The invention refers to a system that allows to improve a detection accuracy in network RF sensing. A system (150) for controlling a re-baselining of a network device (110) is presented, wherein a new baseline is determined based on a detection signal detected by the network device and/or detected by other network devices (130, 120), wherein the system comprises a detection signal providing unit (151) for providing a detection signal detected by the network device and/or by other network devices in the detection area, a quality criterion checking unit (152) for checking if a predetermined quality criterion for a re-baselining is fulfilled based on the provided detection signal, and a re-baselining unit (156) for controlling the network device to re-baseline if the predetermined quality criterion is fulfilled. Thus, the long term detection accuracy in detecting the presence or absence of a subject in the detection area can be improved.
The invention provides a horticulture lighting system (100), comprising (i) a lighting device (110) configured to provide horticulture light (111) and (ii) a control system (200) configured to control the horticulture light (111), wherein the control system (200) is further configured to provide according to a predetermined time scheme and/or as function of a sensor signal a pulse of horticulture light (111) in a spectral wavelength region at least comprising blue light (112) during a pulse period selected from the range of 1-60 min.
The invention provides a horticulture arrangement (1000) for a plant (1), the horticulture arrangement (1000) comprising (i) a horticulture lighting system (100) configured to provide horticulture light (101) to plants (1), (ii) one or more reflective elements (310) configured to reflect part of the horticulture light (101) to the plant (1), and (iii) a control system (200), wherein the control system (200) is configured to control one or more of a light intensity and a spectral distribution of the horticulture light (101) in dependence of the reflection of the horticulture light (101) by the one or more reflective elements (310).
A lighting controller is provided for a lighting system that comprises a lighting apparatus including one or more lights arranged to provide light to promote smoltification of salmon in a volume of water. The lighting controller controls light output of the lighting apparatus so that continuous light is provided to the volume of water for a first predetermined period lasting at least 24 hours; and so that a plurality of simulated day periods and night periods are provided to the volume of water for a second predetermined period, the second predetermined period following the first predetermined period. During the second predetermined period, an intensity of the light provided to the volume of water in a night period is non-zero and up to 20% of an intensity of the light provided to the volume of water in a day period.
A system for locating an object in a volume of space can include multiple electrical devices, where each electrical device includes a transceiver. The system can also include a controller communicably coupled to the electrical devices. The controller can instruct the electrical devices to broadcast, using the transceiver, multiple first signals in the volume of space. The controller can also collect data associated with multiple second signals received by the transceiver of the electrical devices, where the second signals are sent by the object in response to the first signals. The controller can further determine, using the data, a multi-dimensional location of the object in the volume of space.
G01S 5/00 - Position-fixing by co-ordinating two or more direction or position-line determinations; Position-fixing by co-ordinating two or more distance determinations
F21V 21/00 - Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
G01S 5/14 - Determining absolute distances from a plurality of spaced points of known location
G01S 13/74 - Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
6.
MULTI-DIMENSIONAL LOCATION OF AN OBJECT USING MULTIPLE ANTENNAE
A system for locating an object (306) in a volume of space can include an electrical device (302) having multiple antennae (375), and a switch (345) coupled to the antennae. The system can also include a controller (304) communicably coupled to the switch. The controller can measure, at a first time, a first parameter of a signal received at a first antenna. The controller can also operate the switch from a first position to a second position, where the first position enables the first antenna, and where the second position enables a second antenna. The controller can further measure, at a second time, a second parameter of the signal received at the second antenna. The controller can also determine, using the first parameter and the second parameter, a multi-dimensional location of the object in the volume of space.
An optical system includes an optic and a reflector. The optic has a rear surface with a cavity configured to receive light from a light source and a front surface opposite the rear surface, the front surface configured to emit light processed by the optic and the front surface including a centrally disposed convex region. The front surface and the rear surface of the optic meet at a rim that extends peripherally with respect to the cavity. The reflector is disposed adjacent the optic and comprises a light-receiving end adjoining the rim, a light-emitting end, and a tapered region that extends between the light-receiving end and the light-emitting end.
A lighting device includes one or more LED modules, each of which includes a group of LED sets positioned on a substrate. Each LED set includes two or more sections, optionally under a single lens. The sections are individually controlled by a controller of the lighting device or an external controller. The beam spread, beam shape, or both of the light emitted by the device may be controlled by selectively activating the LED sections of each LED set. Optionally, the sections may be configured to emit light of different luminescent properties, such as different colors or different color temperatures. In such embodiments, the color, color temperature or other characteristics of light emitted by the device also may be controlled by selectively activating the LED sections of each LED set.
