and less than or equal to 6.
Embodiments of the present disclosure are directed to salt bath systems for strengthening glass articles including a salt bath tank defining a first interior volume enclosed by at least one sidewall; a salt bath composition including an alkali metal salt positioned within the first interior volume; a containment device defining a second interior volume enclosed by at least one sidewall and including a regeneration medium positioned within the second interior volume; and a circulation device positioned proximate to an inlet of the containment device, wherein the circulation device is operable to circulate the salt bath composition through the containment device. Methods for regenerating a molten salt are also disclosed.
According to one or more embodiments disclosed herein, a coated pharmaceutical package may comprise a glass container comprising a first surface and a second surface opposite the first surface, wherein the first surface is an outer surface of the glass container, and wherein the glass container in an uncoated state has an average light transmittance in the UVB and UVC spectrum of at least 50% through a single wall of the coated package. The coated pharmaceutical package may further comprise a coating positioned over at least a portion of the first surface of the glass container, wherein the coated pharmaceutical package has an average light transmittance in the UVC spectrum of less than 50% through a single wall of the coated package.
A61J 1/14 - Containers specially adapted for medical or pharmaceutical purposes - Details; Accessories therefor
C03C 17/00 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating
C03C 17/28 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material
C03C 17/30 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
C03C 17/42 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
16.
SYSTEMS AND METHODS FOR RECYCLING WASTE ION EXCHANGE MATERIALS
Embodiments of the present disclosure are directed to methods for recycling waste ion exchange materials comprising a first alkali metal salt and a second alkali metal salt comprising reducing the size of the waste ion exchange materials to produce a plurality of waste ion exchange particles having particle sizes from 0.10 mm to 5.0 mm, and regenerating the plurality of waste ion exchange particles to produce a plurality of regenerated ion exchange particles having a concentration of the first alkali metal salt greater than a concentration of the first alkali metal salt in the waste ion exchange materials. Systems for recycling a waste ion exchange materials comprising a first alkali metal salt and a second alkali metal salt are also disclosed.
Methods for producing articles from a glass tube include securing a working end of the glass tube in a glass tube holder of a converter having a plurality of processing stations including a heating station and a forming station. An initial length of the glass tube includes a plurality of serial segments, each of the plurality of serial segments corresponding to one article and having an article number. The methods include heating the working end of the glass tube in the heating station, adjusting an amount of heating of the glass tube in the heating station based on the article number at the working end of the glass tube, and forming a feature of the article in the forming station. Adjusting the amount of heating based on the article number reduces variation in tube temperature, article dimensions, or both, from one article number to the next article number.
Methods for producing glass articles from glass tube includes securing a glass tube in a holder of a converter; rotating the glass tube; and passing the glass tube through processing stations, which include at least a heating station and a forming station, to form one or more features at a working end of the glass tube. An active time is an amount of time the glass tube is engaged with a heating element or a forming tool while in a processing station, and an exposure index for the processing station is the rotational speed of the glass tube multiplied by a number of heating elements or forming tools in the processing station multiplied by the active time. An absolute difference between the exposure index and a nearest integer is less than or equal to 0.30, which reduces temperature and dimensional inhomogeneity around a circumference of the glass tube.
A ceramic article and method of manufacturing. The ceramic article comprises a porous ceramic material having a microstructure comprising an interconnected network of porous spheroidal ceramic beads. The microstructure has a total open porosity defined as the sum of an open intrabead porosity of the beads and an interbead porosity defined by interstices between the beads in the interconnected network. The microstructure has a bimodal pore size distribution having an intrabead peak corresponding to the open intrabead porosity and an interbead peak corresponding to the interbead porosity. An intrabead median pore size of the intrabead porosity is less than an interbead median pore size of the interbead porosity.
C04B 35/195 - Alkaline earth aluminosilicates, e.g. cordierite
C04B 35/478 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxides based on titanium oxides or titanates based on titanates based on aluminium titanates
C04B 35/565 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbides based on silicon carbide
C04B 35/636 - Polysaccharides or derivatives thereof
C04B 38/00 - Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
C04B 38/06 - Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances
20.
STRESS FEATURES FOR CRACK REDIRECTION AND PROTECTION IN GLASS CONTAINERS
A glass container comprises a glass body comprising a first region under a compressive stress extending from a surface of the glass body to a depth of compression and a second region extending from the depth of compression into a thickness of the glass body, the second region being under a tensile stress. The glass container also includes a localized compressive stress region having a localized compressive stress extending from the surface to a localized depth of compression within the body. The localized depth of compression is greater than the depth of compression of the first region. The glass container also includes a crack re-direction region extending in a predetermined propagation direction, wherein the crack re-direction region possesses a higher tensile stress than the tensile stress in the second region in a sub-region of the crack re-direction region, the sub-region extending substantially perpendicular to the predetermined propagation direction.
Disclosed are liquid crystal devices comprising multiple interdigitated electrodes and at least one liquid crystal layer. Also disclosed are liquid crystal devices comprising at least three interdigitated electrodes.
A method for coating a glass article includes obtaining a glass article; selecting a coating including a fluorinated polyimide, and coating the glass article with the selected coating including the fluorinated polyimide. The fluorinated polyimide having a cohesive energy density less than or equal to 300 KJ/mol, and a glass transition temperature (Tg) less than or equal to 625 K.
C03C 17/32 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
C08G 73/10 - Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
C09D 179/08 - Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
A method for improving the efficiency of a pharmaceutical filling line by running the filling line at an increased throughput rate is disclosed. The method involves using glass vials that have been strengthened and coated to reduce the coefficient of friction of the outer surface of the vials with a pharmaceutical filling line set at a rate greater than or equal to 600 vials per minute and running in an efficiency of at least 70%. In other embodiments of the invention, the pharmaceutical filling line may also be provided with a polymer chemical coating at points of contact with the glass vials, thereby further reducing the friction between the vials and the points of contact and the effects of impact of the vials with contact points of the pharmaceutical filling line.
B67C 3/00 - Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
C03C 17/00 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating
C03C 17/28 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material
24.
SYSTEMS AND METHODS FOR UNIFORM TRANSMISSION IN LIQUID CRYSTAL PANELS
Various embodiments for configuring LC cells, LC panels, and methods of manufacturing LC panels are provided, comprising: providing a first glass layer and a second glass layer; wherein the first glass layer has first and second surfaces and the second glass layer has first and second surfaces; and at least one of: surface polishing a surface of the first glass layer and second glass layer; and selectively positioning the first glass layer and second glass layer such that, after lamination, based on the positioning or polishing of the glass layers, the resulting LC panel is configured with uniform transmission.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
25.
