The invention relates to a preparation method for preparing cooling water which aims to reproduce a target cooling water by using at least two aqueous solutions selected from an industrial water solution, a cationic ion exchanger-treated water solution, a demineralised water solution and an aqueous solution containing Mg2+ and Ca2+ ions. The invention also relates to a casting method using the cooling water obtained according to the preparation method and to a casting device (100) comprising the preparation device.
B22D 11/00 - Continuous casting of metals, i.e. casting in indefinite lengths
B22D 11/049 - Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting
B22D 11/124 - Accessories for subsequent treating or working cast stock in situ for cooling
B22D 11/22 - Controlling or regulating processes or operations for cooling cast stock or mould
C02F 9/00 - Multistage treatment of water, waste water or sewage
C02F 1/20 - Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
C02F 1/42 - Treatment of water, waste water, or sewage by ion-exchange
C02F 1/44 - Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
C02F 1/66 - Treatment of water, waste water, or sewage pH adjustment
C02F 1/68 - Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
C02F 103/02 - Non-contaminated water, e.g. for industrial water supply
C02F 103/16 - Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
2.
METHOD FOR PRODUCING AN ALUMINIUM ALLOY PART IMPLEMENTING AN ADDITIVE MANUFACTURING TECHNIQUE WITH PREHEATING
Disclosed is a method for producing a part (20) comprising a formation of successive metal layers (201...20n), said layers being stacked on each other and each being formed by depositing an aluminium alloy (15), the aluminium alloy being subjected to an input of energy so as to become molten and, on solidifying, to form said layer, the method being characterised in that: - during production of the part, prior to the formation of each layer, the aluminium alloy powder is maintained at a temperature no lower than 25°C and below 160°C or between 300°C and 500°C; - the method comprises post-fabrication heat treatment applied to the part at a temperature between 300°C and 400°C; - post-fabrication heat treatment begins with an increase in temperature, the increase being implemented at a rate higher than 5°C per minute; - the method does not comprise dipping in solution followed by hardening.
1nn), each layer being produced by depositing a metal (25) called filler metal, and said method being characterized in that the part has a specific grain structure. The invention also relates to a part obtained by means of this method and an alternative method. The alloy used in the additive manufacturing method of the invention makes it possible to obtain parts with exceptional properties.
The invention relates to a method for producing a part, comprising the production of successive solid metallic layers (201…20n), each layer being produced by depositing a metal (25) called filler metal, said filler metal consisting of an aluminium alloy comprising at least the following alloying elements: - Zr, in a mass fraction of 0,60 to 1.40%; - Mn, in a mass fraction of 2.00 to 5.00 %; - Ni, in a mass fraction of 1.00 to 5.00 %; - Cu, in a mass fraction of 1.00 to 5.00%. The invention also relates to a part obtained by means of this method. The alloy used in the additive manufacturing method of the invention makes it possible to obtain parts with exceptional properties.
1nn) that are stacked on one another, each layer being formed by depositing a filler metal (15, 25), energy being supplied to the filler metal in such a way that the filler metal melts and, upon solidification, constitutes said layer, the process being characterized in that the filler metal (15, 25) is an aluminum alloy comprising the following alloying elements (in wt%): - Mg: 2.0%-5.0%; - Zr: 0.5% - 1.0%; - Fe: 0.6% - 3.0%; - optionally Zr: ≤ 0.5%; - optionally Cu: ≤ 0.5%; - other alloying elements: ≤ 1.0% individually and ≤ 4.0% overall; - impurities: < 0.05 % individually and < 0.15 % overall; - the remainder being aluminum.
1nn) placed on top of one another, each layer being formed by depositing a filler metal (15, 25) to which energy is supplied in such a way that it melts and, upon solidifying, constitutes said layer, the process being characterized in that the filler metal (15, 25) is an aluminum alloy comprising the following alloying elements (in wt %): -Ni: > 3% and ≤ 7%; - Fe: 0% -4%; - optionally Zr: ≤ 0.5%; - optionally Si: ≤ 0.5%; - optionally Cu: ≤ 1%; - optionally Mg: ≤ 0.5%, - other alloying elements: < 0.1 % individually, and < 0.5 % overall; - impurities: < 0.05 % individually, and < 0,15 % overall; the remainder being aluminum.