F21S 2/00 - Systems of lighting devices, not provided for in main groups or , e.g. of modular construction
F21K 9/69 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction - Details of refractors forming part of the light source
F21V 23/00 - Arrangement of electric circuit elements in or on lighting devices
A system of networked lighting devices includes a central controller and a group of lighting devices. Each lighting device may include a fixture controller, one or more lighting modules, and a communication interface. The central controller receives data packets and send them to the lighting devices via a ring topology. The lighting devices may be connected to each other via the ring topology, or a set of routers may be connected in the ring topology, with each router controlling one or more connected lighting devices. The central controller and/or the fixture controllers may each translate data packets from one protocol to a different protocol. The different protocol may be a protocol that is compatible with the local system of networked devices, and/or a protocol that is compatible with the lighting device(s) that will use the data packets to actuate according to a command from the central controller.
H04L 12/423 - Loop networks with centralised control, e.g. polling
H04L 12/437 - Ring fault isolation or reconfiguration
H04Q 9/00 - Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
G08C 17/02 - Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
A lighting device includes a light emitting diode (LED) structure having LEDs, a housing, and a power supply. The housing receives and secures the LED structure, and includes a body portion that comprises a heat sink for the LED structure, and a shroud that at least partially shields the LED structure. The heat sink comprises various fins that extend away from the LED module in a direction that is perpendicular to a width of the LED structure.
F21V 29/74 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
F21V 29/76 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
F21K 9/00 - Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
F21V 11/16 - Screens not covered by groups , , or using sheets without apertures, e.g. fixed
A lighting system comprising a sensor to measure a characteristic value of light and a lighting device comprising (i) a plurality of LEDs including a first group of LEDs exhibiting a first color temperature and a second group of LEDs exhibiting a second color temperature, (ii) a housing comprising an opening securing the LEDs, a body portion providing a heat sink, and a power supply, and (iii) a controller to receive data from the sensor and to alter a characteristic of light from LEDs. When received sensor data indicates the characteristic value of light at a location is above or below a threshold, the controller generates commands to control drive currents delivered to the first and second groups of LEDs so light at the location exhibits a characteristic within the threshold, and to control the first and second groups of LEDs so the illuminance level of light detected by an illuminance sensor will not substantially change when the drive currents change in response to the commands.
F21V 29/74 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
F21V 29/76 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
F21K 9/00 - Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
F21V 11/16 - Screens not covered by groups , , or using sheets without apertures, e.g. fixed
A hanger bar assembly includes a first hanger bar member that includes a first rail segment. The first hanger bar member also includes a first channel segment that includes a first channel. The first hanger bar member also includes a first transitional middle segment extending between the first rail segment and the first channel segment. The hanger bar assembly further includes a second hanger bar member that includes a second rail segment. The second rail segment is positioned in the first channel of the first channel segment. The second hanger bar member further includes a second channel segment that includes a second channel. The first rail segment is positioned in the second channel. The second hanger bar member also includes a second transitional middle segment extending between the second rail segment and the second channel segment.
A housing for a luminaire is disclosed. The housing can include a housing top and a housing body coupled to each other. The housing body can include at least one wall that is bendable to form a cavity. The housing body can also include at least one first housing body coupling feature disposed on a first end, and at least one second complementary housing body coupling feature disposed on the first end adjacent to the at least one first housing body coupling feature. The housing body can further include at least one second housing body coupling feature disposed on a second end, and at least one first complementary housing body coupling feature disposed on the second end adjacent to the at least one second housing body coupling feature.
F21S 8/02 - Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
F21V 15/01 - Housings, e.g. material or assembling of housing parts
F21V 17/00 - Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
A repositionable junction box is disclosed. The repositionable junction box can include a base comprising at least one wall that forms a cavity. The repositionable junction box can also include a coupling portion extending from the at least one wall, where the coupling portion can include at least one first coupling feature disposed at a distal end of the coupling portion, where the at least one first coupling feature is configured to mechanically couple to a first complementary coupling feature of a plurality of first complementary coupling features disposed on a frame.
The luminaire includes a light emitting diode (LED) module that includes a heat sink with an outer wall defining a top cavity and a bottom cavity and a mounting flange generally positioned along the bottom of the outer wall. A LED light source is positioned within the bottom cavity and in thermal communication with the heat sink. The bottom surface of the mounting flange includes one or more alignment features or keys extending out from the bottom surface. A trim having a corresponding alignment aperture is matingly engaged by positioning all or a portion of the alignment feature into the alignment aperture to ensure proper orientation of the trim with the LED module and to provide sufficient surface area for good thermal transfer between the heat sink and the trim.
F21V 17/10 - Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
F21V 29/70 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
A low-cost, efficient, high intensity LED luminaire (HILL) assembly for use indoors or outdoors in wet, damp, or dry environments. In various embodiments, the HILL assembly can be powered by a universal AC or a DC electrical supply and can operate in a temperature range from about -40°C to about +85 °C. The HILL assembly can include a lens element comprising one or more concavo-convex lenses; an interchangeable LED module comprising a plurality of LEDs positioned in a LED array; and a heatsink housing containing a power supply for the LEDs. The HILL assembly can optionally comprise a circuit board for the LED array that employs thermal via technology, a lens with a frosted lip for attenuating the light source as seen from an angle, and/or a sensor for sensing an environmental parameter of interest. Driver circuitry and the LEDs are preferably mounted directly on a common circuit board.