SYSTEMS AND METHODS FOR UNIFORM TRANSMISSION IN LIQUID CRYSTAL PANELS
Various embodiments for configuring LC cells, LC panels, and methods of manufacturing LC panels are provided, comprising: assembling a plurality of LC panel component layers to form a curable stack, wherein the stack is configured with the LC cell, a first glass layer, a second glass layer, a first interlayer and a second interlayer, wherein each of the first interlayer and second interlayer are configured to be layers; curing the curable stack to form a liquid crystal panel; and wherein, via the first interlayer and the second interlayer, the LC panel is configured with a uniform transmission.
Various embodiments for configuring LC cells, LC panels, and methods of manufacturing LC panels are provided, comprising: various embodiments to increase the stiffness and/or rigidity of the LC cell, such that once it undergoes lamination processing to attach it to glass layers on either major surface of the LC cell, the LC cell will not undergo distortion/discontinuous cell gap when transformed into an LC panel.
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
27.
SYSTEMS AND METHODS FOR UNIFORM TRANSMISSION IN LIQUID CRYSTAL PANELS
Various embodiments for configuring LC cells, LC panels, and methods of manufacturing LC panels are provided, comprising: assembling a plurality of LC panel component layers to form a curable stack, wherein the stack is configured with the LC cell, a first glass layer, a second glass layer, a first interlayer and a second interlayer, wherein each of the first interlayer and second interlayer are configured to be conformal layers; curing the curable stack to form a liquid crystal panel; and wherein, via the first conformal interlayer and the second conformal interlayer, the LC panel is configured with a uniform transmission.
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
28.
ASYMMETRICAL GLASS LAMINATES HAVING A TPU INTERLAYER AND RELATED METHODS
Various embodiments for a laminate glass article and related methods are provided. The laminated glass article includes a first glass layer and a second glass layer with a TPU interlayer positioned therebetween.
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
E06B 3/677 - Evacuating or filling the gap between the panes; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
29.
ASYMMETRICAL GLASS LAMINATES HAVING COMPOSITE INTERLAYER AND RELATED METHODS
Various embodiments for a laminate glass article and related methods are provided. The laminated glass article includes a first and second glass layers with an interlayer positioned therebetween, comprising: a polymer core layer comprising a high modulus polymer (e.g. polyethylene terephthalate, polycarbonate, polyacrylate, and polyimide); a first low modulus material layer (e.g. first TPU or first PVB or first EVA) configured between the first layer and the polymer core layer; and a second low modulus material layer (e.g. second TPU or second PVB or second EVA) configured between the second layer and the polymer core layer.
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
E06B 3/677 - Evacuating or filling the gap between the panes; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
Various embodiments of the disclosure are directed towards fenestration assemblies having a first pane; a second pane, the second pane spaced from the first pane; and a third pane configured in spaced relation between the first pane and the second pane, where the third pane is a laminate. In one aspect, the total thickness of the third pane laminate is not greater than 3 mm. In one aspect, the laminate comprises a first glass layer not greater than 1 mm thick and a second glass layer not greater than 1 mm thick, and an interlayer between first and second layers.
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
E06B 3/66 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges
C03C 17/00 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating
31.
OPTICAL SYSTEMS COMPRISING BINARY PHOTONICS LATTICES
A binary photonics lattice that includes a waveguide array having a plurality of single mode waveguides disposed in a substrate, the plurality of single mode waveguides including one or more first waveguides having a first V-number V1 and one or more second waveguides having a second V-number V2. The first V-number V1 is smaller than the second V-number V2. The one or more first and second waveguides are arranged in a linear distribution having first and second edge waveguide regions and a binary waveguide region positioned between the first and second edge waveguide regions. The binary waveguide region is a symmetrical binary representation of a decimal number of two or greater. Further, the binary waveguide region includes at least one first waveguide representing a digit 0 of the symmetrical binary representation and/or at least one second waveguide representing a digit 1 of the symmetrical binary representation.
The present disclosure is directed to pharmaceutical packages which include a coating that comprises polycyanurate, and methods for the production of such. In one or more embodiments of the present disclosure, a pharmaceutical package may comprise a glass container comprising a first surface and a second surface opposite the first surface. The first surface may be an outer surface of the glass container. The pharmaceutical package may further comprise a coating positioned over at least a portion of the first surface of the glass container. The coating may comprise polycyanurate.
C03C 17/32 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
33.
PHARMACEUTICAL PACKAGES WITH COATINGS COMPRISING POLYSILAZANE
The present disclosure is directed to pharmaceutical packages that include a coating that comprises polysilazane, and methods for the production of such. In one or more embodiments of the present disclosure, a pharmaceutical package may include a glass container comprising a first surface and a second surface opposite the first surface. The first surface may be an outer surface of the glass container. The pharmaceutical package may further include a coating positioned over at least a portion of the first surface of the glass container. The coating may include polysilazane.
C03C 17/30 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
B65D 1/02 - Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
C09D 183/16 - Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
34.
CHEMICALLY DURABLE ALUMINOSILICATE GLASS COMPOSITIONS AND GLASS ARTICLES FORMED THEREFROM
In embodiments, a glass composition may include: greater than or equal to 71 mo1.% and less than or equal to 83 mo1.% SiO2; greater than or equal to 1 mo1.% and less than or equal to 11 mol.% A12O3; greater than or equal to 5 mo1.% and less than or equal to 18 mo1.% alkali oxide, the alkali oxide comprising greater than 3 mo1.% Li2O and at least one of Na2O and K2O; greater than or equal to 1 mo1.% and less than or equal to 8 mo1.% alkaline earth oxide, the alkaline earth oxide comprising MgO and at least one of CaO, BaO, and SrO; and at least one of TiO2, ZrO2, HfO2, La2O3 and Y2O3, wherein TiO2+ZrO2+HfO2+La2O3+Y2O3 is greater than 0 mo1.% and less than or equal to 6 mo1.% and A12O3+TiO2+ZrO2+HfO2+La2O3+Y2O3 is greater than or equal to 2 mo1.% and less than or equal to 12 mo1.%.