C22F 1/04 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
1nn) superposed on one another, each layer being formed by depositing a filler metal (15, 25), energy being supplied to the filler metal in such a way that it melts and, upon solidifcation, constitutes said layer, the method being characterized in that the filler metal (15, 25) is an aluminum alloy comprising the following alloying elements (in wt %): Zr: 0.5% to 2.5%, preferably, according to a first variant, 0.8 to 2.5%, more preferably 1 to 2.5%, even more preferably 1.3 to 2.5%; or preferably, according to a second variant, 0.5 to 2%, more preferably 0.6 to 1.8%, more preferably 0.6 to 1.6%, more preferably 0.7 to 1.5%, more preferably 0.8 to 1.5%, more preferably 0.9 to 1.5%, even more preferably 1 to 1.4%; Fe: 0% to 3%, preferably 0.5 to 2.5%; preferably, according to a first variant, 0.8 to 2.5%, preferably 0.8 to 2%, more preferably 0.8 to 1.2%; or preferably, according to a second variant, 1.5 to 2.5%, preferably 1.6 to 2.4%, more preferably 1.7 to 2.3%; optionally Si: ≤ 0.3%, preferably ≤ 0.2%, more preferably ≤ 0.1%; optionally Cu: ≤ 0.5%, preferably 0.05 to 0.5%, preferably 0.1 to 0.4%; optionally Mg: ≤ 0.2%, preferably ≤ 0.1%, preferably < 0.05%; other alloying elements: < 0.1% individually, and in total < 0.5%; impurities: < 0.05% individually, and in total < 0.15%; the remainder being aluminum.
C22F 1/04 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
8.
METHOD FOR MANUFACTURING A PART FROM ALUMINIUM ALLOY, THE ALLOY COMPRISING AT LEAST ZIRCONIUM AND MAGNESIUM
1nn), superposed on one another, each layer being formed by depositing a filling metal, the filling metal being subjected to an input of energy so as to melt and to constitute the layer, by solidifying, the method being characterised in that the filling metal (15, 35) is an aluminium alloy comprising the following alloy elements, in percentages by weight: Mg: 0%-6%; Zr: 0.7%-2.5%, preferably according to a first variant >1% and <2.5%; or preferably according to a second variant 0.7-2%; or even 0.7-1.6%; or even 0.7-1.4%; or even 0.8-1.4%; or even 0.8-1.2%; at least one alloy element chosen from Fe, Cu, Mn, Ni and/or La: at least 0.1%, preferably at least 0.25%, more preferably at least 0.5% per element; impurities: <0.05% individually, and preferably <0.15% in total.
B33Y 70/00 - Materials specially adapted for additive manufacturing
B33Y 80/00 - Products made by additive manufacturing
C22F 1/04 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
C22F 1/047 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
1nn) superposed on one another, each layer being formed by depositing a filler metal (15, 25), energy being supplied to the filler metal in such a way that it melts and, upon solidifcation, constitutes said layer, the method being characterized in that the filler metal (15, 25) is an aluminium alloy comprising the following alloy elements (in wt %): -Zr: 0.5 to 2.5%, preferably, according to a first variant, 0.8 to 2.5%, more preferably 1 to 2.5%, even more preferably 1.3 to 2.5%; or preferably, according to a second variant, 0.5 to 2%, more preferably 0.6 to 1.8%, more preferably 0.6 to 1.6%, more preferably 0.7 to 1.5%, more preferably 0.8 to 1.5%, more preferably 0.9 to 1.5%, even more preferably 1 to 1.4%; - Fe: 0% to 3%, preferably 0.5 to 2.5%; preferably, according to a first variant, 0.8 to 2.5%, preferably 0.8 to 2%, more preferably 0.8 to 1.2%; or preferably, according to a second variant, 1.5 to 2.5%, preferably 1.6 to 2.4%, more preferably 1.7 to 2.3%; - optionally Si: ≤ 0.3%, preferably < 0.2%, more preferably < 0.1%; - optionally Cu: ≤ 0.5%, preferably 0.05 to 0.5%, preferably 0.1 to 0.4%; - optionally Mg: ≤ 0.2%, preferably < 0.1%, preferably < 0.05%; - other alloying elements: < 0.1% individually, and in total < 0.5%; - impurities: < 0,05 % individually, and in total < 0,15 %; the remainder being aluminium.
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
B33Y 70/00 - Materials specially adapted for additive manufacturing
B33Y 80/00 - Products made by additive manufacturing
C22F 1/04 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
1n1nn). The process is characterized in that the solder (25) is an aluminum alloy comprising at least the following alloy elements: - Fe, in a weight fraction of from 1 to 10 %, preferably from 2 to 8 %, more preferably from 2 to 5 %, even more preferably from 2 to 3.5 %; - Cr, in a weight fraction of from 1 to 10 %, preferably from 2 to 7 %, more preferably from 2 to 4 %; - optionally Zr and/or Hf and/or Er and/or Sc and/or Ti, in a weight fraction of up to 4 %, preferably from 0.5 to 4 %, more preferably from 1 to 3 %, even more preferably from 1 to 2 % each, and in a weight fraction of less than or equal to 4 %, preferably less than or equal to 3 %, more preferably less than or equal to 2 % in total; - Si, in a weight fraction of less than or equal to 1 %, preferably less than or equal to 0.5 %. The invention also relates to a part obtained by this process. The alloy used in the additive manufacturing process according to the invention makes it possible to obtain parts having remarkable features.
