Devices, arrangements and methods for routing and connecting optical fibers at fiber organizers of telecommunications closures. The organizers include pivotal tray arrangements for improved versatility and quantity of fiber routing configurations within a telecommunications closure of a given size.
A phase shifter includes a printed circuit board and a trace located on the printed circuit board that is configured to transmit signals. The printed circuit board includes a first part covered by the trace and a second part not covered by the trace, where the second part includes at least one hollowed out area near the trace.
H01Q 3/32 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture varying the phase by mechanical means
An enclosure for breaking out a trunk cable includes: a base having a generally flat surface adapted for mounting to a mounting surface; a shell having a front and two side walls extending from opposite sides of the front and two opposed end walls, the side walls of the shell mounted to the base to form a cavity; a plurality of connectors mounted to each of the side walls; and a trunk cable routed into the cavity through one of the end walls, the trunk cable comprising a plurality of power conductors and/or a plurality of optical fibers. The power conductors and the optical fibers are connected with respective ones of the plurality of connectors.
H02G 3/18 - Distribution boxes; Connection or junction boxes providing line outlets
G02B 6/44 - Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
H02G 3/08 - Distribution boxes; Connection or junction boxes
H02G 9/02 - Installations of electric cables or lines in or on the ground or water laid directly in or on the ground, river-bed or sea-bottom; Coverings therefor, e.g. tile
A cable includes a cable core including a central strength member. A plurality of buffer tubes, with each buffer tube including a plurality of optical fibers therein, and a plurality of filler rods are stranded about the central strength member. A characterizing feature is that a diameter of each of the plurality of filler rods is larger than a diameter of each of the plurality of buffer tubes. A jacket surrounds the cable core.
Systems and methods for flexible antenna configurations and beamforming are provided. In one example, a system includes: at least one controller configured to implement at least some functions for one or more layers of a wireless interface used to communicate with UEs; remote unit(s) communicatively coupled to the at least one controller; and antenna elements communicatively coupled to the remote unit(s), each respective antenna element oriented in a respective direction different than other antenna elements. The at least one controller is configured to: determine a location of a UE in a cell of the system and/or channels between the antenna elements and the UE; select antenna element(s) for use in transmitting downlink signals to the UE based on the location of the UE and/or the channels between the antenna elements and the UE; and transmit downlink signals to the UE via the selected antenna element(s) in a first time period.
A base station includes at least one remote unit (RU) that exchanges radio frequency (RF) signals with a user equipment (UE) using an air interface. The base station also includes a controller communicatively coupled to the at least one RU. The controller forms first RLC protocol data units (PDUs) for a first cell and second RLC PDUs for a second cell based on Radio Link Control (RLC) service data units (SDUs). A first at least one processor in the controller performs first Medium Access Control (MAC) scheduling for the first cell based on a first buffer occupancy update to produce a first scheduling decision. A second at least one processor in the controller performs second MAC scheduling for the second cell based on a second buffer occupancy update to produce a second scheduling decision.
Base station antenna calibration boards are provided. A base station antenna calibration board includes directional couplers and radio frequency (RF) transmission lines that are coupled to the directional couplers, respectively. Moreover, a first pair of the directional couplers has a coupler section that is between and coupled to a first pair of the RF transmission lines and that has a non-rectangular interior shape. Related base station antennas are also provided.
The present disclosure relates to fiber optic connectors having integrated features for protecting the optical fibers of the fiber optic connectors. The fiber optic connectors can include protective features such as retractable noses and shutters. The fiber optic connectors can include fiber anchoring units with tapered front sections for preventing micro-bends.
The invention is directed to the characterization of an optical channel, such as an optical fiber, in an optical network. The method includes calibrating a transmitter by measuring its transmitter and dispersion eye closure (TDEC, in the case of non-return to zero optical (NRZ) optical systems or transmitter and dispersion eye closure quaternary (TDECQ, in the case of 4-level pulse amplitude modulation (PAM4) optical systems). That calibrated transmitter is used to characterize the optical channel being tested by providing a measure of its stressed eye closure (SEC) or stressed eye closure quaternary (SECQ). A loss deficit for the optical channel can be calculated by subtracting the SEC or SECQ value from the maximum TDEC or TDECQ value.
G01M 11/00 - Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
H04B 10/073 - Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an out-of-service signal
H04B 10/2507 - Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
10.
LASER PROCESS FOR PROCESSING FERRULES USED IN NON-CONTACT OPTICAL CONNECTORS
A method for processing a ferrule for a fiber optic connector is disclosed herein. The ferrule supports an optical fiber. The method involves laser processing a distal end of the ferrule to expand at least a portion of the ferrule to cause recession of an end of the optical fiber relative to the expanded portion of the ferrule.
The present disclosure relates to a housing having an interior and an exterior. The housing includes a first housing piece and a second housing piece that are coupled together by a joint. The joint includes a bonding material and the joint is configured such that when the bonding material is pressurized during formation of the joint the bonding material is predisposed to move toward the interior of the housing as compared to the exterior of the housing.
B29C 65/36 - Joining of preformed parts; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
B29C 65/00 - Joining of preformed parts; Apparatus therefor
12.
TIMESLOT MAPPING AND/OR AGGREGATION ELEMENT FOR DIGITAL RADIO FREQUENCY TRANSPORT ARCHITECTURE
A summing unit within telecommunications system includes: port to receive digital data stream from another device; and summer function. Digital data stream includes first and second digital data derived from first and second base station. First and second digital data comprises first and second digital values associated with respective time periods. Summing unit extracts first digital data from digital data stream. Summer function digitally sums first digital data with third digital data derived from third base station to generate summed digital data for conversion to radio frequency signals and transmission at antenna. Third digital data comprises third series of third digital values associated with respective time periods. Summer function digitally sums first digital data with third digital data by digitally summing (i) first digital value associated with respective time period and (ii) third digital value associated with respective time period to produce summed value for respective time period.
H04L 5/00 - Arrangements affording multiple use of the transmission path
H04J 3/16 - Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
H04J 3/04 - Distributors combined with modulators or demodulators
A buffer tube clencher (47) elongates a buffer tube (43) in a cable manufacturing machine (41) to reduce excess fiber length (EFL). The clencher (47) includes first (49,57) and second (69,73) sets of wheels with first and second gaps (63) therebetween to guide the buffer tube (43). At least one wheel of the first set of wheels (49,57) and of the second set of wheels (69,73) is driven to cause the buffer tube (43) to elongate, and at least one wheel of the first set of wheels (49,57) and of the second set of wheels (69,73) is biased and able to move away from the other wheel against a biasing force to accommodate an imperfection in the outer surface of the buffer tube (43), such that the buffer tube (43) remains under an elongation force by at least one driven wheel even if slippage occurs as the imperfection passes by the other driven wheel of the first and second sets of wheels.
The present disclosure relates to converters for converting a male fiber optic connector to a female fiber optic connector. The converters can include configurations that are environmentally sealed and ruggedized.
Base station antenna systems include a first base station antenna and a second base station antenna. The first base station antenna includes a first RF port, a first housing, a first passive linear array of radiating elements mounted within the first housing and coupled to the first RF port. The second base station antenna includes a second housing, a second RF port, a third RF port, a second passive linear array of radiating elements mounted within the second housing and coupled to the second and third RF ports, a third passive linear array of radiating elements mounted within the second housing, and an RF transmission line that couples the third passive linear array of radiating elements to the first RF port.
