A flying vehicle air traffic control method utilizing wireless networks includes communicating with a plurality of flying vehicles via a plurality of satellites associated with the wireless networks, wherein the plurality of flying vehicle each include hardware and antennas adapted to communicate to the plurality of satellites; maintaining data associated with flight of each of the plurality of flying vehicles based on the communicating; and processing the maintained data to perform a plurality of function associated with air traffic control of the plurality of flying vehicles.
An Unmanned Aerial Vehicle (UAV) air traffic control method utilizing wireless networks includes communicating with a plurality of UAVs via a plurality of satellites associated with the wireless networks, wherein the plurality of UAVs each include hardware and antennas adapted to communicate to the plurality of satellites; maintaining data associated with flight of each of the plurality of UAVs based on the communicating; and processing the maintained data to perform a plurality of function associated with air traffic control of the plurality of UAVs.
A display panel and a method for driving the same, and a display device are provided. The display panel includes a light emitting element and a pixel circuit that includes a data writing module configured to provide a data signal and an adjusting voltage, a driving module configured to provide a driving current to the light emitting element and including a driving transistor, and a compensation module configured to compensate a threshold voltage of the driving transistor. An operation process of the display panel includes a period of a data writing frame during which the pixel circuit executes a data writing phase during which the data writing module writes the data signal and a light emitting phase, and a period of a holding frame during which the pixel circuit executes a reset and adjustment phase during which the data writing module writes the adjusting voltage and the light emitting phase.
G09G 3/3291 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] - Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
4.
Center of gravity based drone loading for multiple items
A method for loading an Unmanned Aerial Vehicle with multiple items is disclosed. The method includes determining a weight, size, and Center of Gravity of each of the multiple items. The method also includes positioning the multiple items relative to one another such that a combined Center of Gravity of the multiple items will be positioned within a predetermined region. The method further includes loading the multiple items onto the Unmanned Aerial Vehicle with the combined Center of Gravity of the multiple items positioned within the predetermined region.
A method for loading an Unmanned Aerial Vehicle with one or more items is disclosed. The method includes determining a weight and a Center of Gravity of each of a plurality of objects. The plurality of objects includes one or more of the Unmanned Aerial Vehicle, a container, one or more items to be delivered, and packaging for securing the one or more items to be delivered within one of the Unmanned Aerial Vehicle and the container. The method also includes optimizing a combined Center of Gravity of the plurality of objects for performing delivery by the Unmanned Aerial Vehicle.
A method for loading an Unmanned Aerial Vehicle with one or more items is disclosed. The method includes obtaining a Center of Gravity of each of the one or more items and at least one physical characteristic of each of the one or more items. The method also includes categorizing each of the one or more items based on the obtained Center of Gravity and the at least one physical characteristic of the one or more items. The method further includes selecting, for each of the one or more items, one of a plurality of Unmanned Aerial Vehicles to transport the corresponding one or more items based on the categorization of each of the one or more items.
A method for loading an Unmanned Aerial Vehicle with one or more items is disclosed. The method includes determining a Center of Gravity of each of the one or more items. The method also includes matching a combined Center of Gravity of the one or more items with a Center of Gravity of the Unmanned Aerial Vehicle.
A method for loading one of an Unmanned Aerial Vehicle (UAV) and a container for the Unmanned Aerial Vehicle with one or more items is disclosed. The method includes determining a Center of Gravity (COG) of the one or more items. The method also includes loading the one of the UAV and the container for the UAV with the one or more items based on the COG of the one or more items. The method further includes positioning one or more weights relative to the one or more items and relative to the one of the UAV and the container for the UAV such that a combined COG of the one or more items, the one of the UAV and the container for the UAV, and the one or more weights is positioned within a predetermined region relative to the one of the UAV and the container for the UAV.
A method for loading an Unmanned Aerial Vehicle with one or more items is disclosed. The method includes positioning one or more items in specific positions within one of the Unmanned Aerial Vehicle and a container configured to be carried by the Unmanned Aerial Vehicle based on a Center of Gravity of each of the one or more items. The method also includes securing the one or more items in the specific positions within the one of the Unmanned Aerial Vehicle and the container to prevent the one or more items from shifting and changing a combined Center of Gravity of the one or more items combined with the one of the Unmanned Aerial Vehicle and the container during a flight of the Unmanned Aerial Vehicle.