An LED worklight includes a center core and a first panel and a second panel coupled to the center core. The first panel includes a first LED die package disposed within a first opening formed within the first panel and a first lens disposed over the first LED die package. The second panel includes features similar to the first panel. The second panel is rotatable around the center core from a zero degree closed orientation to about a 359 degree orientation, and is positionable at any intermediate angle therebetween. The first and second panels each include an attachment mechanism having an elastic band with a hook attached thereto. The attachment mechanisms are used to attach or hang the worklight to or around one or more objects. The attachment mechanisms are stored in the worklight such that the attachment mechanisms do not interfere with its operation when not in use.
The present disclosure is directed to inventive methods and apparatus for a low-glare LED-based lighting unit (110). The low-glare LED-based lighting unit (110) may have vertically extending LED support structure (120) and an array of individually aimed LEDs (133) coupled to the vertically extending LED support structure (120). At least one vertically extending translucent inner lens (150/260) may be provided adjacent a plurality of the LEDs (133) and intersect the LED light output axis (A) of a plurality of the LEDs (133).
F21K 9/69 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction - Details of refractors forming part of the light source
F21K 9/60 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
F21S 8/08 - Lighting devices intended for fixed installation with a standard
Solid state light sources are compatible with AC phase-cut dimmers. The light sources may have switching mode power supplies having primary and secondary sides that are in first and second circuit parts that are electrically isolated from one another. Information regarding a waveform of input electrical power is extracted in the first circuit part and passed to a controller in the second circuit part by way of a galvanic isolator. Additional isolated paths may be provided to provide bi-directional exchange of information between the first and second circuit parts and/or to provide for the exchange of additional information relevant to control. The signal path from the first side to the second side may have a low latency.
A lighting device comprises at least a light source (13, 33), a light emitting surface, an air inlet aperture (8, 9, 28), an air outlet aperture (8, 9, 28) and a cooling unit (4, 24) for moving air from the air inlet aperture (8, 9, 28) through the cooling unit (4, 24) to the air outlet. The air inlet aperture (8, 9, 28) and the air outlet aperture (8, 9, 28) are both located on the same side of the lighting device as at least part of the light emitting surface.
F21V 29/70 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
F21V 29/74 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
F21V 29/83 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
F21K 9/23 - Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
Eberson, Etienne Nicolaas Kathalijntje Paulus Marie
Jiang, Hong
Vael, Philip Louis Zulma
Abstract
An illumination device (1) comprises: at least one low-power light source (50); a power input stage (20) suitable for receiving AC low voltage from an electronic transformer (ET); a power buffer stage (30) having an input (31) connected to the input stage output (29); a driver (40) for driving the light source and receiving electric power supply from the power buffer stage. The power input stage generates output current pulses for charging the power buffer stage at a relatively low frequency, and during each output current pulse, the power input stage draws input current, the input current always having a current magnitude higher than a minimum load requirement of the electronic transformer.
In light emitting diode circuits (1) comprising serially coupled first and second circuits (11, 12) with first and second light emitting diodes, third circuits (13) are coupled in parallel with the second circuits (12) for controlling the first light emitting diodes in the first circuits (11) and/or third light emitting diodes in fourth circuits (14). This allowes more options, more optimizations, more flexibility and/or more efficiency. The light emitting diode circuit (1) receives a supply voltage from a source (2, 3) for feeding the light emitting diode circuit (1). The third circuit (13) receives a feeding voltage from the second circuit (12) for feeding the third circuit (13). The feeding voltage may be a voltage present across the second circuit (12). The third circuit (13) may further control the second light emitting diodes in the second circuit (12). Said controlling may comprise controlling a current flowing through said light emitting diodes for the purpose of dimming, flicker suppression, color control and/or temperature protection.
23.
MULTICHANNEL LIGHTING UNIT AND DRIVER FOR SUPPLYING CURRENT TO LIGHT SOURCES IN MULTICHANNEL LIGHTING UNIT
A lighting unit includes at least two channels of light sources, and a driver for the light sources. The driver includes a DC/DC converter and a control arrangement for controlling the current supplied to at least one of the two channels in response to a control signal produced by the DC/DC converter. Beneficially, a feedback loop controls a switching device in the DC/DC converter to maintain the light level produced by the light sources at a desired level regardless of changes in the supply voltage and the load.