H01Q 5/00 - Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
H01Q 1/42 - Housings not intimately mechanically associated with radiating elements, e.g. radome
H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
H01Q 5/30 - Arrangements for providing operation on different wavebands
H01Q 21/08 - Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along, or adjacent to, a rectilinear path
A housing for a cavity phase shifter comprises a first part that extends along the length of the cavity phase shifter and a separate second part that extends along the length of the cavity phase shifter. The first part comprises a substantially flat first base and first arms that extend from the two widthwise edges of the first base toward the second part and the second part comprises a substantially flat second base and second arms that extend from the two widthwise edges of the second base toward the first part. The first arms and the second arms at least partially overlap and are capacitively coupled to each other to form the first cavity of the cavity phase shifter.
H01Q 3/26 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture
H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
17.
ANTENNA CALIBRATION BOARDS HAVING NON-UNIFORM COUPLER SECTIONS
Base station antenna calibration boards are provided. A base station antenna calibration board includes directional couplers and radio frequency (RF) transmission lines that are coupled to the directional couplers, respectively. Moreover, a first pair of the directional couplers has a coupler section that is between and coupled to a first pair of the RF transmission lines and that has a non-rectangular interior shape. Related base station antennas are also provided.
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
H01Q 21/26 - Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
H01Q 19/10 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
A communication system includes a remote unit that exchanges radio frequency signals with mobile devices, at least some of the radio frequency signals comprising information destined for, or originating from, a mobile device, the remote unit being configured to perform first physical layer processing. A controller is separated from the remote unit by a switched Ethernet network, wherein data corresponding to the information is transmitted in frames between the controller and the remote unit. At least some of the data comprises baseband data that is transmitted in frequency domain. The controller and the remote unit are configured to transmit time stamp messages on the switched Ethernet network to synchronize a controller clock and a remote unit clock. The controller is configured to advance downlink subframe timing relative to the remote unit, when transmitting on the switched Ethernet network, based on a measured transport delay across the switched Ethernet network.
H04L 1/00 - Arrangements for detecting or preventing errors in the information received
H04L 5/00 - Arrangements affording multiple use of the transmission path
H04B 7/04 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
H04L 1/18 - Automatic repetition systems, e.g. Van Duuren systems
H04L 27/34 - Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
H04L 49/109 - Integrated on microchip, e.g. switch-on-chip
H04B 7/06 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
H04L 49/25 - Routing or path finding in a switch fabric
19.
BASE STATION ANTENNAS HAVING SPACED APART RADOME ELEMENTS AND REFLECTOR HEAT SINK STRUCTURES
Active antennas are provided that include a reflector defining part of an external heat dissipation surface and a plurality of radome elements coupled to the reflector (s). The reflector can include or be coupled to longitudinally extending walls that define heat dissipation surfaces and/or that provide RF isolation between neighboring columns of dipole antenna elements.
H01Q 1/02 - Arrangements for de-icing; Arrangements for drying-out
H01Q 1/42 - Housings not intimately mechanically associated with radiating elements, e.g. radome
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
H01Q 19/10 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
20.
SYSTEMS AND METHODS FOR SELECT RADIO UNIT TRANSMISSION POWER IN RADIO ACCESS NETWORKS
Systems and methods for select RU transmission power in RANs are provided. In one embodiment, a controller for a RAN is provided. The RAN includes a BBU entity coupled to a plurality of RUs providing wireless communications service to UEs in a coverage area, the controller comprises a processor executing: a power assessment function that determines a transmit power level for RUs based on RU configuration data; an information block dissemination function that communicates an information block to the RUs based on the transmit power level determined by the power assessment function; the information block dissemination function communicates a first information block to a RU that indicates a first power level, and a second information block to a second RU that indicates a second power level different than the first; within the coverage area, the downlink signals of the first RU are isolated from downlink signals of the second RU.
A method of separating a ribbon of optical fibers held together by bonding material. The method includes the steps of routing a thread around each of the optical fibers and moving the thread in a first direction to bread the bonding material between the optical fibers.
A fiber optic cable assembly includes a fiber optic cable having a first section with a jacket surrounding at least one internal fiber optic cable, and a second section where the at least one internal fiber optic cable extends past an end of the jacket. The fiber optic cable further includes a strength member having a first portion extending inside the jacket in the first section, a second portion forming a loop outside of the second section, and a third portion extending outside of the jacket in the first section. A protective wrap surrounds the third portion of the strength member. A cable pulling sleeve is coupled to the loop, and the cable pulling sleeve defines a cavity for enclosing the end of the second section.
G02B 6/44 - Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
G02B 6/54 - Underground or underwater installation; Installation through tubing, conduits or ducts using mechanical means, e.g. pulling or pushing devices
23.
BROADBAND DECOUPLING RADIATING ELEMENTS AND BASE STATION ANTENNAS HAVING SUCH RADIATING ELEMENTS
Antennas include first and second radiating elements that are configured to operate in respective operating frequency bands. The first radiating element includes a first dipole arm that has a first conductive path and a second conductive path that is positioned behind the first conductive path. The first conductive path includes a plurality of first segments and the second conductive path includes a plurality of second segments, where a subset of the first segments overlap respective ones of second segments to form a plurality of pairs of overlapping first and second segments. At least some of the pairs of overlapping segments are configured so that the instantaneous direction of a first current formed on the first segment in response to RF radiation emitted by the second radiating element will be substantially opposite the instantaneous direction of a second current formed on the second segment in response to the RF radiation.
H01Q 9/28 - Conical, cylindrical, cage, strip, gauze or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
A base station includes at least one remote unit (RU) that exchanges radio frequency (RF) signals with a user equipment (UE) using an air interface. The base station also includes a controller communicatively coupled to the at least one RU. The controller forms first RLC protocol data units (PDUs) for a first cell and second RLC PDUs for a second cell based on Radio Link Control (RLC) service data units (SDUs). A first at least one processor in the controller performs first Medium Access Control (MAC) scheduling for the first cell based on a first buffer occupancy update to produce a first scheduling decision. A second at least one processor in the controller performs second MAC scheduling for the second cell based on a second buffer occupancy update to produce a second scheduling decision.
A base station antenna includes a reflector assembly having at least first through third panels that are angled with respect to each other, first and second feed board PCBs that are mounted outwardly of the respective first panels of the reflector assembly, the first and second feed board PCBs including respective first and second RF transmission lines, and a feed line PCB having a third RF transmission line that connects directly to the first RF transmission line via a first tab-through-PCB connection and a fourth RF transmission line that connects directly to the second RF transmission line via a second tab-through-PCB connection.
Methods of identifying electrical connections between primary ports of a radio frequency circuit and primary ports of a radio are provided. A method of identifying the electrical connections includes receiving a radio frequency signal via each of the primary ports of the radio frequency circuit. Moreover, the method includes providing, by the radio frequency circuit, different responses to the radio frequency signal that is received via the primary ports, respectively, of the radio frequency circuit. In some embodiments, the different responses are different frequency responses or different delay responses. Related radio frequency circuits are also provided.
H04B 7/06 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
H01Q 3/26 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
27.