Drone systems and method include, in an air traffic control system configured to manage Unmanned Aerial Vehicle (UAV) flight in a geographic region, communicating to one or more UAVs over one or more wireless networks; responsive to a delivery request specifying a delivery location, determining whether the delivery location and a second pickup location for a second package are the same; and directing a UAV of a plurality of UAVs to deliver the first package to the delivery location, and pick up the second package at the pickup location, wherein the air traffic control system provides a flight plan to the UAV based on the delivery and pickup requests.
Drone systems and method include, in an air traffic control system configured to manage Unmanned Aerial Vehicle (UAV) flight in a geographic region, communicating to one or more UAVs over one or more wireless networks; selecting a delivery technique for a UAV to drop a package at a delivery location, the delivery technique being selected from a plurality of techniques including a technique of the UAV maneuvering to swing the package; and directing the UAV to deliver the package and communicating delivery instructions to the UAV, the delivery instructions including the delivery technique selected.
Drone systems and methods for pickup and delivery of multiple packages include communicating to one or more UAVs over one or more wireless networks; receiving multiple delivery requests, each delivery request specifying any of a pickup location, one or more packages, and a delivery location for each package; determining whether multiple packages including a first package for delivery at a first delivery location and a second package for delivery at a second delivery location are deliverable in a single flight of a UAV; selecting a UAV of the one or more UAVs for delivering the multiple packages; and directing the UAV to pick up the multiple packages, and deliver the first package at the first delivery location and the second package at the second delivery location, wherein the air traffic control system provides a flight plan to the UAV based on the first and second delivery locations.
Drone systems and methods for delayed package delivery includes, in an air traffic control system configured to manage UAV flight in a geographic region, communicating to one or more UAVs over one or more wireless networks; directing a UAV, in transit, to deliver a package to a delivery location and following a flight plan provided to the UAV by the air traffic control system or a drone operator, to hold a position; and directing the UAV to deliver the package after holding the position.
Drone systems and methods for package pickup and delivery include, in an air traffic control system configured to manage Unmanned Aerial Vehicle (UAV) flight in a geographic region, communicating to one or more UAVs over one or more wireless networks; directing a UAV to deliver the package to a delivery location, wherein the air traffic control system provides a flight plan to the UAV based on the delivery request; and directing the UAV, in transit to deliver the package, to cancel delivery of the package and perform one of (1) return the package to a location where the UAV originally picked up the package and (2) deliver the package to an updated delivery location.
Drone systems and methods for package pickup and delivery include, in an air traffic control system configured to manage UAV flight in a geographic region, communicating to one or more UAVs over one or more wireless networks; directing a UAV to pick up the package at the pickup location and to deliver the package to a delivery location; and directing the UAV, in transit, to travel along at least one of a road, highway, and street for a predetermined distance and at a predetermined altitude.
Systems and methods for package pickup and delivery, in an air traffic control system configured to manage Unmanned Aerial Vehicle (UAV) flight in a geographic region, include communicating to one or more UAVs over one or more wireless networks; directing a UAV to pick up a package at a pickup location and to deliver the package to a delivery location, wherein; and directing the UAV to follow an outbound flight path including a plurality of locations to travel to, in a specific order, while outbound to deliver the package, and an inbound flight path including the plurality of locations to travel to, in an order reverse of the specific order, while inbound from delivering the package.
Systems and methods for package pickup and delivery, in an air traffic control system configured to manage Unmanned Aerial Vehicle (UAV) flight in a geographic region, include communicating to one or more UAVs over one or more wireless networks. The systems and methods also include directing a UAV to deliver a package to a delivery location, wherein the package is classified for an urgent delivery. The systems and methods further include the air traffic control system directing the UAV to travel at a higher speed than other, non-urgent, UAV traffic controlled by the air traffic control system and to travel at a different altitude than the non-urgent UAV traffic.
B64C 39/02 - Aircraft not otherwise provided for characterised by special use
G06Q 10/08 - Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
G06Q 10/04 - Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
18.
Passenger drone switchover between wireless networks
A method configured for implementation by a passenger drone include communicating with an Air Traffic Control (ATC) system via a primary wireless network, the primary wireless network being associated with a first cell tower; receiving emergency instructions from the ATC system; storing the emergency instructions in memory, the emergency instructions configured to be implemented during an emergency situation; detecting when communication with the ATC system via the primary wireless network is disrupted; responsive to detecting when the communication with the ATC system via the primary wireless network is disrupted, implementing a network switchover procedure to attempt to reestablish communication to the ATC system via a backup wireless network; and, responsive to a failed attempt to reestablish communication to the ATC system via the backup wireless network, implementing the emergency instructions.