C03C 3/087 - Glass compositions containing silica with 40% to 90% silica by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
C03C 3/091 - Glass compositions containing silica with 40% to 90% silica by weight containing boron containing aluminium
C03C 3/095 - Glass compositions containing silica with 40% to 90% silica by weight containing rare earths
An optical fiber sensor with high sensitivity and high spatial resolution is described. The optical fiber sensor includes a multicore fiber having cores configured to permit crosstalk between cores. Crosstalk corresponds to transfer of an optical signal from a core to another core and is used as a mechanism for sensing the external environment surrounding the multicore optical fiber. The degree of crosstalk depends on the relative refractive index profile of the cores and surrounding cladding, as well as on the spacing between cores. The external environment surrounding the multicore optical fiber and changes therein influence crosstalk between cores to permit sensing. The relative refractive index profiles of the cores are also configured to provide a group delay difference for optical signals propagating in different cores. The group delay difference facilitates the position of an external perturbation along the length of the multicore optical fiber.
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01D 5/32 - Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
G01K 11/32 - Measuring temperature based on physical or chemical changes not covered by group , , , or using changes in transmittance, scattering or luminescence in optical fibres
G02B 6/036 - Optical fibres with cladding core or cladding comprising multiple layers
Various embodiments are provided for an isolating fenestration assembly including a triple pane IGU configured with chambers between the panes and having a thicker or heavier first pane (outer pane) as compared to the second and third panes and/or an edge seal force not exceeding 1.2 N/m, when measured in accordance with prEN 16612.
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
37.
ION EXCHANGE SYSTEMS AND METHODS FOR ION EXCHANGING GLASS ARTICLES
An ion exchange tank is provided. The ion exchange tank includes a processing chamber and an additive chamber separated by a weir system, the weir system having a flow channel fluidly connecting the processing chamber to the additive chamber, wherein the flow is divided from the additive chamber by a first partition and divided from the processing chamber by a second partition, wherein the additive chamber comprises a solids-absorbing material disposed therein.
A muffle for a glass tube forming process includes an inlet end coupled to a bowl, an outlet end having an inner dimension larger than an inner dimension of the inlet end, and a sidewall extending from inlet end to the outlet end. A radial distance from a center axis of the muffle to an inner surface of the sidewall increases from the inlet end to the outlet end and the sidewall is substantially free of abrupt changes in the radial distance that produce instability regions within the muffle. The muffle includes a channel between an outer surface of a portion of the sidewall and an insulating layer disposed about the sidewall, the channel being operable to pass a heat transfer fluid into thermal communication with the sidewall to provide cooling to the muffle. Glass forming systems including the muffle and glass tube forming processes are also disclosed.
A coated glass article and methods for producing the same are provided herein. The coated glass article includes a glass body having a first surface and a second surface opposite the first surface, wherein the first surface is an exterior surface of the glass body, and a damage-resistant coating formed by atomic layer deposition, the damage-resistant coating being disposed on at least a portion of the first surface of the glass body.
A method of strengthening glass articles includes introducing potassium ions to a surface region of the glass by an initial ion-exchange process, thermally treating the glass at a thermal treatment temperature and time sufficient to diffuse the potassium ions further into the glass to a depth of layer, and introducing a compressive stress of greater than 400 MPa at the surface through a final ion-exchange process. The final ion-exchange process may be conducted at a final ion-exchange temperature of no more than 450 °C. The method of strengthening produces a glass article having a compressive stress of at least 400 MPa at the surface, a depth of compression of at least 30 µm, and a central tension less than a threshold central tension above which flaws penetrating into the central region of the glass exhibit spontaneous self-propagation of the flaw front through and across the glass.
A method of forming a strengthened glass article is provided. The method includes providing a strengthened glass article. The strengthened glass article is in the form of a container including a sidewall having an exterior surface and an interior surface that encloses an interior volume. The sidewall has an exterior strengthened surface layer that includes the exterior surface, an interior strengthened surface layer that includes the interior surface and a central layer between the exterior strengthened surface layer and the interior strengthened surface layer that is under a tensile stress. A laser-induced intended line of separation is formed in the central layer at a predetermined depth between the exterior strengthened surface layer and the interior strengthened surface layer by irradiating the sidewall with a laser without separating the glass article.
A glass article may include SiO2, Al2O3, B2O3, at least one alkali oxide, and at least one alkaline earth oxide. The glass article may be capable of being strengthened by ion exchange. The glass article has a thickness t. The concentration(s) of the constituent components of the glass may be such that: 13 = 0.0308543 * (188.5 + ((23.84*Al2O3)+(-16.97*B2O3) + (69.10*Na2O) + (-213.3*K2O)) + ((Na2O-7.274)2*(-7.3628) + (Al2O3-2.863)*(K2O-0.520)*(321.5) + (B2O3-9.668)*(K2O-0.520)*(-39.74)))/t.
A glass ceramic article including a lithium disilicate crystalline phase, a petalite crystalline phase, and a residual glass phase. The glass ceramic article has a warp (gm) < (3.65x10-9/gm diagonal2) where diagonal is a diagonal measurement of the glass ceramic article in gm, a stress of less than 30 nm of retardation per mm of glass ceramic article thickness, a haze (%) < 0.0994t + 0.12 where t is the thickness of the glass ceramic article in mm, and an optical transmission (%) > 0.91 x 10(2-13-030 of electromagnetic radiation wavelengths from 450 nm to 800 nm, where t is the thickness of the glass ceramic article in mm.
C03C 3/097 - Glass compositions containing silica with 40% to 90% silica by weight containing phosphorus, niobium or tantalum
B32B 19/00 - Layered products essentially comprising natural mineral fibres or particles, e.g. asbestos, mica
C03C 4/00 - Compositions for glass with special properties
C03C 10/00 - Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
C03C 21/00 - Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals into the surface
A window structure includes first, second, and third glass layers. The third glass layer is positioned between the first and second glass layers. First and second low thermal emissivity coatings are on respective first and second opposing surfaces of the third glass layer to form a Fabry-Perot etalon that is configured as a bandpass filter having a designated frequency passband that includes at least one frequency in a range of frequencies from (6) gigahertz to (80) gigahertz.
C03C 27/06 - Joining glass to glass by processes other than fusing
C03C 17/36 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
An insulated glass unit is described and includes at least a first glass layer, a second glass layer and a third glass layer disposed therebetween. The third glass layer is separated from the first glass layer and the second glass layer by first and second sealed gap spaces. The third glass layer has a low CTE as compared to the CTE of the first and/or second glass layers. In some instances, the third glass layer has a CTE of less than 70 x 10-7/°C over a temperature range of 0-300°C.
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
46.