SYSTEMS, DEVICES AND METHODS FOR ADDING CAPACITY TO A FIBER OPTIC NETWORK
A method for increasing the capacity of a passive optical network. The passive optical network includes an existing multi-service terminal having a plurality of hardened fiber optic drop ports, and also includes an optical line terminal that provides service to the existing multi-service terminal. The method includes upgrading the optical line terminal to support at least 10GPON and to have increased launch power and enhanced loss sensitivity. The method also includes adding a passive optical splitter between the optical line terminal and the existing multi-service terminal, connecting the existing multi-service terminal to a first output of the passive optical splitter, and connecting an expansion multi-service terminal to a second output of the passive optical splitter.
An aspect of the present disclosure is directed to a connector. The connector is suited to connectorizing exactly two conductors. The connector includes a forward connector body, a rear connector body, a metal frame and exactly two electrical contacts. The rear connector body interfaces with the forward connector body. Further, the metal frame, which includes a shielding interface, surrounds at least a portion of both the forward and rear connector bodies. The electrical contacts extend from the rear connector body into the forward connector body. A first of the electrical contacts is electrically coupled to a first conductor of a shielded cable and the second of the electrical contacts is electrically coupled to a second conductor of the shielded cable. The shield interface of the metal frame is electrically coupled to the shield of the shielded cable.
H01R 13/6463 - Means for preventing cross-talk using twisted pairs of wires
H01R 13/6591 - Specific features or arrangements of connection of shield to conductive members
H01R 4/2433 - Flat plates, e.g. multi-layered flat plates mounted in an insulating base one part of the base being movable to push the cable into the slot
H01R 12/58 - Fixed connections for rigid printed circuits or like structures characterised by the terminals terminals for insertion into holes
H01R 13/6594 - Specific features or arrangements of connection of shield to conductive members the shield being mounted on a PCB and connected to conductive members
H01R 31/06 - Intermediate parts for linking two coupling parts, e.g. adapter
H01R 43/01 - Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for connecting unstripped conductors to contact members having insulation cutting edges
H01R 43/20 - Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for assembling or disassembling contact members with insulating base, case or sleeve
29.
BROADBAND DECOUPLING RADIATING ELEMENTS AND BASE STATION ANTENNAS HAVING SUCH RADIATING ELEMENTS
Antennas include first and second radiating elements that are configured to operate in respective operating frequency bands. The first radiating element includes a first dipole arm that has a first conductive path and a second conductive path that is positioned behind the first conductive path. The first conductive path includes a plurality of first segments and the second conductive path includes a plurality of second segments, where a subset of the first segments overlap respective ones of second segments to form a plurality of pairs of overlapping first and second segments. At least some of the pairs of overlapping segments are configured so that the instantaneous direction of a first current formed on the first segment in response to RF radiation emitted by the second radiating element will be substantially opposite the instantaneous direction of a second current formed on the second segment in response to the RF radiation.
H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
H01Q 19/10 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
H01Q 21/26 - Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
H01Q 21/08 - Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along, or adjacent to, a rectilinear path
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
A base station antenna includes a radio frequency (RF) lens positioned to receive electromagnetic radiation from a radiating element, the RF lens including an RF energy focusing material and a first heat dissipation channel that extends through the RF energy focusing material of the RF lens and contains a cooling fluid.
H01Q 1/02 - Arrangements for de-icing; Arrangements for drying-out
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
H01Q 15/02 - Refracting or diffracting devices, e.g. lens, prism
H01Q 19/06 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
H01Q 21/08 - Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along, or adjacent to, a rectilinear path
H01Q 25/00 - Antennas or antenna systems providing at least two radiating patterns
31.
CUSTOMIZABLE FIXATION DEVICE ASSEMBLY FOR FIXING DIFFERENT NUMBERS OF CABLES TO A TELECOMMUNICATIONS ENCLOSURE
Multi-piece device assemblies for fixing cables, such as fiber optic cables, in a telecommunications closure. Features of the assemblies can improve versatility and flexibility in fixing different numbers of cables at different times, as network and connectivity needs for the telecommunications closure change. In an embodiment, the assembly includes two body pieces that can each support a cable fixation and that removably interlock with each other.
A mounting bracket may reserve an installation site for a network component at a specific geographic location. The mounting bracket may bear indicia by which the mounting bracket can be associated (e.g., electronically) with the geographic location for tracking and/or reporting purposes. The indicia may be removable from the mounting bracket. The indicia may block the network component from being installed at the mounting bracket prior to removal of the indicia.
A fiber optic ferrule includes a body extending from a first end to a second opposite end, with the body including an axial passage extending between the first and the second ends. The axial passage includes a first diameter portion having a diameter of at least 125 microns, a second diameter portion having a diameter of at least 250 microns and less than a diameter of a buffer, and a smooth and continuous transition between the first and the second diameter portions. The second diameter portion is positioned between the first diameter portion and the second end. The axial passage further defines a tapered shape at the second end extending inward from the second end toward the second diameter portion. In certain embodiments, another smooth and continuous transition can be provided between the taper shape and the second diameter portion. In certain embodiments, the axial passage is smooth and continuous between the first and the second ends of the body. A hub holds the ferrule. A method of assembling a terminated fiber optic cable is also provided.
Systems and methods for select RU transmission power in RANs are provided. In one embodiment, a controller for a RAN is provided. The RAN includes a BBU entity coupled to a plurality of RUs providing wireless communications service to UEs in a coverage area, the controller comprises a processor executing: a power assessment function that determines a transmit power level for RUs based on RU configuration data; an information block dissemination function that communicates an information block to the RUs based on the transmit power level determined by the power assessment function; the information block dissemination function communicates a first information block to a RU that indicates a first power level, and a second information block to a second RU that indicates a second power level different than the first; within the coverage area, the downlink signals of the first RU are isolated from downlink signals of the second RU.
A communication system for performing DRX-aware channel resource allocation is described. The communication system includes a plurality of radio points (RPs), each configured to exchange radio frequency (RF) signals with a plurality of user equipment (UEs) at a site. The communication system also includes a baseband controller communicatively coupled to the plurality of radio points. The baseband controller is configured to reallocate a second UE's channel resource in a first UE's DRX subcycle, for RPs in a first UE's combining zone vector (CZV), from a second UE to a first UE, wherein the first UE's CZV matches the second UE's CZV.
The present disclosure describes strand mounts for small cell radios. A strand mount may include a top plate, a bottom plate, and opposing side plates that form a housing having an interior cavity dimensioned to fit around one or more small cell radios, a plurality of mounting members, each mounting member coupled to the top and bottom plates within the interior cavity and configured such that a small cell radio can be mounted thereto, and one or more mounting brackets. The strand mount has the dual-capability of being mounted either horizontally on a cable strand or vertically on a pole. Alternative strand mounts and strand mount assemblies are also provided.
Base station antennas include at least one passive internal grid reflector with an array of low band radiating elements projecting forward of a front one of the at least one grid reflector. A mMIMO antenna array resides behind a back one of the at least one grid reflector and is configured to transmit signal through the grid reflector and out a front radome of the base station antenna.
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
H01Q 19/10 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
H01Q 19/185 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces wherein the surfaces are plane
H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
H01Q 5/45 - Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
38.