A light emitting diode (LED) module is in thermal communication with front and back heat sinks for dissipation of heat therefrom. The LED module is physically held in place with at least the back heat sink. A mounting ring and locking ring can also be used to hold the LED module in place and in thermal communication with the back heat sink. Key pins and key holes are used to prevent using a high power LED module with a back heat sink having insufficient heat dissipation capabilities required for the high power LED module. The key pins and key holes allow lower heat generating (power) LED modules to be used with higher heat dissipating heat sinks, but higher heat generating (power) LED modules cannot be used with lower heat dissipating heat sinks.
F21V 29/70 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
F21V 29/77 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
F21K 9/20 - Light sources comprising attachment means
F21V 17/10 - Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
25.
RECONFIGURABLE LED ARRAY AND USE IN LIGHTING SYSTEM
A light-emitting device capable of being powered by an AC power supply or an unregulated DC power supply is disclosed. The light-emitting device, in an aspect, is coupled to a controller, a light-emitting diode ("LED") array, and a power supply, wherein the power supply can be an AC power source or an unregulated DC power source. While the power supply provides electrical power, the controller generates various LED control signals in response to power fluctuation of the electrical power. The LED array allows at least a portion of LEDs to be activated in accordance with the logic states of the LED control signals.
G09G 3/32 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
26.
A CONNECTOR FOR CONNECTING A COMPONENT TO A HEAT SINK
A connector (100) for connecting a component (102) to a heat sink (104), wherein the connector (100) is formed as a female part of a bayonet coupling enclosing an opening (106) for receiving one of the component (102) and the heat sink (104). Further, the connector (100) in use is arranged to ensure direct thermal contact between the component ( 102) and the heat sink ( 104) in the opening (106).
A lamp assembly (1) comprises at least a light source (8) and a reflector for reflecting light from the light source (8). The reflector is positionable with respect to the light source (8) in at least a first position and a second position to obtain a spot-like light emission in the first position and a more or less omnidirectional light emission, in the second position, of the light emitted by the lamp assembly (1). The lamp assembly (1) comprises a reflective layer (7). In the first position of the reflector at least part of the light is reflected by the reflector as well as by the reflective layer (7). In the second position of the reflector at least part of the light is reflected by the reflector and passes along the reflective layer (7).
F21K 9/68 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction - Details of reflectors forming part of the light source
F21K 9/23 - Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
F21K 9/232 - Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
28.
DIMMABLE LIGHT SOURCE WITH LIGHT TEMPERATURE SHIFT
An illumination device (1) comprises: mains input terminals (2, 3); a power source (30), having input terminals (31, 32) coupled to the mains input terminals and having three output terminals (33, 35, 34), one of said output terminals being a common output terminal (35). A first output (36) is defined by a first output terminal and said common output terminal; a second output (37) is defined by a second output terminal and said common output terminal. A first LED string (110) is connected to the first power source output in series with a first resistor (120). A second LED string (210) is connected to the second power source output in series with a second resistor (220). The power source is controllable to vary the voltage at the common output terminal within the range from the voltage at the first output terminal to the voltage at the second output terminal.
G09G 3/36 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source using liquid crystals
The present invention provides an illumination device (100) comprising a light source (110) arranged to generate light, a carrier (120) arranged to support the light source and an envelope (130) enclosing the light source and the carrier. Further, the carrier is arranged in thermal contact with the envelope and both the envelope and the carrier are made of ceramic material. The present invention is advantageous in that it provides an illumination device providing an effective heat transfer.
F21K 9/232 - Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
F21V 29/70 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
F21V 29/85 - Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
F21V 3/06 - Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
30.
LIGHT SOURCE COMPRISING A LIGHT EMITTER ARRANGED INSIDE A TRANSLUCENT OUTER ENVELOPE
The invention relates to a light source (10, 12) comprising a light emitter (20) arranged inside a translucent outer envelope (30, 32). The light emitter comprising a light emitting device (40) and comprising a translucent inner envelope (50) at least partially surrounding the light emitting device, the translucent inner envelope comprising a diffuser. A diameter (d i)of the translucent inner envelope is smaller than a diameter (d o) of the translucent outer envelope. The translucent outer envelope is connected to a base (60) not being translucent. The translucent outer envelope further comprises a symmetry axis (S). An imaginary base-plane (P) is defined substantially perpendicular to the symmetry axis (S) and intersects with a connection point (C) being part of the translucent outer envelope. The connection point is a light transmitting part of the translucent outer envelope at an interface between the translucent outer envelope and the base at a furthest distance from a center (M) of the translucent outer envelope. The light emitter is arranged inside the translucent outer envelope at a distance from the imaginary base-plane away from the base. An effect of the light source according to the invention is that the emission profile of the light source according to the invention is increased.
F21K 9/232 - Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
F21V 29/70 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
F21K 9/23 - Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
F21K 9/238 - Arrangement or mounting of circuit elements integrated in the light source
F21K 9/60 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
31.