1n1nn). The process is characterized in that the solder (25) is an aluminum alloy comprising at least the following alloy elements: - Fe, in a weight fraction of from 1 to 3.7 %, preferably from 1 to 3.6 %; - Zr and/or Hf and/or Er and/or Sc and/or Ti, in a weight fraction of from 0.5 to 4 %, preferably from 1 to 4 %, more preferably from 1.5 to 3.5 %, even more preferably from 1.5 to 2 % each, and in a weight fraction of less than or equal to 4 %, preferably less than or equal to 3 %, more preferably less than or equal to 2 % in total; - Si, in a weight fraction of from 0 to 4 %, preferably from 0.5 to 3 %; - V, in a weight fraction of from 0 to 4 %, preferably from 0.5 to 3 %. The invention also relates to a part obtained by this process. The alloy used in the additive manufacturing process according to the invention makes it possible to obtain parts having remarkable features.
ii...20n), superimposed on one another, wherein each layer is formed by the deposition of a filler metal (15, 25), the filler metal being subjected to an input of energy so as to melt and to constitute said layer by solidifying, the process being characterized in that the filler metal (15, 25) is an aluminium alloy comprising the following alloy elements (% by weight): - Fe: 2% to 8%, and preferably 2% to 6%, more preferentially 3% to 5%; - optionally Zr: 0.5% to 2.5% or 0.5% to 2% or 0.7% to 1.5%; - optionally Si: < 1 %, or even <0.5% or even < 0.2% or even < 0.05%; - optionally Cu: ≤ 0.5%, or even < 0.2%, or even < 0.05%; - optionally Mg: ≤ 0.2%, preferably ≤ 0.1%, preferably < 0.05%; - optionally other alloy elements < 0.1% individually and in total < 0.5%; - impurities: < 0.05%, or even < 0.01% individually, and in total < 0.15%; remainder aluminium.≤
1nMM), each layer being formed by the deposit of a filler metal (15, 25), the filler metal being subjected to a supply of energy so as to become molten and to constitute, upon solidifying, said layer, the process being characterised in that the filler metal (15, 25) is an aluminium alloy comprising the following alloy elements (% by weight): Cu: 5% - 8%; Mg: 4% - 8%; optionally Si: 0% - 8 %; optionally Zn: 0% - 10%; and other elements: < 2% individually, the other elements comprising: Sc and/or Fe and/or Mn and/or Ti and/or Zr and/or V and/or Cr and/or Ni; impurities: < 0.05% individually, and in total < 0.15%; the remainder being aluminium.
C22C 21/06 - Alloys based on aluminium with magnesium as the next major constituent
C22C 21/16 - Alloys based on aluminium with copper as the next major constituent with magnesium
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
1n1nn) is formed, the process being characterized in that the filling metal (25) is an aluminum alloy comprising at least the following alloying elements: - Ni, in a moiety of 1 to 6%, preferably 1 to 5.5%, more preferably 2 to 5.5 %; - Cr, in a moiety of 1 to 7 %, preferably 3 to 6.5 %; - Zr, in a moiety of 0.5 to 4 %, preferably 1 to 3%; - Fe, in a moiety of no more than 1%, preferably between 0.05 and 0.5%, more preferably between 0.1 and 0.3%; - Si, in a moiety of no more than 1 %, preferably no more than 0.5 %. The invention also relates to a part obtained by said process. The alloy used in the additive manufacturing process according to the invention makes it possible to obtain parts with remarkable features.
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
C22F 1/04 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
i.ninn), the process being characterized in that the solder (25) is an aluminum alloy comprising at least the following alloy elements: - Si, in a weight fraction of from 0 to 4%, preferably from 0.5% to 4%, more preferentially from 1% to 4%, and more preferentially still from 1% to 3%; - Fe, in a weight fraction of from 1% to 15%, preferably from 2% to 10%; - V, in a weight fraction of from 0 to 5%, preferably from 0.5% to 5%, more preferentially from 1% to 5%, and more preferentially still from 1% to 3%; at least one element chosen from: Ni, La and/or Co, in a weight fraction of from 0.5% to 15%, preferably from 1% to 10%, more preferentially from 3% to 8% each for Ni and Co, in a weight fraction of from 1% to 10%, preferably from 3% to 8% for La, and in a weight fraction of less than or equal to 15%, preferably less than or equal to 12% in total. The invention also relates to a part obtained by this process. The alloy used in the additive manufacturing process according to the invention makes it possible to obtain parts with remarkable characteristics.
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
C22F 1/04 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
B33Y 70/00 - Materials specially adapted for additive manufacturing
B22F 7/02 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite layers
16.