GLASS ARTICLES WITH LOW-FRICTION COATINGS AND METHODS FOR COATING GLASS ARTICLES
A method for forming a glass container having a low-friction coating is provided. method includes contacting a glass tube with a coupling agent solution to form a coated glass tube having a coupling agent layer, wherein the coupling agent includes an inorganic material, contacting the coated glass tube with at least one sacrificial material to form a sacrificial layer at least partially covering the coupling agent layer, subsequent to contacting the coated glass tube with at least one sacrificial material, forming at least one coated glass container from the coated glass tube, the at least one coated glass container including the coupling agent layer, ion exchange strengthening the at least one coated glass container in an ion exchange salt bath, and applying a polymer chemical composition solution to the at least one coated glass container to form a low-friction coating.
A61J 1/14 - Containers specially adapted for medical or pharmaceutical purposes - Details; Accessories therefor
C03B 21/02 - Severing glass sheets, tubes, or rods while still plastic by cutting
C03C 17/32 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
C03C 17/42 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
C03C 21/00 - Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals into the surface
47.
SYSTEMS AND METHODS FOR MINIMIZING THE SURFACE HYDROLYTIC RESPONSE FROM PHARMACEUTICAL PART CONVERTING USING PULSED EJECTION
Systems for producing articles from glass tube include a converter having a base with a plurality of processing stations and a turret moveable relative to the base. The turret indexes a plurality of holders for holding the glass tubes successively through the processing stations. The systems further include a gas flow system or a suction system for producing a flow of gas through the glass tube during one or more heating, forming, separating or piercing operations. The flow of gas through the glass tube produced by the gas flow system or suction system may be sufficient to evacuate or purge volatile constituents of the glass from the glass tube and/or pierce a meniscus formed on the glass tube during separation, thereby reducing the Surface Hydrolytic Response (SHR) of the interior surface of the glass tube and articles made therefrom.
Systems for producing articles from glass tube include a converter having a base with a plurality of processing stations and a turret moveable relative to the base. The turret indexes a plurality of holders for holding the glass tubes successively through the processing stations. The systems further include a gas flow system or a suction system for producing a flow of gas through the glass tube during one or more heating, forming, separating or piercing operations. The flow of gas through the glass tube produced by the gas flow system or suction system may be sufficient to evacuate or purge volatile constituents of the glass from the glass tube and/or pierce a meniscus formed on the glass tube during separation, thereby reducing the Surface Hydrolytic Response (SHR) of the interior surface of the glass tube and articles made therefrom.
Systems for producing articles from glass tube include a converter having a base with a plurality of processing stations and a turret moveable relative to the base. The turret indexes a plurality of holders for holding the glass tubes successively through the processing stations. The systems further include a gas flow system or a suction system for producing a flow of gas through the glass tube during one or more heating, forming, separating or piercing operations. The flow of gas through the glass tube produced by the gas flow system or suction system may be sufficient to evacuate or purge volatile constituents of the glass from the glass tube and/or pierce a meniscus formed on the glass tube during separation, thereby reducing the Surface Hydrolytic Response (SHR) of the interior surface of the glass tube and articles made therefrom.
A method for ion exchanging glass articles is provided. The method includes ion exchanging a plurality of lots in steps within an ion exchange salt bath, wherein each of the plurality of lots comprises at least one glass article, and wherein the ion exchange salt bath comprises molten salt and, after removing the last lot from the ion exchange salt bath, removing substantially the entire volume of molten salt from the ion exchange salt bath. The method further includes maintaining steady state conditions in the ion exchange salt bath prior to removing substantially the entire volume of salt from the ion exchange salt bath such that at least one of the compressive stress and the central tension of substantially all of the glass articles varies from at least one of the compressive stress and the central tension of any other of the glass articles by less than about 20%.
Embodiments of a polymer composition that are configured for repelling animals are provided. The polymer composition includes at least one polymer, and a plurality of aversive additive particles dispersed in the at least one polymer. Each aversive additive particle is made up of an encapsulant, an aversive material contained within the encapsulant, and a protective material deposited around the encapsulant. The polymer composition can be used as a polymer jacket for a cable, such as an optical fiber cable, to keep animals from damaging the cable.
A01N 25/26 - Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
A flame retardant polymer composition is provided. The polymer composition includes a polymer resin and a flame retardant package dispersed within the polymer resin. The flame retardant package includes an additive of a polyoxometalate ionic liquid (PIL) and a synergist carrier. In particular, the PIL includes organic cations that produce an acid upon heating. Also, a flame retardant optical fiber cable is provided. The cable includes at least one optical fiber and a polymeric jacket that surrounds the at least one optical fiber. The polymeric jacket includes a polymer resin, a carbon source, an acid source, a polyoxometalate ionic liquid (PIL), and a synergist carrier. In particular, the PIL includes organic cations that produce an acid upon heating.
Embodiments of a flame retardant compound are provided. The flame retardant compound includes a polymer base resin and a flame retardant additive distributed within the polymer base resin. The flame retardant additive includes inclusion complexes that are made of at least one guest molecule and at least one carbonific host molecule. The at least one guest molecules is a polyoxometalate ionic liquid. The flame retardant compound achieves a limiting oxygen index of at least 25% according to ISO 4589. Additionally, embodiments of a flame retardant cable are provided that utilize the flame retardant compound as a jacketing material.
Embodiments of an optical fiber ribbon cable are provided. The optical fiber ribbon cable includes a cable jacket having an interior surface defining a central bore, at least one buffer tube located in the central bore of the cable jacket, and at least one optical fiber ribbon disposed within the at least one buffer tube. The at least one optical fiber ribbon includes a plurality of optical fibers, a polymer matrix surrounding the plurality of optical fibers, and a low-smoke, flame retardant (LSFR) coating surrounding the polymer matrix. The LSFR coating includes from 25 to 65% by weight of an inorganic, halogen-free flame retardant filler dispersed in a curable acrylate medium. Further, the inorganic, halogen-free flame retardant filler includes particles having, on average, a maximum outer dimension of 5 microns.
A system for producing articles from glass tube includes a converter having a base with a plurality of processing stations and a turret moveable relative to the base. The turret indexes a plurality of holders for holding the glass tubes successively through the processing stations. The system further includes a thermal imaging system that includes a thermal imager coupled to the turret for movement with the turret. The themial imaging system may also include a mirror coupled to the thermal imager and positioned to reflect infrared light from one of the plurality of holders to the themial imager. The thermal imaging system may measure one or more characteristics of the glass tube during the conversion process. Processes for controlling the converter using the themial imaging system to measure one or more process variables are also disclosed.