An air traffic control system includes one or more servers each including a network interface, a processor, and memory; and a database communicatively coupled to the one or more servers, wherein the network interface in each of the one or more servers is communicatively coupled to one or more passenger drones via a plurality of wireless networks at least one of which comprises a cellular network; wherein the one or more servers are configured to obtain operational data from a passenger drone, obtain conditions from one or more of the operational data and the database, determine a future flight plan based on the operational data and a flying lane assignment for the passenger drone, determine potential collisions in the future flight plan based on static obstructions and dynamic obstructions, obtained from the database based on the future flight plan, and provide evasive maneuver instructions to the passenger drone.
G08G 5/06 - Traffic control systems for aircraft for control when on the ground
B64C 39/02 - Aircraft not otherwise provided for characterised by special use
H04W 4/44 - Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
An Unmanned Aerial Vehicle (UAV) air traffic control method utilizing wireless networks and concurrently supporting delivery application authorization and management communicating with a plurality of UAVs via a plurality of cell towers associated with the wireless networks, wherein the plurality of UAVs each include hardware and antennas adapted to communicate to the plurality of cell towers; maintaining data associated with flight of each of the plurality of UAVs based on the communicating; processing the maintained data to perform a plurality of functions associated with air traffic control of the plurality of UAVs; and processing the maintained data to perform a plurality of functions for the delivery application authorization and management for each of the plurality of UAVs.
Systems and methods include communicating with a plurality of passenger drones via one or more wireless networks comprising at least one cellular network; receiving updates related to an obstruction status of each of a plurality of waypoints from a plurality of passenger drones, wherein the plurality of waypoints are defined over a geographic region under control of the ATC system; and managing flight paths, landing, and take-off of the plurality of passenger drones in the geographic region based on the obstruction status of each of the plurality of waypoints, wherein the plurality of waypoints each comprise a latitude and longitude coordinate defining a point about which an area is defined for covering a portion of the geographic region.
Systems and methods for emergency shutdown and landing by an Air Traffic Control (ATC) system for passenger drones include detecting a passenger drone is one of distressed and rogue; determining timing for a shutdown and a location for landing; and communicating the determined timing and the landing location to the passenger drone by the Air Traffic Control system via one or more wireless networks comprising at least one cellular network, wherein the passenger drone is constrained in flight based on cell coverage over the at least one cellular network.
H04W 4/021 - Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
H04W 4/42 - Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for mass transport vehicles, e.g. buses, trains or aircraft
A passenger drone includes a processing device communicatively coupled to the flight components, cameras, radar, and wireless interfaces; and memory storing instructions that, when executed, cause the processing device to receive notifications from an air traffic control system via the one or more wireless interfaces, the notifications related to previously detected obstructions in a flight path associated with a flight plan of the passenger drone, wherein the previously detected obstructions include objects at or near ground level; monitor proximate airspace with at least one of the one or more cameras and radar; detect an obstruction based on monitoring the proximate airspace, wherein the detected obstruction includes one or more objects at or near ground level in the flight path; alter the flight plan, to be carried out by the flight components, if required, based on the detected obstruction.
Static obstruction detection and management systems and methods include, in an Air Traffic Control (ATC) system for any flying vehicles including any of passenger drones and Unmanned Aerial Vehicles (UAVs), receiving monitored data from a plurality flying vehicles related to static obstructions; receiving external data from one or more external sources related to the static obstructions; analyzing the monitored data and the external data to populate and manage an obstruction database of the static obstructions; and transmitting obstruction instructions to the plurality of flying vehicles based on analyzing the obstruction database with their flight plan.
Passenger drone air traffic control and monitoring systems and methods implemented by a consolidated system include communicating with an Air Traffic Control (ATC) system which is executed on a plurality of servers, wherein the ATC system is configured to communicate with a plurality of passenger drones in a geographic or zone coverage; consolidating data from the plurality of servers to provide a visualization of a larger geography comprising a plurality of geographic or zone coverages; providing the visualization via a Graphical User Interface (GUI); and performing one or more functions via the GUI for air traffic control and monitoring at any of a high-level and an individual passenger drone level.