TERMINATION PANEL WITH PIVOTING ADAPTER BULKHEAD SECTIONS
A termination panel includes a termination bulkhead formed of multiple pivoting bulkhead members. Each bulkhead member is configured to selectively pivot about a pivot axis extending through a middle region of the bulkhead member. The bulkhead members may pivot independent of each other or may entrain pivoting motion of adjacent bulkhead members. In certain examples, the location of the pivot axis about which the bulkhead members pivot can be changed without changing the bulkhead members.
The present application relates to a mounting device configured for mounting a base station antenna (10) on a supporting member (11), and providing the adjustability of the mechanical tilt angle of the base station antenna. The mounting device comprises a first mounting unit, a second mounting unit, and an elastic element (3). The first mounting unit is configured to provide a pivot point for the base station antenna, the second mounting unit has an adjustable effective connection length for the base station antenna, with the effective connection length related to the mechanical tilt angle of the base station antenna, and the elastic element is configured to resist an increase in the mechanical tilt angle of the base station antenna on at least a part of the adjustable range of the mechanical tilt angle of the base station antenna. The mounting device allows for the easy adjustment of the mechanical tilt angle of the base station antenna, reducing the workload and safety risks of the operator.
H01Q 3/06 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation over a restricted angle
A fiber optic cable includes an optical fiber, a strength layer surrounding the optical fiber, and an outer jacket surrounding the strength layer. The strength layer includes a matrix material in which is integrated a plurality of reinforcing fibers. A fiber optic cable includes an optical fiber, a strength layer, a first electrical conductor affixed to an outer surface of the strength layer, a second electrical conductor affixed to the outer surface of the strength layer, and an outer jacket. The strength layer includes a polymeric material in which is embedded a plurality of reinforcing fibers. A method of manufacturing a fiber optic cable includes mixing a base material in an extruder. A strength layer is formed about an optical fiber. The strength layer includes a polymeric film with embedded reinforcing fibers disposed in the film. The base material is extruded through an extrusion die to form an outer jacket.
A factory processed and assembled optical fiber arrangement is configured to pass through tight, tortuous spaces when routed to a demarcation point. A connector housing attaches to the optical fiber arrangement at the demarcation point (or after leaving the tight, tortuous spaces) to form a connectorized end of the optical fiber. A fiber tip is protected before leaving the factory until connection is desired.
A fanout arrangement includes a fanout body; a mesh sleeve; and an arrangement to hold the mesh sleeve to the fanout body. The arrangement The fanout body may have one or more removable sheath organizers to retain the upjacketing for the fanned out optical fibers.
The present disclosure describes a power distribution panel that complies with the European Union Low Voltage Directive. The power distribution panel includes an outer housing having a front side, a rear side, a pair of opposing sides, and a bottom side defining an interior and a removable protective cover mounted over the interior. The interior contains a plurality of electrical circuits connecting a plurality of power input terminals to a power output terminal, wherein the power output terminal is a socket outlet and each electrical circuit includes one or more circuit protection devices.
A connection assembly for an antenna includes a printed circuit board (2) and a coaxial cable (1) connected to the printed circuit board (2). A transmission trace and a solder pad are provided on the printed circuit board (2). An opening for receiving an end portion of the coaxial cable is also provided in the printed circuit board (2), and an exposed outer conductor (4) of the end portion extends into the opening, and an exposed inner conductor (6) reaches the solder pad. The connection assembly further includes a ground structure (5), which is electrically connected to a ground metal layer on a second surface of the printed circuit board (2), and the ground structure (5) is at least partially arranged on both sides of the exposed inner conductor (6) and/or the exposed outer conductor (4).
H05K 3/34 - Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
45.
METHODS AND SYSTEMS FOR FILLING A FIBER OPTIC CONNECTOR WITH EPOXY
Methods and systems for filling a fiber optic connector with epoxy. A ferrule assembly has a ferrule and a ferrule hub with an inner passageway configured to receive epoxy. A capacitance meter is positioned relative to the ferrule assembly while epoxy is injected into the inner passageway of the ferrule assembly. Capacitance within the ferrule assembly is measured via the capacitance meter while epoxy is being injected into the inner passageway of the ferrule assembly. Based on the measured capacitance within the ferrule assembly, epoxy is stopped from being injected into the inner passageway of the ferrule assembly.
A multi-fiber fiber optic connector is provided having features that allow for changeability with respect to gender. A pin retention structure is configured to retain a pair of alignment pins and includes a pin-holder body with a pair of pin openings and a U-shaped spring clip. The spring clip including a base portion and two opposing legs, and is movable between a pin retaining position and a pin release position. When the spring clip is in the pin retaining position, the two opposing legs engage with outer sides of each of the alignment pins, and when the spring clip is in the pin release position, the base portion flexes inwardly and the two opposing legs disengage with the outer sides of each of the alignment pins.
A connection assembly for an antenna includes a printed circuit board and a coaxial cable connected to the printed circuit board. A transmission trace and a solder pad are provided on the printed circuit board. An opening for receiving an end portion of the coaxial cable is also provided in the printed circuit board, and an exposed outer conductor of the end portion extends into the opening, and an exposed inner conductor reaches the solder pad. The connection assembly further includes a ground structure, which is electrically connected to a ground metal layer on a second surface of the printed circuit board, and the ground structure is at least partially arranged on both sides of the exposed inner conductor and/or the exposed outer conductor.
The present disclosure relates to a fiber optic network configuration having an optical network terminal located at a subscriber location. The fiber optic network configuration also includes a drop terminal located outside the subscriber location and a wireless transceiver located outside the subscriber location. The fiber optic network further includes a cabling arrangement including a first signal line that extends from the drop terminal to the optical network terminal, a second signal line that extends from the optical network terminal to the wireless transceiver, and a power line that extends from the optical network terminal to the wireless transceiver.
H04B 10/2575 - Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
H04B 10/80 - Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups , e.g. optical power feeding or optical transmission through water
G02B 6/38 - Mechanical coupling means having fibre to fibre mating means
G02B 6/44 - Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
H04J 14/02 - Wavelength-division multiplex systems
H04B 10/25 - Arrangements specific to fibre transmission
A metrocell antenna includes a plurality of linear arrays of first frequency band radiating elements, a first enclosure that includes a first of the linear arrays of first frequency band radiating elements mounted therein, a second enclosure that includes a second of the linear arrays of first frequency band radiating elements mounted therein, a third of the linear arrays of first frequency band radiating elements mounted within one of the first and second enclosures, a first RF port that is mounted through the first enclosure and a first blind-mate connector that provides an electrical connection between the first enclosure and the second of the linear arrays of first frequency band radiating elements that is mounted in the second enclosure.
H01Q 19/10 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
H01Q 21/08 - Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along, or adjacent to, a rectilinear path
50.
INDICIA AND METHOD FOR IDENTIFYING TELECOMMUNICATIONS COMPONENTS
Indicia elements are added to telecommunications components to identify the source of the telecommunications component. Indicia elements can include at least one of a logo, a specific color (e.g. a color different from a non-indicative base color of the telecommunications component), text information, a barcode, a QR code, and a RFID tag. The indicia elements can aid in identifying or tracing network connections, identifying types of connectors and/or cables, labeling the network connections, and identifying a network operator in a multi-network environment.