A system for producing articles from glass tube includes a converter having a base with a plurality of processing stations and a turret moveable relative to the base. The turret indexes a plurality of holders for holding the glass tubes successively through the processing stations. The system further includes a thermal imaging system that includes a thermal imager coupled to the turret for movement with the turret. The thermal imaging system may also include a mirror coupled to the thermal imager and positioned to reflect infrared light from one of the plurality of holders to the thermal imager. The thermal imaging system may measure one or more characteristics of the glass tube during the conversion process. Processes for controlling the converter using the thermal imaging system to measure one or more process variables are also disclosed.
Disclosed herein are systems and methods for ion exchanging glass articles. Methods for ion exchanging glass articles include receiving processing instructions from one or more user input devices, loading a cassette containing a plurality of glass articles into a molten salt bath of one or more ion exchange stations automatically with a robotic lift based on the processing instructions, removing the cassette from the molten salt bath automatically with the robotic lift after a predetermined time based on the processing instructions, and rotating the cassette automatically to drain fluid of the molten salt bath from the cassette.
B24B 9/08 - Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
B24B 41/06 - Work supports, e.g. adjustable steadies
B24B 47/10 - Drives or gearings for grinding machines or devices; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
B32B 38/00 - Ancillary operations in connection with laminating processes
59.
METHODS FOR DETERMINING CHEMICAL HETEROGENEITY OF GLASS CONTAINERS
A method including obtaining glass containers, and adding a solvent to 5.0% by volume to less than or equal to 50.0% by volume. Heating to an elevated temperature and cooling to room temperature. The solvent is consolidated and titrated, where an amount of a titrant is an as received titrant volume. Glass containers are etched, and a second solvent is added at 8.0% by volume to less than or equal to 25.0% by volume. The containers are heated to an elevated temperature and cooled to room temperature. The second solvent is consolidated and titrated, where an amount of a titrant is an etched titrant volume. The Chemical Durability Ratio (CDR) of the plurality of glass containers is calculated where: CDR = As Received Titrant Volume/Etched Titrant Volume.
In embodiments, a conveyor apparatus can include a conveyor ribbon having a length, a width, a thickness less than the width, and a plurality of receiving apertures located along the length and extending through the thickness of the conveyor ribbon. The plurality of receiving apertures are dimensioned to receive and hold a plurality of glass articles. A conveyor drive and guidance system directs the conveyor ribbon along a predefined conveyor path. The predefined conveyor path can include an immersion section and a drain section. The immersion section can be oriented to direct the conveyor ribbon into and out of an immersion station and the conveyor ribbon is rotated about a horizontal axis in the drain section after being directed out of the immersion station.
B65G 19/02 - Conveyors comprising an impeller or a series of impellers carried by an endless traction element and arranged to move articles or materials over a supporting surface or underlying material, e.g. endless scraper conveyors for articles, e.g. for containers
C03C 21/00 - Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals into the surface
61.
METHOD AND APPARATUS FOR FORMING GLASS TUBING FROM GLASS PREFORMS
Methods of forming a glass tube are described. In one embodiment, the method includes heating a glass boule to a temperature above a glass transition temperature of the glass boule, drawing the glass tube from the glass boule in a vertically downward direction, and flowing a pressurized gas through a channel of the glass boule as the glass tube is drawn. The glass boule includes an outer surface defining an outer diameter of the glass boule and a channel extending through the glass boule defining an inner diameter of the glass boule. Drawing the glass tube decreases the outer diameter of the glass boule to an outer diameter of the glass tube and flowing the pressurized gas through the channel increases the inner diameter of the glass boule to an inner diameter of the glass tube. Glass boules, glass tubes, and apparatuses for making the same are also described.
A glass container including a body having a delamination factor less than or equal to 10 and at least one marking is described. The body has an inner surface, an outer surface, and a wall thickness extending between the outer surface and the inner surface. The marking is located within the wall thickness. In particular, the marking is a portion of the body having a refractive index that differs from a refractive index of an unmarked portion of the body. Methods of forming the marking within the body are also described.
B65B 3/00 - Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans or jars
C03C 3/087 - Glass compositions containing silica with 40% to 90% silica by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
C03C 17/28 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material
C03C 21/00 - Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals into the surface
C03C 23/00 - Other surface treatment of glass not in the form of fibres or filaments
G06K 1/12 - Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching
G06K 19/06 - Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
G06K 19/16 - Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means at least one kind of marking being used for authentication, e.g. of credit or identity cards the marking being sensed by radiation the marking being a hologram or diffraction grating
63.
HEATING APPARATUS AND METHOD FOR GLASS TUBING MANUFACTURING
Heating apparatuses and methods for glass tubing manufacturing are disclosed. A heating apparatus for glass tubing manufacturing includes a bowl configured to receive molten glass and a plurality of heating elements thermally coupled to the bowl. The bowl has a bowl height and includes a tub portion configured to hold the molten glass, a bowl well extending beneath the tub portion, and an orifice at a distal end of the bowl well. The plurality of heating elements include a first heating element disposed at a first vertical location along the bowl height, a second heating element disposed at a second vertical location along the bowl height, wherein the first vertical location is vertically spaced apart from the second vertical location.
A coating carrier for use with a glass coating apparatus includes a coating base comprising a plurality of spindle connector receiving features. Each spindle connector receiving feature includes a cavity that is sized to movably receive a spindle connector of a glass body support assembly that is configured to support a glass container body.
B65D 65/42 - Applications of coated or impregnated materials
C03C 17/32 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
F16D 7/02 - Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type
F16L 37/084 - Couplings of the quick-acting type in which the connection between abutting or axially-overlapping ends is maintained by locking members combined with automatic locking
65.
GLASS ARTICLES WITH MIXED POLYMER AND METAL OXIDE COATINGS
According to one or more embodiments, a pharmaceutical package may include a glass container and a coating. The glass container may include a first surface and a second surface opposite the first surface. The first surface may be an outer surface of the glass container. The coating may be positioned over at least a portion of the first surface of the glass container. The coating may include one or more polyimide compositions and one or more metal oxide compositions. The one or more polyimide compositions and the one or more metal oxide compositions may be mixed in the coating.
C03C 17/00 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating
C03C 17/32 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
C08L 79/08 - Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
C09D 179/08 - Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
66.
HALOGENATED POLYIMIDE SILOXANE CHEMICAL COMPOSITIONS AND GLASS ARTICLES WITH HALOGENATED POLYIMIDE SILOXANE LOW-FRICTION COATINGS
As described herein, a polyimide chemical composition may be used for coating glass articles. According to embodiments, a coated glass article may include a glass container which may include a first surface and a second surface opposite the first surface, and a low-friction coating bonded to at least a portion of the first surface of the glass container. The low-friction coating may include a polyimide chemical composition. The polyimide chemical composition may be halogenated and the polyimide chemical composition may include a siloxane moiety.