SYSTEMS AND APPARATUS FOR LIGHT-BASED SOCIAL COMMUNICATIONS
Light-based systems for communicating information associated with the formation of social connections are disclosed. One or more lighting controllers controlling individually controllable luminaires are used in conjunction with communication networks in order to identify and form remote light-based social connections. Additionally, visualization controllers are used in conjunction with visualization infrastructures, visualization actuators, localization systems and identification systems to visually identify proximally present potential social connections.
H04L 67/12 - Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
Light-based systems for communicating information associated with the formation of social connections are disclosed. One or more lighting controllers controlling individually controllable luminaires are used in conjunction with communication networks in order to identify and form remote light-based social connections. Additionally, visualization controllers are used in conjunction with visualization infrastructures, visualization actuators, localization systems and identification systems to visually identify proximally present potential social connections.
The invention relates to a light emitting device system (112) comprising power supply terminals (114) and a remote control signal receiver (118), the power supply terminals being adapted for receiving electrical power from an external driver (100), the remote control signal receiver (118) being adapted for receiving a remote control signal, wherein the light emitting device system (112) is further adapted for providing the received remote control signal as remote control signal information exclusively via the power supply terminals (114) and/or via wireless transmission to the driver (100).
An LED optical assembly is provided having a heatsink, a support surface having a plurality of light emitting diodes, a plurality of reflectors, and a plurality of optical lenses. The heatsink is in thermal connectivity with the support surface. Each reflector is positioned over a corresponding light emitting diode and at least one optical lens is placed over a corresponding reflector.
F21K 9/60 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
F21V 29/70 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
F21K 9/68 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction - Details of reflectors forming part of the light source
F21K 9/69 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction - Details of refractors forming part of the light source
F21V 13/04 - Combinations of only two kinds of elements the elements being reflectors and refractors
An LED optical assembly is provided having a support surface having a plurality of light emitting diodes, a plurality of reflectors, and a plurality of optical lenses. Each reflector is positioned over a corresponding light emitting diode and at least one optical lens is placed over a corresponding reflector.
F21K 9/60 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
F21K 9/68 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction - Details of reflectors forming part of the light source
F21K 9/69 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction - Details of refractors forming part of the light source
F21V 13/04 - Combinations of only two kinds of elements the elements being reflectors and refractors
A reflector with an alignment recess is provided. The reflector has a recess portion that receives the base of a light emitting diode. At least a portion of an outer periphery of the base of the light emitting diode is adjacent at least portions of the recess portion of the reflector.
F21K 9/68 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction - Details of reflectors forming part of the light source
F21K 9/69 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction - Details of refractors forming part of the light source
F21V 5/04 - Refractors for light sources of lens shape
A mounting surface for mounting a plurality of LEDs has a plurality of orientable lenses each individually affixed about a single LED. Each orientable lens has a primary reflector and a refracting lens that direct light emitted from a single LED to a reflective surface of the orientable lens that reflects the light off a primary LED light output axis.
F21K 9/60 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
F21K 9/65 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction specially adapted for changing the characteristics or the distribution of the light, e.g. by adjustment of parts
F21V 5/04 - Refractors for light sources of lens shape
F21V 13/04 - Combinations of only two kinds of elements the elements being reflectors and refractors
F21V 14/06 - Controlling the distribution of the light emitted by adjustment of elements by movement of refractors
F21V 17/02 - Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages with provision for adjustment
The invention provides a substantially round illumination device (1) comprising a light source (10) and a substantially round waveguide (20). The waveguide (20) comprises a first waveguide surface (21), a second waveguide surface (22), a substantially round waveguide entrance window (23), a substantially round waveguide edge window (24), and a central axis (100). The first waveguide surface (21) or the second waveguide surface (22) or both the first waveguide surface (21) and the second waveguide surface (22) further comprise a plurality of elongated structures (200) each having an elongation axis (201) substantially parallel to a radius (101) perpendicular to the central axis (100).
A recessed light fixture includes an LED module, which includes a single LED package that is configured to generate ail light emitted by the recessed light fixture. For example, the LED package can include multiple LEDs mounted to a common substrate. The LED package can be coupled to a heat sink for dissipating heat from the LEDs. The heat sink can include a core member from which fins extend. Each fin can include one or more straight and/or curved portions. A reflector housing may be coupled to the heat sink and configured to receive a reflector. The reflector can have any geometry, such as a bell-shaped geometry including two radii of curvature that join together at an inflection point. An optic coupler can be coupled to the reflector housing and configured to cover electrical connections at the substrate and to guide light emitted by the LED package.
F21V 29/70 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
F21S 8/02 - Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
F21V 17/10 - Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
40.