A splice holder for holding spliced fiber optic cables, the splice holder comprises: a plurality of channels for receiving the spliced fiber optic cables, and a snap member arrangement for retaining the spliced fiber optic cables within the channels. A first splice protector, when located in a first channel, is retained by a first snap member pair and first and third intermediate snap members, and a second splice protector, when located in a second channel adjacent the first channel, is retained by a second snap member pair and second and fourth intermediate snap members.
The present disclosure relates to a cable seal for use in a telecommunications enclosure. The cable seal can include various features such as an offset actuator for pressurizing the seal, a latch for securing the seal in a pocket of an enclosure, a gel containment extension for covering a portion of a perimeter of a volume of gel of the seal, a gel interlock feature and/or a feature for adjusting the gel volume of the seal.
H02G 3/06 - Joints for connecting lengths of protective tubing to each other or to casings, e.g. to distribution box; Ensuring electrical continuity in the joint
G02B 6/44 - Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
A single pair Ethernet connector jack includes a housing that includes a first end having two pin contacts. The first end receives a single pair Ethernet free connector. The connector jack housing includes a second end that provides a single pair Ethernet cable interface and wire termination through use of two insulated displacement contacts. The insulation displacement contacts are electrically coupled to the pin contacts enabling power, data, or both power and data to be transferred from the single pair Ethernet cable to the free connector.
A power divider includes: a dielectric substrate; a transmission line circuit on a first surface of the dielectric substrate, the transmission line circuit including an input trace, a first output trace and a second output trace. The transmission line circuit is configured to split a signal received at the input trace into a first sub-component that is output on the first output trace and a second sub-component that is output on the second output trace; and a reference potential layer, set on a second surface opposite the first surface of the dielectric substrate, where the reference potential layer is provided with a decoupling window that exposes a part of the dielectric substrate to reduce coupling in the transmission line circuit.
A fiber optic connector including a connector body and a cable, the cable including optical fibers and a non-circular jacket. The fiber optic connector additionally including a resilient jacket, the resilient jacket is rotatable relative to the non-circular jacket. The resilient jacket is enabled to rotate by an insert which includes an outer profile which engages with an inner profile of the resilient jacket. The insert includes an inner profile which prevents relative rotation between the insert and the non-circular jacket.
A base station antenna includes a remote electronic tilt (“RET”) actuator, a phase shifter having a moveable element and a mechanical linkage extending between the RET actuator and the phase shifter. The mechanical linkage includes an adjustable RET linkage that has a first link that has a first connection element, a second link that has a second connection element and a connecting member that includes at least a third link. The adjustable RET linkage includes at least a first hinge and a second hinge.
H01Q 3/32 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture varying the phase by mechanical means
H01Q 5/48 - Combinations of two or more dipole type antennas
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
H01Q 9/28 - Conical, cylindrical, cage, strip, gauze or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
H01Q 25/00 - Antennas or antenna systems providing at least two radiating patterns
57.
BASE STATION ANTENNAS HAVING AN ACTIVE ANTENNA MODULE AND RELATED DEVICES AND METHODS
Base station antennas include an externally accessible active antenna module releasably coupled to a recessed segment that is over a chamber in the base station antenna and that is longitudinally and laterally extending along and across a rear of a base station antenna housing. The base station antenna housing has a passive antenna assembly that cooperates with the active antenna module.
H01Q 19/10 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
H01Q 1/42 - Housings not intimately mechanically associated with radiating elements, e.g. radome
H01Q 19/185 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces wherein the surfaces are plane
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
H01Q 23/00 - Antennas with active circuits or circuit elements integrated within them or attached to them
Radiating elements of first and second linear arrays of radiating elements have respective feed stalks that can reside at an angle to provide a balanced dipole arm with an inner end portion laterally offset to be closer to a right or left side of the base station antenna and reflector than an outer end portion that faces a radome of the base station antenna. The feed stalk can include sheet metal legs and printed circuit boards providing an RF transmission line(s).
H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
H01Q 21/26 - Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
Base station antennas include a first reflector panel having a first array of radiating elements mounted thereon and a second reflector panel having a second array of radiating elements mounted thereon. A housing that includes a radome surrounds the first and second reflector panels. The first and second reflector panels are mounted in a vertically-stacked arrangement, and the second reflector panel is rotatable in an azimuth plane with respect to the first reflector panel so that the first array is configured to generate first antenna beams that provide coverage to a first sector and the second array is configured to generate second antenna beams that provide coverage to a second sector. The second sector may partially overlap the first sector but does not completely overlap the first sector.
The present disclosure relates to a fiber optic connector for use with a fiber optic adapter. The fiber optic connector includes a connector housing having an end defining a plug portion. A ferrule assembly is mounted at least partially within the connector housing. The ferrule assembly includes a ferrule located at the plug portion of the connector housing. A sealing member is mounted about an exterior of the connector housing for providing a seal between the connector housing and the adapter. The fiber optic connector further includes first and second separate retaining mechanism for retaining the fiber optic connector within the fiber optic adapter.
The present disclosure relates to a printed circuit board assembly, which includes: a first printed circuit board, printed with a first transmission trace; a second printed circuit board, printed with a second transmission trace; a substrate, in which, the provides a through aperture for a radio frequency connector; and a radio frequency connector, which includes an inner contact portion, an housing and an insulating part provided between the inner contact portion and housing, where the radio frequency connector is configured to be received in and pass through the through aperture, such that a first end of the inner contact portion of the radio frequency connector is electrically connected to the first transmission trace and a second end thereof is electrically connected to the second transmission trace, so that a first end of the housing of the radio frequency connector is electrically connected to a ground layer of the first printed circuit board and a second end thereof is electrically connected to the ground layer of the second printed circuit board. Thus, the printed circuit board assembly is capable of improving aspects such as shielding effects, PIN performance and/or degree of integration compared with prior art.
An antenna includes a radiating element on a forward-facing surface of an underlying reflector, and a multi-element planar broadband lens in front of and within a radio frequency (RF) transmission path of the radiating element. The broadband lens includes first lens elements having first RF characteristics and second lens elements having second RF characteristics, which are different from the first RF characteristics. The first lens elements are arranged as a plurality of the first lens elements, which are encircled by an array of the second lens elements. Each of the first lens elements includes a first LC circuit, and each of the second LC circuits includes a second LC circuit with a smaller inductance relative to the first LC circuit.
H01Q 19/13 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
H01Q 19/06 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
The present disclosure relates to a sealed closure having modular components, enhanced cable sealing, modular connection interfaces, enhanced cable anchoring and enhanced fiber management.
Systems and methods for fronthaul optimization using software defined networking are provided. In one example, a method includes receiving time period information and destination information for a time period from one or more base station entities (BSEs), each BSE configured to implement some functions for layer(s) of a wireless interface used to communicate with UEs. The method further includes determining a configuration of Ethernet switch(es) based on the destination information for the time period and topology information for the Ethernet switch(es). The Ethernet switch(es) are communicatively coupled to the BSE(s) and configured to: receive downlink fronthaul data from the BSE(s), be communicatively coupled to one or more RUs, and forward downlink fronthaul data from the one or more base station entities to the one or more RUs. The method further includes transmitting update(s) for forwarding rules to the Ethernet switch(es) based on the determined configuration for the Ethernet switch(es).