PROCESS FOR MANUFACTURING AN ALUMINUM-CHROMIUM ALLOY PART
1nM)1nn) is formed, the process being characterized in that the filling metal (25) is an aluminum alloy comprising at least the following alloying elements: - 2 to 10% by weight of Cr; - 0 to 5% by weight, preferably 0.5 to 5% by weight, of Zr. The invention also relates to a part obtained by this process. The alloy used in the additive manufacturing process according to the invention makes it possible to obtain parts having remarkable mechanical properties, while obtaining a process that has an advantageous output.
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
B22F 3/24 - After-treatment of workpieces or articles
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
C21D 1/18 - Hardening; Quenching with or without subsequent tempering
C21D 1/25 - Hardening, combined with annealing between 300 °C and 600 °C, i.e. heat refining ("Vergüten")
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
C22F 1/04 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
1n1nn), the process being characterised in that the filler metal (25) is an aluminium alloy comprising at least the following alloying elements: Ni, in a proportion by mass of 1 to 6%, preferably 1 to 5%, more preferably 2 to 4%; Mn, in a proportion by mass of 1 to 7%, preferably 1 to 6%, more preferably 2 to 5%; Zr, in a proportion by mass of 0.5 t 4%, preferably 1 to 3%; Fe, in a proportion by mass of maximum 1%, preferably 0.05 to 0.5%, more preferably 0.1 to 0.3%; Si, in a proportion by mass of maximum 1%, preferably of maximum 0.5%. The invention also concerns a part obtained by this process. The alloy used in the additive manufacturing process according to the invention makes it possible to obtain parts having remarkable properties.
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
C22C 21/12 - Alloys based on aluminium with copper as the next major constituent
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
C22F 1/04 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
B33Y 70/00 - Materials specially adapted for additive manufacturing
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
The invention relates to a process for manufacturing a part (20) comprising a formation of successive solid metal layers (201…20n), superposed on one another, each layer describing a pattern defined from a numerical model (M), each layer being formed by the deposition of a metal (25), referred to as filling metal, the filling metal being subjected to an input of energy so as to melt and form, by solidifying, said layer, in which the filling metal takes the form of a powder (25), the exposure of which to an energy beam (32) results in melting followed by a solidification so as to form a solid layer (201 …20n), the process being characterized in that the filling metal (25) is an aluminum alloy comprising at least the following alloying elements: Si, in a weight fraction of from 4% to 20%; Fe, in a weight fraction of from 2% to 15%. The invention also relates to a part obtained by this process. The alloy used in the additive manufacturing process according to the invention makes it possible to obtain parts having remarkable mechanical performance, while obtaining a process that has an advantageous productivity.
The present invention relates to a process for manufacturing a part (20) comprising a formation of successive metal layers (201…20n), superimposed on one another, each layer describing a pattern defined from a numerical model, each layer being formed by the deposition of a metal (15, 25), referred to as filling metal, the filling metal being subjected, at a pressure greater than 0.5 times the atmospheric pressure, to an input of energy so as to melt and constitute said layer, the process being characterized in that the filling metal is an aluminium alloy of the 2xxx series, comprising the following alloying elements: - Cu, in a weight fraction of between 3% and 7%; - Mg, in a weight fraction of between 0.1% and 0.8%; - at least one element, or at least two elements or even at least three elements chosen from: • Mn, in a weight fraction of between 0.1% and 2%, preferably of at most 1% and in a preferred manner of at most 0.8%; • Ti, in a weight fraction of between 0.01% and 2%, preferably of at most 1% and in a preferred manner of at most 0.3%; • V, in a weight fraction of between 0.05% and 2%, preferably of at most 1% and in the preferred manner of at most 0.3%; • Zr, in a weight fraction of between 0.05% and 2%, preferably of at most 1% and in a preferred manner of at most 0.3%; • Cr, in a weight fraction of between 0.05% and 2%, preferably of at most 1% and in the preferred manner of at most 0.3%; and - optionally at least one element, or at least two elements or even at least three elements chosen from: • Ag, in a weight fraction of between 0.1% and 0.8%; • Li, in a weight fraction of between 0.1% and 2%, preferably 0.5% and 1.5%; • Zn, in a weight fraction of between 0.1% and 0.8%.
The invention relates to a fluid device (1) comprising a housing (2) provided with a channel (3) defined by walls, one of which being a first main wall (10), the channel (3) extending between two openings, a so-called inlet (4A) and a so-called outlet (4B), and an open-pored porous medium in a metal material, a so-called metal foam (30), arranged in the channel (3) between said inlet (4A) and outlet (4B). The metal foam (30) and said first main wall (10) are made of a single component and consist of the same material, and the metal foam (30) has a random spatial distribution of the pores.