AN IMPROVED LED DEVICE FOR WIDE BEAM GENERATION AND METHOD OF MAKING THE SAME
A predetermined illuminated surface pattern is generated from a predetermined energy distribution pattern of an LED light source within an LED package having a light transmitting dome. An estimated optical transfer function of a lens shape of an optic is defined by the shape of an exterior and inner surface which envelopes at least in part the light transmitting dome of the LED package An energy distribution pattern is obtained by combination of the estimated optical transfer function and the predetermined energy distribution pattern of the light source. A projection of the energy distribution pattern onto the illuminated surface is determined. The projection is compared to the predetermined illuminated surface pattern. The estimated optical transfer function is then modified and the steps repeated until acceptable consistency is achieved between the projection and the predetermined illuminated surface pattern.
The present invention provides an optical device configured for the creation of an asymmetric illumination beam pattern while additionally mixing the light created by two or more light-emitting elements. The optical device comprises a reflector body which extends between an entrance aperture and an exit aperture, wherein the two or more light emitting elements are positioned relative to the entrance aperture and light is reflected within the reflector body exiting at the exit aperture. The reflector body includes a first pair of walls including symmetric reflective elements and a second pair of walls orthogonal to the first pair of walls, wherein the second pair of walls includes asymmetric reflective elements. The first pair of walls provides a means for mixing the light generated by the two of more light-emitting elements and generating a symmetric beam pattern about a first axis. Along a second axis, orthogonal to the first axis, the second pair of walls provides a means for mixing the light generated by the two or more light-emitting elements and generating an asymmetric beam pattern.
A luminaire for a street light to provide a predetermined illumination pattern on a street surface including a lighting fixture, and a plurality of arrays of light emitting diodes (LEDs) each with a corresponding lens disposed in the lighting fixture, each array for providing the predetermined illumination pattern on the street surface, where the predetermined illumination pattern on the street surface is azimuthally asymmetric.
F21S 8/08 - Lighting devices intended for fixed installation with a standard
F21V 29/70 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
F21K 9/69 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction - Details of refractors forming part of the light source
F21S 2/00 - Systems of lighting devices, not provided for in main groups or , e.g. of modular construction
F21V 5/08 - Refractors for light sources producing an asymmetric light distribution
An apparatus and method is characterized by providing an optical transfer function between a predetermined illuminated surface pattern, such as a street light pattern, and a predetermined energy distribution pattern of a light source, such as that from an LED. A lens is formed having a shape defined by the optical transfer function. The optical transfer function is derived by generating an energy distribution pattern using the predetermined energy distribution pattern of the light source. Then the projection of the energy distribution pattern onto the illuminated surface is generated. The projection is then compared to the predetermined illuminated surface pattern to determine if it acceptably matches. The process continues reiteratively until an acceptable match is achieved. Alternatively, the lens shape is numerically or analytically determined by a functional relationship between the shape and the predetermined illuminated surface pattern and predetermined energy distribution pattern of a light source as inputs.
The light-emitting module according to the present invention comprises a heat dissipation element, a substrate for example a metal core printed circuit board (MCPCB), or FR4 board which is coupled to one or more light-emitting elements and provides a means for operative connection of the light-emitting elements to a source of power. The substrate is positioned such that it is thermally coupled to the heat dissipation element. The light-emitting module further comprises a housing element which matingly connects with the heat dissipation element, wherein the housing element may further comprise an optical element integrated therein for manipulation of the light generated by the one or more light-emitting elements.
H01L 27/15 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier, specially adapted for light emission
The present invention provides a thermally and electrically conductive apparatus that can provide both thermal conductivity and electrical conductivity for one or more electronic devices connected thereto. The apparatus comprises a thermally conductive element that is in thermal contact with one or more electronic devices and optionally in contact with a heat dissipation system. A portion of the thermally conductive element is surrounded by a multilayer coating system comprising two or more layers. The multilayer coating system includes alternating electrically insulating and electrically conductive layers in order to provide paths for the supply of electric current to the one or more electronic devices. A conductive layer of the multilayer coating system may be selectively patterned to connect to one or more electronic devices. In this manner, the combination of an electronic circuit carrier and a thermally conductive element can unify thermal conductivity with the provision of power and/or communication into a single integrated unit for use with electronic devices.
H01L 23/34 - Arrangements for cooling, heating, ventilating or temperature compensation
H01L 33/62 - Arrangements for conducting electric current to or from the semiconductor body, e.g. leadframe, wire-bond or solder balls
H01L 23/485 - Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads or terminal arrangements consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
H05K 7/20 - Modifications to facilitate cooling, ventilating, or heating
The present invention provides a method and apparatus for controlling the correlated colour temperature (CCT) or colour of light produced by an array of light-emitting elements by providing multiple selectable paths for the flow of drive current. The apparatus includes a primary path comprising primary light- emitting elements, and one or more secondary paths comprising secondary light- emitting elements that are used for compensation or correction of the colour of light emitted by the primary light-emitting elements. A plurality of control means, for example switches are used to direct current through particular paths. During operation, the drive current primarily flows through the primary light-emitting elements and is redirected, periodically for example, to a secondary path comprising light-emitting elements of a particular colour that is desired in addition to the colour produced by the primary light-emitting elements.