H04L 67/125 - Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06F 3/0481 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
Obstruction detection and management systems and methods include, in an Air Traffic Control (ATC) system including one or more servers communicatively coupled to a plurality of passenger drones via one or more wireless networks, receiving passenger drone data from a plurality of passenger drones, wherein the passenger drone data comprises operational data for the plurality of passenger drones and obstruction data from one or more passenger drones; updating an obstruction database based on the obstruction data, wherein the obstruction database comprises entries of obstructions with their height, size, location, and a permanency flag comprising either a temporary obstruction or a permanent obstruction; monitoring a flight plan for the plurality of passenger drones based on the operational data; and transmitting obstruction instructions to the plurality of passenger drones based on analyzing the obstruction database with their flight plan.
H04L 67/125 - Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
B64C 39/02 - Aircraft not otherwise provided for characterised by special use
Flying lane management systems and methods implemented in an air traffic control system communicatively coupled to one or more passenger drones via one or more wireless networks include initiating communication to the one or more passenger drones at a preflight stage for each, wherein the communication is via one or more cell towers associated with the one or more wireless networks, wherein the plurality of passenger drones each comprise hardware and antennas adapted to communicate to the plurality of cell towers; determining a flying lane for the one or more passenger drones based on a destination, current air traffic in a region under management of the air traffic control system, and based on detected obstructions in the region; and providing the flying lane to the one or more passenger drones are an approval to takeoff and fly along the flying lane.
Air traffic control systems and methods include communicating with passenger drones via one or more cell towers associated with the one or more wireless networks, wherein the passenger drones each include hardware and antennas adapted to communicate to the one or more cell towers, and wherein each passenger drone has a unique identifier in the air traffic control system; obtaining data associated with flight of each of the passenger drones based on the communicating; and managing the flight of each of the passenger drones based on the obtained data and performance of one or more functions associated with air traffic control, wherein each passenger drone is configured to constrain flight based on a determined route.
H04W 4/44 - Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
H04W 4/40 - Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
G05D 1/00 - Control of position, course, altitude, or attitude of land, water, air, or space vehicles, e.g. automatic pilot
29.
Systems and methods for air traffic control for passenger drones
Air traffic control systems and methods include communicating with passenger drones via one or more cell towers associated with the one or more wireless networks, wherein the passenger drones each include hardware and antennas adapted to communicate to the one or more cell towers, and wherein each passenger drone has a unique identifier in the air traffic control system; obtaining data associated with flight of each of the passenger drones based on the communicating; and managing the flight of each of the passenger drones based on the obtained data and performance of one or more functions associated with air traffic control, wherein each passenger drone is configured to constrain flight based on coverage of the one or more cell towers such that each passenger drone maintains communication on the one or more wireless networks.
H04W 4/44 - Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
H04W 24/04 - Arrangements for maintaining operational condition
G05D 1/00 - Control of position, course, altitude, or attitude of land, water, air, or space vehicles, e.g. automatic pilot
30.
Dynamic flying lane management systems and methods for drone air traffic control
Systems and methods for drone air traffic control method include, in an air traffic control system configured to manage Unmanned Aerial Vehicle (UAV) flight in a geographic region, communicating to one or more UAVs via one or more wireless networks, wherein the one or more UAVs are configured to maintain their flight in the geographic region based on coverage of or connectivity to the one or more wireless networks; obtaining input related to a plurality of flying lanes in the geographic region and weather conditions in the geographic region; determining the plurality of flying lanes based on the input and weather conditions; and routing the one or more UAVs in the determined plurality of flying lanes considering air traffic, congestion, and obstructions.
Systems and methods for drone air traffic control include, in an air traffic control system configured to manage Unmanned Aerial Vehicle (UAV) flight in a plurality of geographic regions, wherein the air traffic control system has one or more servers configured to manage each geographic region predetermined based on a geographic boundary, communicating to one or more UAVs via one or more wireless networks, wherein the one or more UAVs are configured to maintain their flight in the plurality of geographic regions based on coverage of or connectivity to the one or more wireless networks; obtaining data related to the one or more UAVs, wherein the data includes flight operational data, flight plan data, and sensor data related to obstructions and other UAVs; analyzing and storing the data for each geographic region; and managing flight of the one or more UAVs in corresponding geographic regions based on the data.