C03C 17/00 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating
C03C 17/32 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
C08G 73/10 - Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
C08L 79/08 - Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
Embodiments of this disclosure pertain to a strengthened glass article including a first surface and a second surface opposing the first surface defining a thickness (t) of about less than about 1.1 mm, a compressive stress layer extending from the first surface to a depth of compression (DOC) of about 0.1-t or greater, such that when the glass article fracture, it breaks into a plurality of fragments having an aspect ratio of about 5 or less. In some embodiments, the glass article exhibits an equibiaxial flexural strength of about 20 kgf or greater, after being abraded with 90-grit SiC particles at a pressure of 25 psi for 5 seconds. Devices incorporating the glass articles described herein and methods for making the same are also disclosed.
C03C 3/091 - Glass compositions containing silica with 40% to 90% silica by weight containing boron containing aluminium
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
C03C 3/093 - Glass compositions containing silica with 40% to 90% silica by weight containing boron containing aluminium containing zinc or zirconium
C03C 3/097 - Glass compositions containing silica with 40% to 90% silica by weight containing phosphorus, niobium or tantalum
C03C 21/00 - Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals into the surface
Methods for increasing the hydrolytic resistance of a glass article are disclosed. According to one embodiment, the method includes providing a glass article with a pre-treatment hydrolytic titration value. Thereafter, the glass article is thermally treated at a treatment temperature greater than a temperature 200C less than a strain temperature of the glass article for a treatment time greater than or equal to about 0.25 hours such that, after thermally treating the glass article, the glass article has a post-treatment hydrolytic titration value that is less than the pre-treatment hydrolytic titration value.
According to one embodiment, a method for thermally treating glass articles may include holding a glass article at a treatment temperature equal to an annealing temperature of the glass article ±15°C for a holding time greater than or equal to 5 minutes. Thereafter, the glass article may be cooled from the treatment temperature through a strain point of the glass article at a first cooling rate CR1 less than 0°C/min and greater than -20°C/min such that a density of the glass article is greater than or equal to 0.003 g/cc after cooling. The glass article is subsequently cooled from below the strain point at a second cooling rate CR2, wherein |CR2| > |CR1|.
A method of forming a glass container including forming a glass container having a sidewall at least partially enclosing an interior volume, at least a portion of an interior surface of the sidewall having an interior surface layer; and contacting the glass container with a substantially fluoride-free aqueous treating medium to remove a thin layer of the interior surface layer having a thickness of from about 100 nm to about 1.0 µ?? from the interior surface of the sidewall. The interior surface is resistant to delamination. Before contacting the glass container with the substantially fluoride-free aqueous treating medium, the exterior surface of the sidewall comprises strength-limiting surface flaws having a first shape, and after the contacting the exterior surface of the sidewall with the substantially fluoride-free aqueous treating medium, the strength-limiting surface flaws have a second shape.
C03C 15/00 - Surface treatment of glass, not in the form of fibres or filaments, by etching
A61J 1/05 - Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids
71.
GLASS ARTICLES AND METHODS FOR IMPROVING THE RELIABILITY OF GLASS ARTICLES
According to one embodiment, a glass article may include a glass body having a first surface and a second surface opposite the first surface. The first surface and the second surface each have a radius of curvature. The first surface of the glass body comprises a flaw population extending from the first surface into a thickness of the glass body with a maximum initial flaw depth Ai. The first surface of the glass body may be etched to a depth less than or equal to about 25% of the maximum initial flaw depth Ai of the flaw population present in the first surface. When the glass article is under uniaxial compressive loading, at least a portion of the first surface is in tension and a uniaxial compressive strength of the glass article is greater than or equal to 90% of a uniaxial compressive strength of a flaw-free glass article.
Disclosed is a culture method for culturing, in recesses, a population including two or more cells including a cell derived from a stem cell and a mesenchymal cell. The cell derived from a stem cell is a cell obtained by differentiating a stem cell in vitro. The cell is a cell of one or more types selected from the group consisting of an endodermal cell, an ectodermal cell, and a mesodermal cell. The population is cultured in the recesses together with a vascular cell or a secretor factor. Each recess includes a space in which cells are movable. When a volume of the space is represented by V mm3 and the number of mesenchymal cells seeded in the space is represented by N, V is 400 or less and N/V is in a range from 35 to 3000.
C12N 5/077 - Mesenchymal cells, e.g. bone cells, cartilage cells, marrow stromal cells, fat cells or muscle cells
C12N 1/00 - Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
A method of shaping a laminated glass structure comprising a flexible glass sheet having a thickness of no greater than about 0.3 mm laminated to a non-glass substrate by an adhesive layer is provided. The method includes cutting the laminated glass structure with an abrasive cutting jet including a pressurized cutting fluid and abrasive particles thereby forming a shaped laminated glass structure. A glass edge strength of a cut edge of the shaped laminated glass structure is at least about 20 MPa.
B24C 1/04 - Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
Thin-film devices, for example electrochromic devices for windows, and methods of manufacturing are described. Particular focus is given to methods of patterning optical devices. Various edge deletion and isolation scribes are performed, for example, to ensure the optical device has appropriate isolation from any edge defects. Methods described herein apply to any thin-film device having one or more material layers sandwiched between two thin film electrical conductor layers. The described methods create novel optical device configurations.
Provided are a tissue structure that comprehensively reproduces the genetic pattern of mature cells, and a manufacturing method therefor. The tissue structure is obtained by cocultivating one kind of cell and/or factor, which is selected from a group consisting of vascular cells, mesenchymal cells, factors secreted from vascular cells, factors secreted from mesenchymal cells, and factors secreted by the co-existence of vascular cells and mesenchymal cells, with stem cell-derived endodermal, ectodermal or mesodermal cells. The tissue structure is configured from living tissue for which the values assayed for multiple functions using Pearson product-moment correlation coefficients are closer to values for cells or living tissue collected from a mature body than cells or living tissue collected from a fetus.
PUBLIC UNIVERSITY CORPORATION YOKOHAMA CITY UNIVERSITY (Japan)
CORNING INCORPORATED (USA)
Inventor
Ejiri, Yoko
Ayano, Satoru
Fukuhara, Naoto
Taniguchi, Hideki
Takebe, Takanori
Abstract
A microspace structure for highly efficiently producing spheroids of uniform size and easily replacing and recovering culture medium is designed, and a culture vessel having the designed microspace structure is provided. A plurality of recesses (10) comprising a bottom part (11) and an opening part (12) are arranged in the culture vessel. The bottom part (11) has the shape of either a hemisphere or a truncated cone, and the opening part (12) is constituted by walls having a taper angle of from 1° to 20° and surrounding an area from the boundary with the bottom part (11) to the end part of the recess (10). In addition, the equivalent diameter at the boundary is from 50 µm to 2 mm, the depth from the bottom of the bottom part (11) to the end part is 0.6 to 3 times the equivalent diameter, the walls constituting the opening part (12) form a continuous surface with the bottom part (11), and the slope of the continuous surface changes at the boundary.