H04L 41/122 - Discovery or management of network topologies of virtualised topologies e.g. software-defined networks [SDN] or network function virtualisation [NFV]
H04L 49/351 - Switches specially adapted for specific applications for local area network [LAN], e.g. Ethernet switches
H04W 92/04 - Interfaces between hierarchically different network devices
65.
CODING APPARATUSES AND METHODS FOR A JUMPER CABLE FOR A CELLULAR COMMUNICATIONS SYSTEM
A coding apparatus is mounted on a jumper cable. The coding apparatus includes a plurality of coding symbols. A selection mechanism is part of the coding apparatus and is operable to reveal a selected plurality of coding symbols of the plurality of coding symbols. The selected plurality of coding symbols, in combination, provide a code identifying a connection location for the jumper cable.
Systems and methods for fronthaul optimization using software defined networking are provided. In one example, a method includes receiving time period information and destination information for a time period from one or more base station entities (BSEs), each BSE configured to implement some functions for layer(s) of a wireless interface used to communicate with UEs. The method further includes determining a configuration of Ethernet switch(es) based on the destination information for the time period and topology information for the Ethernet switch(es). The Ethernet switch(es) are communicatively coupled to the BSE(s) and configured to: receive downlink fronthaul data from the BSE(s), be communicatively coupled to one or more RUs, and forward downlink fronthaul data from the one or more base station entities to the one or more RUs. The method further includes transmitting update(s) for forwarding rules to the Ethernet switch(es) based on the determined configuration for the Ethernet switch(es).
H04W 40/02 - Communication route or path selection, e.g. power-based or shortest path routing
H04L 45/00 - Routing or path finding of packets in data switching networks
H04W 4/06 - Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
67.
CABLE FIXATION DEVICES AND ARRANGEMENTS WITH IMPROVED FIXATION FEATURES FOR TELECOMMUNICATIONS ENCLOSURES
The present disclosure is directed to improvements in telecommunications cable management and, more particularly, in telecommunications closures and in fixation of cables at telecommunications closures. Devices and arrangements according to the present disclosure can improve versatility of telecommunications cable closure organizers in accommodating differently configured cable fixation assemblies and devices. Features of the devices and the arrangements can improve installability, maintenance and handling of different types of telecommunications cables and optical fibers at the telecommunications closures.
Rack mounting adapters with airflow management are disclosed. In one embodiment, rack mounting adapter apparatus comprises: a housing configured to adapt an electrical component chassis subrack configured for side-to-side airflow cooling to mount to an equipment rack; and an airflow management system within the housing that converts the side-to-side airflow cooling of the electrical component chassis subrack to a front-to-back airflow configuration that intakes air from a front of the equipment rack and exhausts air to a back of the equipment rack.
A zinc PIM cap for sector frame pipe ends includes: a first end, a second end, and an annular wall that extends between the first and second ends, the wall having a rear inner diameter, a forward inner diameter smaller than the rear inner diameter, and a shelf where the rear inner diameter transitions to the forward inner diameter.
A radio node includes RF circuitry and an antenna array that includes a plurality of columns of radiating elements, the antenna array coupled to the RF circuitry. The antenna array is configured to have a discrete set of beam states in an elevation plane of the antenna array. A first subset of the discrete set of beam states is associated with the radio node being mounted in a wall mount configuration and a second subset of the discrete set of beam states is associated with radio node being mounted in a ceiling mount configuration.
H04B 7/06 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
H01Q 3/00 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
A radio node includes RF circuitry and an antenna array that includes a plurality of columns of radiating elements, the antenna array coupled to the RF circuitry. The antenna array is configured to have a discrete set of beam states in an elevation plane of the antenna array. A first subset of the discrete set of beam states is associated with the radio node being mounted in a wall mount configuration and a second subset of the discrete set of beam states is associated with radio node being mounted in a ceiling mount configuration.
H01Q 3/24 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
H01Q 5/335 - Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
72.
FIBER OPTIC CONNECTOR WITH FIELD INSTALLABLE OUTER CONNECTOR HOUSING
An optical connector includes a first sub-assembly that is factory-installed to a first end of an optical fiber and a second sub-assembly that is field-installed to the first end of the optical fiber. The optical fiber and first sub-assembly can be routed through a structure (e.g., a building) prior to installation of the second sub-assembly. The second sub-assembly interlocks with the first sub-assembly to inhibit relative axial movement therebetween. Example first sub-assemblies include a ferrule, a hub, and a strain-relief sleeve that mount to an optical fiber. Example second sub-assemblies include a mounting block; and an outer connector housing forming a plug portion.
A device for mounting a cross beam in a base station antenna is provided. The device comprises a first knob formed on a first wall of the device, the first knob comprising a first shaft portion and a first head portion. The device further comprises a second knob formed on a second wall of the device, the second wall is arranged adjacent to the first wall. the second knob comprising a second shaft portion and a second head portion. The first shaft portion of the first knob is adapted to be received in a keyhole defined in the cross beam of base station antenna. The second shaft portion of the second knob in adapted to be received in a first slot defined in a reflector of base station antenna. The device eliminates requirement of hardware elements such as bolts, washers etc to mount cross beam in base station antenna.
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
H01Q 19/17 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
An antenna includes a radiating element on a forward-facing surface of an underlying reflector, and a multi-element planar broadband lens in front of and within a radio frequency (RF) transmission path of the radiating element. The broadband lens includes first lens elements having first RF characteristics and second lens elements having second RF characteristics, which are different from the first RF characteristics. The first lens elements are arranged as a plurality of the first lens elements, which are encircled by an array of the second lens elements. Each of the first lens elements includes a first LC circuit, and each of the second LC circuits includes a second LC circuit with a smaller inductance relative to the first LC circuit.
H01Q 19/10 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
Sealants are provided, including silicone gels, compositions, and methods of making, for use in sealing telecommunications closures. The silicone gels are capable of sealing and resealing rapidly, for example, within 5 minutes after closing.
A hybrid coupler includes a 90° hybrid coupler and a first quarter wavelength conductive stub. The 90° hybrid coupler includes a coupling section, a first input transmission line that is coupled to the coupling section, a second input transmission line that is coupled to the coupling section, a first output transmission line that is coupled to the coupling section and a second output transmission line that is coupled to the coupling section. The first quarter wavelength conductive stub is coupled to the second output transmission line.
An assembly for a base station antenna includes a calibration device and at least one phase shifter mounted on the calibration device. The at least one phase shifter is electrically connected to the calibration device without a cable. The phase shifter may be mounted on the calibration device at an angle (e.g., perpendicular to the calibration device).
H01Q 3/26 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
H01Q 3/36 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture varying the phase by electrical means with variable phase-shifters
A coaxial connection device for a male coaxial connector, in the form of a stinger, resides within a housing. The housing has a port with a cylindrical wall with a conductive inner thread. The stinger has a conductive outer thread, sized to mate with the inner thread. A center conductor of the male connector enters a hole within the port. A circuit board within the housing supports a tube-like receiving chamber with an opening to receive the center conductor. The receiving chamber has a frictional member to establish an electrical connection with a sidewall of the center conductor. An insulation material surrounds the receiving chamber. A shield surrounds the insulation material. An RF tab is attached to the frictional member and communicates signals from the center conductor to elements of the circuit board. A ground tab is attached to the shield and grounds the shield to a ground plane of the circuit board.
