An apparatus, system and method for providing an o-ring gripper. The embodiments may include an end effector, comprising: a housing; a movable stripping bar mechanically associated with the housing; a plurality of modules at least partially within the housing; and at least two interleaved angular jaws, wherein each of the at least two jaws provides at least two of the at least four fingers, and wherein an increase in angle between the at least two jaws effects an expansion of an area bounded by each of the at least four fingers; wherein a movement of the stripper bar distally from the housing strips the o-ring from the retention groove for placement.
Polymer powders useful for additive manufacturing may be made by contacting carbon dioxide and a crystallizable polymer having at least one carbonyl, sulfur oxide or sulfone group; permeating the carbon dioxide into the polymer for a crystallizing time sufficient to induce crystallization forming an induced crystalized polymer; removing the carbon dioxide; and forming induced crystalized polymer particles having a D90 particle size of at most 300 micrometers and average particle size of 1 micrometer to 100 micrometers equivalent spherical diameter. The carbon dioxide is desirably supercritical carbon dioxide for at least a portion of the crystallizing time. The polymer powders upon heating during additive manufacturing may result in a polymer having less crystallinity or become amorphous.
B29C 64/00 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
C08L 29/00 - Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal ; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
C08L 69/00 - Compositions of polycarbonates; Compositions of derivatives of polycarbonates
C08L 77/00 - Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
A self-correcting wave soldering machine for soldering a RGB in an SMT manufacturing system. The wave soldering machine includes at least one thermal infrared camera that generates thermal images of the RGB so as to provide thermal imaging processing to monitor, characterize and predict processing temperatures. The wave soldering machine generates a heat map using the thermal images and compares the heat map to a thermal gradient to provide real time profiling by digitally connecting it to heating and other mechanically controlled systems, such as flux dispensing, conveyor speed and parallelism of the wave soldering machine.
G01N 21/956 - Inspecting patterns on the surface of objects
G01N 23/083 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
A router for separating RGBs from a panel in an SMT manufacturing system. The router includes a router bit and at least one camera that generates images of the panel. The router monitors and corrects a cutting process of the router to ensure that the router is following a predetermined cut path and is not generating excess debris. If the router deviates the camera will initiate requisite actions to self correct.
G01N 21/956 - Inspecting patterns on the surface of objects
H05K 3/12 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using printing techniques to apply the conductive material
G01N 23/083 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
A reflow soldering oven for soldering and/or bonding component leads both electrically and mechanically to pads on a PCB in an SMT manufacturing system. The soldering oven includes at least one thermal infrared camera that generates thermal images of the PCB to provide thermal imaging processing to monitor and correct temperature deviations in real time. The oven generates a heat map using the thermal images and compares the heat map to a thermal gradient to provide real time profiling and to initiate changes like temperature control or the oven belt-speed monitoring to offer self-correcting capabilities.
G01N 21/956 - Inspecting patterns on the surface of objects
H05K 3/12 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using printing techniques to apply the conductive material
G01N 23/083 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
A router test panel including a plurality of strategically drilled holes designed to statistically determine X and Y repeatability and predictability for router cuts. The number of drilled holes can be 40 holes and the test panel can be optically compared to a real panel.
G01N 21/956 - Inspecting patterns on the surface of objects
H05K 3/12 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using printing techniques to apply the conductive material
G01N 23/083 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
7.
OVER-THE-AIR PRODUCT VERIFICATION TEST USING ANTENNA AND REFLECTOR ARRAYS
Systems and methods for performing over-the-air verification tests for radar. A test chamber includes multiple sections, the sections separated by metal walls. The inner surfaces of the metal walls include absorbers. Each section includes defined testing devices to verify a defined function of a radar device. The defined testing devices can include a horn antenna and corner reflector. Each section has a defined number of rows. Each row has a defined testing device. Test fixtures hold a defined number of the radar devices in correspondence with the defined number of rows. The defined number of the radar devices placed on the test fixture via a placement device. A positioner to align under the sections and move the test fixtures through the sections of the test chamber and a controller to control operation of the positioner, the radar devices, and the placement device to execute over-the-air verification of the radar devices.
H01Q 17/00 - Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
H01Q 19/13 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
G01N 22/00 - Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
8.
APPARATUS, ENGINE, SYSTEM AND METHOD FOR PREDICTIVE ANALYTICS IN A MANUFACTURING SYSTEM
A predictive analytics apparatus, engine, system and method capable of providing real time analytics in a manufacturing system. The apparatus, engine, system and method may include a data input capable of receiving raw data output from at least one machine operable to effect the manufacturing system embodiments, and a processor associated with a computing memory and suitable for executing code from the computing memory. The code may comprise an adaptor capable of pushing the received raw data to one or more databases to processed data; an extractor capable of extracting the processed data from the one or more databases; predictive analytics capable of receiving the extracted processed data and applying thereto at least one predictive model comprised of target data for the at least one machine, and capable of providing feedback to the at least one machine to modify performance of the at least one machine based on the application of the at least one predictive model; and a visualizer capable of providing at least a visualization of the feedback and of the performance.