A method of forming a laminated glass structure includes introducing a continuous ribbon of flexible glass substrate having a thickness of no greater than about 0.3 mm to a substrate material. The substrate material has a coefficient of thermal expansion (CTE) that is greater than that of the flexible glass substrate. The flexible glass substrate is laminated to the substrate material at an elevated temperature. The substrate material is cooled to introduce a compressive stress across a thickness of the flexible glass substrate.
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
78.
GLASS CONTAINERS WITH DELAMINATION RESISTANCE AND IMPROVED DAMAGE TOLERANCE
The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. A tenacious inorganic coating may be positioned around at least a portion of the outer surface of the body. The outer surface of the body with the tenacious inorganic coating may have a coefficient of friction less than or equal to 0.7.
C03C 4/20 - Compositions for glass with special properties for chemical resistant glass
B65D 1/40 - Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations p - Details of walls
B65D 23/00 - CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES - Details of bottles or jars not otherwise provided for
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
79.
STRENGTHENED BOROSILICATE GLASS CONTAINERS WITH IMPROVED DAMAGE TOLERANCE
According to one embodiment, a glass container may include a body formed from a Type I, Class B glass composition according to ASTM Standard E438-92. The body may have an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. The body may also include a compressively stressed layer extending into the wall thickness from at least one of the outer surface and the inner surface. A lubricous coating may be positioned on at least a portion of the outer surface of the body, wherein the outer surface of the body with the lubricous coating has a coefficient of friction less than or equal to 0.7.
C03C 17/06 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with metals
C03C 17/30 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
C03C 17/32 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
C03C 17/42 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
C03C 21/00 - Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals into the surface
C09D 179/08 - Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
80.
GLASS CONTAINERS WITH DELAMINATION RESISTANCE AND IMPROVED STRENGTH
The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container with resistance to delamination and improved strength may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. The glass container may further include a compressively stressed layer extending from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa.
C03C 17/00 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
B65D 1/40 - Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations p - Details of walls
C03C 17/30 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
C03C 17/32 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
C03C 17/42 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
C03C 21/00 - Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals into the surface
C09D 179/08 - Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
81.
GLASS CONTAINERS WITH IMPROVED STRENGTH AND IMPROVED DAMAGE TOLERANCE
The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. A compressively stressed layer may extend from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa. A lubricous coating may be positioned around at least a portion of the outer surface of the body. The outer surface of the body with the lubricous coating may have a coefficient of friction less than or equal to 0.7.
C03C 17/00 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
B65D 1/40 - Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations p - Details of walls
C03C 17/30 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
C03C 17/32 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
C03C 17/42 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
C03C 21/00 - Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals into the surface
C09D 179/08 - Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
82.
GLASS CONTAINERS WITH DELAMINATION RESISTANCE AND IMPROVED DAMAGE TOLERANCE
The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. A tenacious inorganic coating may be positioned around at least a portion of the outer surface of the body. The outer surface of the body with the tenacious inorganic coating may have a coefficient of friction less than or equal to 0.7.
C03C 17/00 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
B65D 1/40 - Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations p - Details of walls
C03C 17/30 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
C03C 17/32 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
C03C 17/42 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
C03C 21/00 - Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals into the surface
C09D 179/08 - Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
83.
GLASS CONTAINERS WITH DELAMINATION RESISTANCE AND IMPROVED DAMAGE TOLERANCE
The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. A tenacious inorganic coating may be positioned around at least a portion of the outer surface of the body. The outer surface of the body with the tenacious inorganic coating may have a coefficient of friction less than or equal to 0.7.
C03C 4/20 - Compositions for glass with special properties for chemical resistant glass
A61J 1/14 - Containers specially adapted for medical or pharmaceutical purposes - Details; Accessories therefor
B65D 1/40 - Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations p - Details of walls
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
84.
GLASS CONTAINERS WITH DELAMINATION RESISTANCE AND IMPROVED DAMAGE TOLERANCE
The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. A tenacious inorganic coating may be positioned around at least a portion of the outer surface of the body. The outer surface of the body with the tenacious inorganic coating may have a coefficient of friction less than or equal to 0.7.
C03C 4/20 - Compositions for glass with special properties for chemical resistant glass
A61J 1/05 - Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids
B65D 1/40 - Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations p - Details of walls
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
85.
IMPROVED MEMBRANE SEPARATION PROCESS USING MIXED VAPOR-LIQUID FEED
The present invention pertains to a pervaporation membrane process for the separation of high octane fuel components from a gasoline feed stream comprising feeding a mixed phase vapor-liquid feed to a cyclone separation means to separate the liquid from the vapor, then sending the saturated vapor to the membrane, thereby extending the useful life of the membrane.
B01D 65/00 - Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
F02D 19/06 - Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
86.
DELAMINATION RESISTANT GLASS CONTAINERS WITH HEAT-TOLERANT COATINGS
Delamination resistant glass containers with heat-tolerant coatings are disclosed. In one embodiment, a glass container may include a glass body having an interior surface, an exterior surface and a wall thickness extending from the exterior surface to the interior surface. At least the interior surface of the glass body is delamination resistant. The glass container may further include a heat-tolerant coating positioned on at least a portion of the exterior surface of the glass body. The heat- tolerant coating may be thermally stable at temperatures greater than or equal to 260°C for 30 minutes.
C03C 17/00 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
C03C 17/30 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
C03C 17/32 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
C03C 17/42 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
C03C 21/00 - Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals into the surface
C09D 179/08 - Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
Low-friction coatings and glass articles with low-friction coatings are disclosed. According to one embodiment, a coated glass article may include a glass body comprising a first surface and a low-friction coating positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. The coated glass article may be thermally stable at a temperature of at least about 260°C for 30 minutes. A light transmission through the coated glass article may be greater than or equal to about 55% of a light transmission through an uncoated glass article for wavelengths from about 400 nm to about 700 nm. The low- friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150°C to 350°C at a ramp rate of about 10°C/minute.
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
C03C 17/00 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating
C03C 17/30 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
C03C 17/32 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
C03C 17/42 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
C03C 21/00 - Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals into the surface
C09D 179/08 - Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
88.