The present invention provides an extension to a standard N-bit digital pulse width control method which can discriminate 2N discrete pulse widths per pulse cycle. The present invention provides a method and apparatus that can modulate the pulse widths over a period of 2M pulse cycles in which each pulse cycle can have its own pulse width or respective duty cycle. The resulting time averaged or effective pulse width therefore can be controlled with a resolution of 2N+M states rather than a resolution of 2N states as is common with standard methods.
H03M 7/00 - Conversion of a code where information is represented by a given sequence or number of digits to a code where the same information is represented by a different sequence or number of digits
The present invention provides a programmable lighting system comprising a plurality of light-emitting elements and a controller responsive to a hierarchically encoded data input stream. The controller determines and provides appropriate control signals for controlling the characteristics of the light generated by the plurality of light-emitting elements operatively coupled thereto. The data input stream may use a DMX512 or other network protocol and can be hierarchically encoded by varying the value of the START code of the data packets. When a DMX512 or other data packet with a NULL START code or "color" packet is received by the controller, the controller interprets the frames to be intensity control data wherein each frame can correspond to a particular light-emitting element or group of light-emitting elements. The color packet can provide data for the generation of a particular temporal color sequence or a temporal color sequence that is random or any other lighting sequence. When a DMX512 or other data packet with a non-NULL START code or "service" packet is received by the controller, the controller can interpret each START code value independently and can assign or modify one or more attributes of the controller, for example, the particular mode of operation, or an address or serial number may be assigned or modified based on the value of the START code.
49.
METHOD AND APPARATUS FOR SCALING THE AVERAGE CURRENT SUPPLY TO LIGHT-EMITTING ELEMENTS
The present invention provides a method and apparatus for scaling the average drive current supplied to a light-emitting element or string thereof by coupling a scaling signal to an original control signal thereby generating an effective control signal for control of the light-emitting element(s). The scaling signal can be a modulated signal, for example a Pulse Width Modulation (PWM) signal, Pulse Code Modulation (PCM) signal, or other signal and modifies the original control signal to produce an effective control signal. The effective control signal is subsequently used to control the supply of power to the light-emitting element(s) from a power source via a switching device. The effective control signal essentially modifies the ON time of the light- emitting element(s), thereby modifying the average drive current passing through the light-emitting element(s). The scaling signal is coupled to the original control signal by a coupling mechanism, thereby enabling the modification of the original control signal by the scaling signal forming the effective control signal.
50.
LIGHTING SYSTEM INCLUDING PHOTONIC EMISSION AND DETECTION USING LIGHT-EMITTING ELEMENTS
The present invention provides a system and method for generating light using light-emitting elements and detecting the intensity and spectral power distribution of light using the same light-emitting elements as spectrally sensitive photodetectors. The light-emitting elements function in two modes, an ON mode and an OFF mode, wherein in the ON mode the light-emitting elements are activated and emit light of a particular frequency or range of frequencies. When in the OFF mode, the light-emitting elements are deactivated, wherein they do not emit light but serve to detect photons incident upon them thus generating an electrical signal representative of the intensity and spectral power distribution of the incident photons. The detected signal from the deactivated light-emitting elements can be used to provide photonic feedback to a lighting system, and thereby may be used to control the brightness and colour balance of the lighting system. In addition, the light-emitting elements may be arranged such that no spectrally selective filters or optics are necessary to block or focus light onto the light- emitting elements when in the detection or OFF mode.
51.
SWITCHED CONSTANT CURRENT DRIVING AND CONTROL CIRCUIT
The driving and control device according to the present invention provides a desired switched current to a load including a string of one or more electronic devices, and comprises one or more voltage conversion means, one or more dimming control means, one or more feedback means and one or more sensing means. The voltage conversion means may be a DC-to-DC converter for example and based on an input control signal converts the magnitude of the voltage from the power supply to another magnitude that is desired at the high side of the load. The dimming control means may comprise a switch such as a FET, BJT, relay, or any other type of switching device, for example, and provides control for activation and deactivation of the load. The feedback means is coupled to the voltage conversion means and a current sensing means and provides a feedback signal to the voltage conversion means that is indicative of the voltage drop across the current sensing means which thus represents the current flowing through the load. The current sensing means may comprise a fixed resistor, variable resistor, inductor, or some other element which has a predictable voltage-current relationship and thus will provide a measurement of the current flowing through the load based on a collected voltage signal. Based on the feedback signal received, the voltage conversion means can subsequently adjust its output voltage such that a constant switched current is provided to the load.