H05K 5/02 - Casings, cabinets or drawers for electric apparatus - Details
H01R 24/50 - Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency mounted on a PCB [Printed Circuit Board]
H05K 9/00 - Screening of apparatus or components against electric or magnetic fields
H05K 5/00 - Casings, cabinets or drawers for electric apparatus
79.
SYSTEMS AND METHODS OF ORCHESTRATING A VIRTUALIZED BASE STATION
Systems and methods for orchestrating a virtualized 5G gNB are provided. In one example, a system for orchestrating wireless service includes a scalable cloud environment configured to implement a base station using a plurality of virtualized base station entities. Each virtualized base station entity of the plurality of virtualized base station entities configured to implement at least some functions for one or more layers of a wireless interface used to communicate with UEs. The scalable cloud environment further configured to implement a service orchestration tool including one or more interfaces configured to receive common configuration parameters that are applicable to multiple sites of an operator and to receive site-specific configuration parameters that are unique to respective sites of the operator. The service orchestration tool configured to automatically generate deployment files for the plurality of virtualized base station entities based on the common configuration parameters and the site-specific configuration parameters.
Systems and methods for orchestrating a virtualized 5G gNB are provided. In one example, a system for orchestrating wireless service includes a scalable cloud environment configured to implement a base station using a plurality of virtualized base station entities. Each virtualized base station entity of the plurality of virtualized base station entities configured to implement at least some functions for one or more layers of a wireless interface used to communicate with UEs. The scalable cloud environment further configured to implement a service orchestration tool including one or more interfaces configured to receive common configuration parameters that are applicable to multiple sites of an operator and to receive site-specific configuration parameters that are unique to respective sites of the operator. The service orchestration tool configured to automatically generate deployment files for the plurality of virtualized base station entities based on the common configuration parameters and the site-specific configuration parameters.
A termination panel is configured to receive a single row of cassettes with each cassette spanning a majority of an interior height of the termination panel. Each cassettes carries multiple columns of front port members. Either the front port members or retainers of the front port members are flush with the cassette. Retainers of the rear port members also may be flush with the cassette. The cassette includes an internal fiber manager to organize fibers extending internally through the cassette.
A telecommunications patch panel system (10) including a plurality of multiport telecommunications bezel assemblies (200) installed within a panel frame (100) is presented. The bezel assemblies (200) are formed from cooperating first and second frame parts (210, 240) to define a plurality of jack receptacle openings (202). In one example, the plurality of jack receptacles (202) are arranged in a two-row array. The first and second frame parts (210, 240) also retain a central bonding strip (290) having a plurality of grounding contact elements (292, 293). The grounding contact elements (292, 293) ground the jack modules (120) that are installed within the bezel assembly jack receptacle openings (202). Where a two-row array of jack receptacle openings (202) is provided, the central bonding strip (290) can be configured to extend between the rows. The central bonding strip (290) can provide grounding for multiple bezel assemblies (200).
The present disclosure describes monopole platform assembly. The platform assembly includes a frame, the frame including an elongate, hollow main support member of rectangular cross-section, and a plurality of elongate, hollow auxiliary support members of rectangular cross-section attached orthogonally to the main support member; a mounting plate coupled to an end of the main support member; at least two grating edge members coupled to the auxiliary support members; and a grating, the grating being supported by the two grating edge members, the auxiliary support members, and the main support member. The opposing ends of each auxiliary support member extend a distance outwardly passed the grating edge members such that the extended ends of the auxiliary support members are positioned to support a horizontal pipe member. The extended ends of the auxiliary support members each include a feature configured to enable fixing of the horizontal pipe member thereto. Additional platform assemblies are described herein.
E04G 3/24 - Scaffolds essentially supported by building constructions, e.g. adjustable in height specially adapted for particular parts of buildings or for buildings of particular shape, e.g. chimney stacks or pylons
E04G 7/02 - Connections between parts of the scaffold with separate coupling elements
H01Q 1/44 - ANTENNAS, i.e. RADIO AERIALS - Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna
H01Q 9/30 - Resonant antennas with feed to end of elongated active element, e.g. unipole
84.
CHANNEL RECOMMENDATIONS FOR NETWORK ELEMENTS IN A SHARED SPECTRUM COMMUNICATION NETWORK
A method for selecting a channel for a network element in a shared spectrum communication system is provided. The method comprises identifying a plurality of candidate channels of a frequency band of the shared spectrum communication system. For each of the plurality of candidate channels, the method further comprises determining at least one transmit power estimate based on at least one available interference margin. The at least one available interference margin is based on a power allocation protocol for the shared spectrum communication system. The method further comprises scoring each of the plurality of candidate channels based on the at least one transmit power estimate. The method further comprises ranking the plurality of candidate channels based on the scores for each of the plurality of candidate channels. The method further comprises selecting one of the plurality of candidate channels based on the ranking of the plurality of candidate channels.
A cable reel includes features to allow disassembly, so that empty reels made be conveniently stored and shipped. The cable reel includes a first generally circular flange. A generally cylindrical hub has a first end removably attached to the first flange by a first twist on / twist off arrangement, and an opposite, second end removably attached to a second generally circular flange by a second twist on / twist off arrangement. The hub may be formed of at least two parts which are removably connected to each other by tongue and channel arrangements and may be disassembled when the first and second flanges are removed from the hub.
The present disclosure describes methods and apparatus for real-time physical layer processing in distributed units (DU). A downlink data processing method includes receiving a downlink transport block at the physical layer and generating a plurality of sub-transport blocks mapped to a plurality of symbols by processing the received transport block. The method further includes processing the plurality of sub-transport blocks sequentially using at least one transfer function to generate the plurality of symbols which are then transmitted to a radio unit (RU) for transmission to a user equipment (UE). An uplink data processing method includes generating an uplink transport block by processing a plurality of symbols received at the DU from the RU. The plurality of symbols are processed using at least one uplink transfer function. A downlink/uplink transfer function is functionally equivalent to a plurality of downlink/uplink sequential signal processing modules.
Electrical grounding assemblies for electrically grounding cables in cable closures. A grounding unit of the grounding assembly can serve as a common ground connection to multiple cables. The grounding unit includes mounting features that allow it to be easily mounted and unmounted from a slotted base plate positioned within the cable closure.
H01R 11/05 - Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating characterised by the type of the connecting locations on the individual element or by the type of the connections between the connecting locations and the conductive members the connecting locations having different types of direct connections
G02B 6/44 - Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
H01R 4/66 - Connections with the terrestrial mass, e.g. earth plate, earth pin
Processing operations allow optical fibers to be efficiently installed in ferrules. An optical fiber holding device includes a clip having a length that extends between a first end and a second end. The clip includes a base and a cover that each extend between the first end and second ends. The clip includes a fiber passage that located between the cover and the base that extends between the first and second ends. The clip defines a ferrule boot receptacle at the first end.
A fiber optic system includes an enclosure and a mounting bracket that cooperate to define a mechanical coupling interface including a slide interface and a snap-fit interface. The slide interface allows the enclosure to mount to the bracket along a first dimension and retains the enclosure at the bracket along second and third dimensions that are transverse to the first dimension and transverse to each other. The snap-fit interface, once triggered, retains the enclosure at the bracket along the first dimension.