An air traffic control system includes one or more servers each including a network interface, a processor, and memory; and a database communicatively coupled to the one or more servers, wherein the network interface in each of the one or more servers is communicatively coupled to one or more Unmanned Aerial Vehicles (UAVs) via a plurality of wireless networks at least one of which includes a cellular network; wherein the one or more servers are configured to obtain operational data from a UAV, obtain conditions from one or more of the operational data and the database, determine a future flight plan based on the operational data and flying lane assignments for the UAV, determine potential collisions based on static obstructions and dynamic obstructions, obtained from the database based on the future flight plan, and provide evasive maneuver instructions to the UAV based on the determined potential collisions.
Systems and methods for package pickup and delivery include, in an air traffic control system configured to manage Unmanned Aerial Vehicle (UAV) flight in a geographic region, communicating to one or more UAVs over one or more wireless networks, wherein the one or more UAVs are configured to constrain flight based on coverage of the one or more wireless networks; receiving a delivery request from a company specifying a pickup location, a package, and a delivery location; selecting a UAV of the one or more UAVs for the delivery requests; and directing the UAV to pick up the package at the pickup location and to deliver the package to the delivery location, wherein the air traffic control system provides a flight plan to the UAV based on the delivery request.
H04W 4/02 - Services making use of location information
H04W 4/40 - Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
G06Q 10/08 - Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
G05D 1/00 - Control of position, course, altitude, or attitude of land, water, air, or space vehicles, e.g. automatic pilot
H04W 4/44 - Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
Flying lane management systems and methods for Unmanned Aerial Vehicles (UAVs) include, in an air traffic control system configured to manage UAV flight in a geographic region, communicating to one or more UAVs over one or more wireless networks, wherein a plurality of flying lanes are defined and standardized in the geographic region each based on a specific purpose; determining an associated flying lane of the plurality of flying lanes for each of the one or more UAVs; communicating the associated flying lane to the one or more UAVs over the one or more wireless networks; receiving feedback from the one or more UAVs via the one or more wireless networks during flight in the associated flying lane; and providing a new instruction to the one or more UAVs based on the feedback.
A method for emergency shutdown and landing by an Air Traffic Control (ATC) system for Unmanned Aerial Vehicles (UAVs) includes detecting an Unmanned Aerial Vehicle (UAV) is one of distressed and rogue; determining timing for a shutdown and a location for landing; and communicating the determined timing and the landing location to the UAV by the Air Traffic Control system via one or more wireless networks comprising at least one cellular network.
Systems and methods using a lift tube with an Unmanned Aerial Vehicle (UAV) air traffic control system include staging one or more UAVs and associated cargo for takeoff; moving the staged one or more UAVs to a lift tube; and controlling the lift tube by the UAV air traffic control system to provide the one or more UAVs for takeoff, wherein the lift tube is a vertical structure disposed in a facility to raise the one or more UAVs from an interior position in the facility for takeoff outside of the facility.
Systems and methods for Unmanned Aerial Vehicle (UAV) network switchover and emergency procedures, implemented by a UAV includes communicating to an Air Traffic Control (ATC) system via a primary wireless network; receiving and storing emergency instructions from the ATC system; detecting communication disruption on the primary wireless network to the ATC system; responsive to the detecting, switching to a backup wireless network to reestablish communication to the ATC system; and, responsive to failing to reestablish communication to the ATC system via the backup wireless network, implementing the emergency instructions.
A method for three-dimensional (3D) coverage mapping of a coverage area of a cell site using an Unmanned Aerial Vehicle (UAV) includes causing the UAV to fly about the coverage area at one or more elevations; causing the UAV to take measurements of wireless performance during flight about the coverage area; and utilizing the measurements to derive a 3D coverage map of the coverage area.
An Unmanned Aerial Vehicle (UAV) air traffic control method utilizing wireless networks includes communicating with a plurality of UAVs via a plurality of cell towers associated with the wireless networks, wherein the plurality of UAVs each include hardware and antennas adapted to communicate to the plurality of cell towers, and wherein each of the plurality of UAVs include a unique identifier; maintaining data associated with flight of each of the plurality of UAVs based on the communicating; and processing the maintained data to perform a plurality of functions associated with air traffic control of the plurality of UAVs.
Static obstruction detection and management systems and methods through an Air Traffic Control (ATC) system for Unmanned Aerial Vehicles (UAVs) include receiving UAV data from a plurality of UAVs related to static obstructions; receiving external data from one or more external sources related to the static obstructions; analyzing the UAV data and the external data to populate and manage an obstruction database of the static obstructions; and transmitting obstruction instructions to the plurality of UAVs based on analyzing the obstruction database with their flight plan.