A hanger bar assembly for a recessed luminaire is disclosed. The hanger bar assembly includes a first hanger bar member having a first attachment structure disposed on an end thereof, and a second hanger bar member having a second attachment structure disposed on an end thereof, the second hanger bar member being adjacent to the first hanger bar member. The first and the second attachment structures each include a first wall having a first fastener aperture and a second wall having a second fastener aperture, the first and second fastener apertures being formed about a common central longitudinal axis.
The present invention provides an apparatus for forming an asymmetric illumination beam pattern that can be advantageous when illuminating channel letters in addition to enabling the creation of cove lighting, as well as other applications benefiting from asymmetric illumination patterns. The apparatus comprises one or more light-emitting elements for creating the illumination. A first optical element is operatively associated with each of the light-emitting elements and provides a means for manipulating the illumination in a first direction. A second optical element is operatively associated with predetermined light-emitting elements and provides a means for manipulating the illumination in a second direction. Upon the interaction of the illumination with both the first and second optical elements, the illumination being created can have an asymmetric beam pattern.
The present invention provides a luminaire comprising an housing having thermally separate compartments for an electronics portion and a lighting portion. These thermally separate compartments can provide a means for providing thermal isolation between the respective components, namely the electronics portion and the lighting portion. In this manner thermal interaction between these portions can be reduced, thereby improving performance of the luminaire. The lighting portion comprises a plurality of light-emitting elements and further includes optics for the manipulation of illumination created by the light-emitting elements. A power supply for supply of energy to the light-emitting elements and a controller for controlling application of energy from a power source to the light-emitting elements is provided in the electronics portion and can be thermally separated within the electronics portion. Moreover, an optical device comprising two linear diffuser elements can be used to further improve the light emission characteristics of the light-emitting elements thereby providing a directly viewable luminaire wherein the illumination produced by point light sources appears uniform along the length of the luminaire.
F21V 29/10 - Arrangement of heat-generating components to reduce thermal damage, e.g. by distancing heat-generating components from other components to be protected
F21V 29/74 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
F21V 15/01 - Housings, e.g. material or assembling of housing parts
F21V 23/00 - Arrangement of electric circuit elements in or on lighting devices
55.
METHOD AND APPARATUS FOR LIGHT COLLECTION, DISTRIBUTION AND ZOOM
An LED or incandescent light source is positioned in a reflector arranged to reflect light from the LED or incandescent light source which is radiated from the LED or incandescent light source in a peripheral forward solid angle as defined by the reflector. A lens is disposed longitudinally forward of the LED or incandescent light source for focusing light into a predetermined pattern which is radiated from the LED or incandescent light source in a central forward solid angle as defined by the lens. The apparatus comprised of the combination projects a beam of light comprised of the light radiated in the central forward solid angle and peripheral forward solid angles.
The present invention provides a system and method for the diffusion of illumination from discrete light sources (30) such that the illumination is blended and directed in one or more desired directions. The illumination system comprises a substrate (20) having a plurality of light-emitting elements (30) thereon which are arranged in an array, wherein these light- emitting elements produce illumination at one or more wavelengths. Proximate to the light-emitting elements is a diffuser (40), which collects the illumination produced by the discrete light-emitting elements and redirects this illumination in one or more predetermined directions, thereby blending together the one or more wavelengths of illumination and concentrating the illumination in the predetermined directions. The illumination system further comprises a power system, which provides energy to the light-emitting elements (30) thereby resulting in their activation. Through the blending of the illumination produced by the discrete light-emitting elements together with the redirection of the illumination in a desired direction, both of which are enabled by the diffuser (40) placed proximate to the discrete light-emitting elements (30), the creation of a blended pattern of illumination from these discrete light-emitting elements (30) is provided, wherein this pattern of illumination can be one or more lines or planes of illumination.
F21K 9/69 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction - Details of refractors forming part of the light source
F21S 4/20 - Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports
F21V 13/04 - Combinations of only two kinds of elements the elements being reflectors and refractors
The present invention provides an illumination optical system that enables the direction and mixing of light from light emitting devices. The optical system comprises a plurality of light emitting devices that are spatially arranged in an array, wherein this array comprises one or more sections, such that the light emitting devices in a particular section emit light within a predetermined wavelength range. Through the use of a combination of macroscopic and microscopic optical systems, the illumination created by the array can be manipulated such that a desired illumination distribution is created. The macroscopic optical system provides a means for redirecting the illumination in one or more desired directions, wherein this redirection is provided by a collection of appropriately shaped and positioned reflective optics. Subsequent to its interaction with the macroscopic optical system, the illumination is manipulated by a microscopic optical system that enables the diffusion of the illumination in a predetermined manner, while retaining the desired angular distribution of the illumination created by the macroscopic optical system. Through the appropriate design and orientation of both the macroscopic and microscopic optical systems, a desired illumination effect can be created.
F21V 13/00 - Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups
F21K 9/00 - Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
F21S 2/00 - Systems of lighting devices, not provided for in main groups or , e.g. of modular construction