ROOM TEMPERATURE GLASS-TO-GLASS, GLASS-TO-PLASTIC AND GLASS-TO-CERAMIC/SEMICONDUCTOR BONDING
A process for room temperature substrate bonding employs a first substrate substantially transparent to a laser wavelength is selected. A second substrate for mating at an interface with the first substrate is then selected. A transmissivity change at the interface is created and the first and second substrates are mated at the interface. The first substrate is then irradiated with a laser of the transparency wavelength substantially focused at the interface and a localized high temperature at the interface from energy supplied by the laser is created. The first and second substrates immediately adjacent the interface are softened with diffusion across the interface to fuse the substrates.
The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol.% to about 80 mol.% SiO2; from about 3 mol.% to about 13 mol.% alkaline earth oxide; X mol.% Al2O3; and Y mol.% alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol.%. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
C03C 3/087 - Glass compositions containing silica with 40% to 90% silica by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
C03C 3/091 - Glass compositions containing silica with 40% to 90% silica by weight containing boron containing aluminium
90.
GLASS COMPOSITIONS WITH IMPROVED CHEMICAL AND MECHANICAL DURABILITY
The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol.% to about 80 mol.% SiO 2; from about 3 mol.% to about 13 mol.% alkaline earth oxide; X mol.% Al2O3; and Y mol.% alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol.%. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
C03C 3/087 - Glass compositions containing silica with 40% to 90% silica by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
C03C 3/091 - Glass compositions containing silica with 40% to 90% silica by weight containing boron containing aluminium
C03C 21/00 - Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals into the surface
91.
GLASS COMPOSITIONS WITH IMPROVED CHEMICAL AND MECHANICAL DURABILITY
The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol.% to about 80 mol.% SiO2; from about 3 mol.% to about 13 mol.% alkaline earth oxide; X mol.% Al2O3; and Y mol.% alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol.%. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
C03C 3/087 - Glass compositions containing silica with 40% to 90% silica by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
C03C 21/00 - Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals into the surface
92.
GLASS COMPOSITIONS WITH IMPROVED CHEMICAL AND MECHANICAL DURABILITY
The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol.% to about 80 mol.% SiO2; from about 3 mol.% to about 13 mol.% alkaline earth oxide; X mol.% Al2O3; and Y mol.% alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol.%. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
Provided are a method capable of evaluating adherent cells under an environment similar to an in vivo environment by a culture method similar to a two- dimensional culture, and applications thereof. An adherent cell culture method uses, as a culture chamber (10), a chamber in which two or more culture spaces each having an equivalent diameter (D) that is 1 to 5 times the diameter of a desired spheroid and each having a height (H) that is 0.3 to 5 times the equivalent diameter are arranged and a surface of each of the culture spaces has a water contact angle of 45 degrees or less. Spheroids of adherent cells are cultured in the respective culture spaces (11) arranged in the culture chamber (10).
The present invention discloses compositions for applications that mimic fibronectin coated surfaces. Advantageously, such compositions provide an animal free (xeno-free, and human-component-free), synthetic, chemically defined surface that mimics at least one of the functionalities of fibronectin.
A method for producing activated carbon, suitable in particular for use in double-layer condensers, comprises the following steps: a) producing a mixture of a preferably pulverulent carbon material, a base and a hydrophilic polymer chemically inert to the base, b) pressing the mixture produced in step a) to form a pressing and c) activating the pressed body produced in step b).
B01J 20/20 - Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising carbon obtained by carbonising processes
H01G 11/34 - Carbon-based characterised by carbonisation or activation of carbon
The present invention discloses a vessel for culturing cells which includes: a bottom including a base with an upwardly extending wall at least partially bounding the base of the bottom; a top including a base with a downwardly extending wall at least partially bounding the base of the top; a tubular neck with an opening defined therein; and, one or more shelves, wherein, each shelf includes a base with an upwardly extending wall at least partially bounding the base of the shelf. The upwardly extending wall of a first shelf adjoins the downwardly extending wall of the top with the first shelf being located intermediate the bottom and the top. The base of each of the shelves having at least one aperture formed therein. The bottom, the top and the one or more shelves collectively define an enclosed volume for culturing cells. The tubular neck extends from the vessel with the enclosed volume being accessible by the opening in the tubular neck. Advantageously, this vessel provides high volume cell culture in a manner that increases efficiency and reduces the cost of culturing cells.
A method for producing an optical fiber that includes a method for producing an optical fiber, said method comprising: (i) drawing a bare optical fiber from a preform along a first pathway at a rate of at least 10 m/sec; (ii) contacting said bare optical fiber with a region of fluid in a fluid bearing and redirecting said bare optical fiber along a second pathway as said bare optical fiber is drawn across said region of fluid cushion; (iii) coating the bare optical fiber; and (iv) irradiating said coated fiber in at least one irradiation zone to at least partially cure said coating, while subjecting the optical fiber to UV light.
A method for forming an optical fiber includes drawing the optical fiber from a glass supply and treating the fiber by maintaining the optical fiber in a treatment zone wherein the fiber is cooled at a specified cooling rate. The optical fiber treatment reduces the tendency of the optical fiber to increase in attenuation due to Rayleigh scattering, and/or over time following formation of the optical fiber due to heat aging. Methods for producing optical fibers along nonlinear paths incorporating fluid bearings are also provided thereby allowing for increased vertical space for the fiber treatment zone.
With the subject invention, a method is provided for preparing a filter membrane including the steps of dispersing a liquid which is generally hydrophobic into the pores of a porous membrane, and applying a solution containing lipids onto at least a first surface of the porous membrane containing the liquid. Advantageously, the subject invention allows for filter membranes to be prepared which can be stored for periods of time without degradation in performance. The subject invention may have applicability in various contexts, but is well-suited for preparing filter membranes for permeability screening, particularly Parallel Artificial Membrane Permeability Assay (PAMPA).
The invention relates to a self-cleaning lighting device comprising a light source and a wall, which permits a portion of at least the radiation emitted by said source to pass therethrough and which is covered, over a portion of at least one of its two faces, by a photocatalytically active layer. The invention is characterized in that under the weakest illumination conditions, the photocatalytic activity of said layer is high enough for degrading and reducing organic soilings into easily eliminable particles that do not adhere to said layer, and/or for conferring a hydrophilic character to this layer. The invention also relates to a method for producing the aforementioned device, a translucent wall provided for this device, and to the use of the device for lighting tunnels, public lighting, airport runway lighting, indoor lighting or for headlamps or indicator lights of transportation vehicles.