An Unmanned Aerial Vehicle (UAV) air traffic control method is implemented in a UAV during a flight, for concurrently utilizing a plurality wireless networks for air traffic control. The UAV air traffic control method includes maintaining communication with a first wireless network and a second wireless network of the plurality of wireless networks; communicating first data with the first wireless network and second data with the second wireless network throughout the flight, wherein one or more of the first data and the second data is provided to an air traffic control system configured to maintain status of a plurality of UAVs in flight and perform control thereof; adjusting the flight based on one or more of the first data and the second data and control from the air traffic control system.
An Unmanned Aerial Vehicle (UAV) air traffic control method utilizing wireless networks and concurrently supporting delivery application authorization and management communicating with a plurality of UAVs via a plurality of cell towers associated with the wireless networks, wherein the plurality of UAVs each include hardware and antennas adapted to communicate to the plurality of cell towers; maintaining data associated with flight of each of the plurality of UAVs based on the communicating; processing the maintained data to perform a plurality of functions associated with air traffic control of the plurality of UAVs; and processing the maintained data to perform a plurality of functions for the delivery application authorization and management for each of the plurality of UAVs.
A flying lane management method implemented in an air traffic control system communicatively coupled to one or more Unmanned Aerial Vehicles (UAVs) via one or more wireless networks includes initiating communication to the one or more UAVs at a preflight stage for each, wherein the communication is via one or more cell towers associated with the one or more wireless networks, wherein the plurality of UAVs each comprise hardware and antennas adapted to communicate to the plurality of cell towers; determining a flying lane for the one or more UAVs based on a destination, current air traffic in a region under management of the air traffic control system, and based on detected obstructions in the region; and providing the flying lane to the one or more UAVs are an approval to takeoff and fly along the flying lane.
Systems and methods for preventing flight of one or more Unmanned Aerial Vehicles (UAVs) in no-fly zones include receiving one or more no-fly zones each defined as geo-fences with associated coordinates; preventing one or more UAVs from entering the one or more no-fly zones by one or more of: transmitting the geo-fences to the one or more UAVs, transmitting avoidance commands to the one or more UAVs from an avoidance device located at a no-fly zone, and disrupting radio communication to the one or more UAVs from the avoidance device.
Unmanned Aerial Vehicle (UAV) air traffic control and monitoring systems and methods implemented by a consolidated system include communicating with a plurality of servers each configured to communicate with a plurality of UAVs in a geographic or zone coverage; consolidating data from the plurality of servers to provide a visualization of a larger geography comprising a plurality of geographic or zone coverages; providing the visualization via a Graphical User Interface (GUI); and performing one or more functions via the GUI for air traffic control and monitoring at any of a high-level and an individual UAV level.
Obstruction detection and management systems and methods are performed through an Air Traffic Control (ATC) system for Unmanned Aerial Vehicles (UAVs). The obstruction detection and management method includes receiving UAV data from a plurality of UAVs, wherein the UAV data includes operational data for the plurality of UAVs and obstruction data from one or more UAVs; updating an obstruction database based on the obstruction data; monitoring a flight plan for the plurality of UAVs based on the operational data; and transmitting obstruction instructions to the plurality of UAVs based on analyzing the obstruction database with their flight plan.
G05B 19/04 - Programme control other than numerical control, i.e. in sequence controllers or logic controllers
G05B 19/18 - Numerical control (NC), i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
An Unmanned Aerial Vehicle (UAV) includes flight components attached or disposed to a base; one or more cameras; radar; one or more wireless interfaces; a processing device communicatively coupled to the flight components, the one or more cameras, the radar, and the wireless interfaces; and memory storing instructions that, when executed, cause the processing device to monitor proximate airspace with one or more of the one or more cameras and the radar; detect an obstruction based on the monitor; identify characteristics of the obstruction; alter a flight plan, through the flight components, if required based on the characteristics; and communicate the obstruction to an air traffic control system via the one or more wireless interfaces.
A waypoint management method for an Air Traffic Control (ATC) system for Unmanned Aerial Vehicles (UAVs) includes communicating with a plurality of UAVs via one or more wireless networks comprising at least one cellular network; receiving updates related to an obstruction status of each of a plurality of waypoints from the plurality of UAVs, wherein the plurality of waypoints are defined over a geographic region under control of the ATC system; and managing flight paths, landing, and take-off of the plurality of UAVs in the geographic region based on the obstruction status of each of the plurality of waypoints.