F16B 2/08 - Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action using bands
H02G 1/04 - Methods or apparatus specially adapted for installing, maintaining, repairing, or dismantling electric cables or lines for overhead lines or cables for mounting or stretching
A base station antenna comprises a reflector, a plurality of first radiating elements arranged in a first column that extends in a vertical direction, a plurality of second radiating element arranged in a second column that extends in the vertical direction, and a plurality of parasitic elements, where the parasitic elements are arranged around the first radiating elements and/or second radiating elements. Each parasitic element is configured as a rod-shaped metal part, where a longitudinal axis of the rod-shaped metal part extends at an angle of between 70° to 110° with respect to a plane defined by the reflector, and the parasitic elements are positioned in front of the reflector in and are electrically floating with respect to the reflector.
H01Q 21/26 - Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
H01Q 19/10 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
H01Q 1/52 - Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
A communications connection system includes an adapter module defining at least first and second ports and at least one media reading interface mounted at one of the ports. The first adapter module is configured to receive a fiber optic connector at each port. Some type of connectors may be formed as duplex connector arrangements. Some types of adapters may include ports without media reading interfaces. Some types of media reading interfaces include contact members having three contact sections.
A fiber optic cable distribution box has an interface compartment for interfacing a first set of fibers when routed inside the compartment, with a second set of fibers associated with a fiber optic cable that is routed to the box. A drum region is disposed beneath the interface compartment. The drum region includes a cylindrical wall for supporting a fiber optic cable wound about the wall. The drum region is formed so that the box can turn about the axis of the cylindrical wall when a cable is paid out from the drum region. The interface compartment and the drum region are constructed so that the first set of fibers inside the interface compartment, originate from an inside end portion of the cable wound on the drum region.
The present disclosure relates to an optical fiber processing apparatus. The optical fiber processing apparatus comprising: a fixing module for fixing an optical fiber; and a stripping module for stripping layers outside an uncoated bare fiber of the optical fiber, The stripping module may comprise a stripping member which comprises two bodies arranged in parallel. Each body is provided with two or more kinds of blades suitable for stripping different sizes of layers outside the uncoated bare fiber, and each body is configured to be rotatable about its longitudinal axis to select different blades among the two or more kinds of blades, thereby enabling the stripping member to strip two or more sizes of layers outside the uncoated bare fiber.
A radiating element comprises a first radiator having first and second dipole arms that each include a narrowed arm segment and a widened arm segment and a second radiator having third and fourth dipole arms that each include a narrowed arm segment and a widened arm segment, a first feed line configured to feed a first polarized RF signal to the first through fourth dipole arms, and a second feed line configured to feed a second polarized RF signal to the first through fourth dipole arms.
H01Q 21/26 - Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
H01Q 1/36 - Structural form of radiating elements, e.g. cone, spiral, umbrella
H01Q 5/42 - Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
A mounting assembly for a base station antenna includes a pair of clamp brackets, a mounting bracket configured to be connected to the base station antenna and a lead screw sub-assembly. The lead screw sub-assembly is adapted to pivotably couple the mounting bracket to the pair of clamp brackets. The lead screw sub-assembly comprising a lead screw engaged with at least one clamp bracket of pair of clamp brackets and an adjustment bracket coupled at a first end of lead screw. The adjustment bracket is configured to allow a pivotal movement of mounting bracket with respect to pair of clamp brackets. The lead screw is rotatable within the at least one clamp bracket for adjusting a tilt angle of the base station antenna. The antenna utilizes a single mounting assembly to facilitate mounting of the antenna to the support structure.
H01Q 3/06 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation over a restricted angle
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
The present invention relates to an antenna assembly. The antenna assembly comprises a feed board, a backplane, and a calibration board. A plurality of radiating elements are mounted on the feed board and extend forwardly from the feed board. The feed board is mounted on a first major surface of the backplane, and the calibration board is mounted on a second major surface of the backplane opposite the first major surface. The antenna assembly further includes a conductive structure, which extends through openings in at least two of the feed board, the backplane and the calibration board so as to electrically connect a first transmission line on the calibration board with a second transmission line on the feed board. The antenna assembly according to embodiments of the present invention can also achieve high integration and miniaturization of the overall antenna construction. Further, the present invention relates to a base station antenna comprises an antenna assembly.
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support
H01Q 1/42 - Housings not intimately mechanically associated with radiating elements, e.g. radome
H01Q 3/26 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture
H04B 17/12 - Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of amplitude or phase
An antenna assembly includes: a plurality of antenna-radio units, each of the antenna-radio units comprising an antenna and a radio transceiver in an integrated unit, each antenna having an external face; and a mounting assembly comprising a foundation, a cap and a spine, the foundation being mounted to a lower end of the spine and the cap mounted to an upper end of the spine. The antenna-radio units are mounted at circumferentially equally spaced locations between the foundation and the cap, with their respective external faces facing radially outwardly. The assembly also includes a plurality of spacers, each spacer located between two adjacent antenna-radio units, and each antenna-radio unit between located between two adjacent spacers, each of the spacers including an arcuate external surface. The external faces of the antennas and the external surfaces of the spacers generally define a cylinder.
H04B 1/38 - Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
H01Q 23/00 - Antennas with active circuits or circuit elements integrated within them or attached to them
99.
ULTRASONIC WELD INTERCONNECTION COAXIAL CONNECTOR AND INTERCONNECTION WITH COAXIAL CABLE
A coaxial connector for interconnection with a coaxial cable with a solid outer conductor by ultrasonic welding is provided with a monolithic connector body with a bore. An annular flare seat is angled radially outward from the bore toward a connector end of the connector, the annular flare seat open to the connector end of the connector. An inner conductor cap is provided for interconnection with an inner conductor of the coaxial cable by ultrasonic welding. The ultrasonic welding of each of the inner and outer conductor interconnections may be performed via inner conductor and outer conductor sonotrodes which are coaxial with one another, without requiring the cable and or connector to be removed from their fixture.
H01R 9/05 - Connectors arranged to contact a plurality of the conductors of a multiconductor cable for coaxial cables
H01R 43/02 - Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
B23K 20/10 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
H01R 24/40 - Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency
100.
METHODS AND APPARATUSES FOR ASSEMBLING RADIATING STRUCTURES FOR A BASE STATION ANTENNA
A radiating structure assembly system includes a movable conveyor that supports fixtures. Work stations are spaced about the conveyor such that the fixtures are moved sequentially to position the fixtures at the plurality of work stations. A first work station includes a loading assembly for loading the radiating elements on the fixtures. A second work station includes a first automated vertical assembly machine for mounting a first printed circuit board to the radiating element. A third work station includes a second automated vertical assembly machine for mounting a second printed circuit board to the radiating element to create a dipole assembly. A holding device is movable with the conveyor aligns and supports the first and second printed circuit boards relative to the radiating element. A fourth work station includes an unloading assembly for removing the dipole assembly from the conveyor.
B23P 21/00 - Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
B23K 37/047 - Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the other main groups of this subclass for holding or positioning work moving work to adjust its position between soldering, welding or cutting steps
B23Q 7/14 - Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting co-ordinated in production lines