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control (DNC), flexible manufacturing systems (FMS), integrated manufacturing systems (IMS), computer integrated manufacturing (CIM)
9.
BURIED PATCH ANTENNA FOR LOW COST MMWAVE PHASED ARRAY DESIGN
A mmWave phased array antenna that has particular application to be used in a 5G radio. The antenna includes a PCB structure having a plurality of dielectric layers and conductive layers. A beamforming IC is formed on one side of the PCB structure and a patch antenna radiating element is formed at an opposite side of the PCB structure from the beamforming IC, where one of the dielectric layers is formed over the radiating element so that the radiating element is buried.
H01L 27/10 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
H01Q 3/26 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture
A mmWave antenna that has particular application to be used in a 5G radio. The antenna includes a RGB structure having a plurality of layers. The RGB structure includes a first via hole formed into the layers through one side of the RGB structure and filled with a first via and a second via hole formed into the layers through an opposite side of the RGB structure and filled with a second via, where the first and second vias are electrically coupled by an interconnect. Prepreg buildup layers are formed on the one side of the PCB structure and prepreg buildup layers are formed on the opposite side of the PCB structure. A beamforming IC is formed on the prepreg buildup layers on the one side of the PCB structure and an antenna radiating element is formed on the prepreg buildup layers on the opposite side of the PCB structure.
H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support
H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
H01Q 3/00 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
11.
HORN APERTURE FOR A SIMPLIFIED MMWAVE PHASED ARRAY ANTENNA
A mmWave phased array antenna that has particular application to be used in a 5G radio. The antenna includes a RGB structure having a plurality of prepreg buildup layers including microvias on one side and on an opposite side. A plurality of beamforming ICs are formed on the prepreg buildup layers on the one side of the RGB structure and a plurality of horn antenna radiating element are formed on the prepreg buildup layers on the opposite side of the RGB structure, where each of the horn antenna radiating elements includes a feed structure formed in one of the prepreg buildup layers and a horn aperture extending from the feed structure and formed in a metal layer.
H01Q 3/00 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
12.
METHOD OF IMPROVED POWER INTEGRITY FOR MMWAVE PHASED ARRAY ANTENNAS USING MICROVIAS
A mmWave antenna that has particular application to be used in a 5G radio. The antenna includes a thick copper power layer, a first prepreg layer formed on one side of the thick power layer, a signal layer formed on a side of the first prepreg layer opposite to the thick power layer, a second prepreg layer formed on a side of the signal layer opposite to the first prepreg layer and a thin copper power layer formed on a side of second prepreg layer opposite to the signal layer. Microvias extend through the first prepreg layer that electrically couple the thick copper layer to the signal layer and microvias extend through the second prepreg layer that electrically couple the thin copper layer to the signal layer, where the number of microvias extending through the first prepreg layer is less than the number of microvias extending through the second prepreg layer.
A mmWave phased array antenna that has particular application to be used in a 5G radio. The antenna includes an enclosure and a RGB structure provided in the enclosure, where the RGB structure includes a plurality of layers having dielectric layers and conductive layers. The antenna also includes a plurality of radiating elements formed on one side of the RGB structure and a plurality of beamforming ICs formed on an opposite side of the RGB structure from the radiating elements, where gaps are defined between the beamforming ICs. A modular heatsink unit is removably coupled to the enclosure, and includes a heatsink, a plurality of pedestals thermally coupled thereto, where each pedestal is thermally coupled to one of the beamforming ICs, and a plurality of propagation suppressing elements, where a separate propagation suppressing element is provided in each gap between the beamforming ICs.
H01L 23/28 - Encapsulation, e.g. encapsulating layers, coatings
H01L 23/40 - Mountings or securing means for detachable cooling or heating arrangements
H01Q 3/26 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture
H01L 27/10 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
H04W 84/02 - Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
14.
NUCLEATION METHOD OF PRODUCING POLYCAPROLACTONE POWDER
9090 between 20 microns and 150 microns. The polycaprolactone powder described herein contains a detectable amount of a biocompatible solvent, a bioresorbable solvent, and/or ethyl lactate.
A61K 47/34 - Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
C08G 6/00 - Condensation polymers of aldehydes or ketones only
C09D 11/102 - Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
15.
METHOD OF PRODUCING POLYCAPROLACTONE POWDER BY REPRECIPITATION AND SUBSEQUENT USE OF SAME IN ADDITIVE MANUFACTURING
9090 between 20 microns and 150 microns. The polycaprolactone powder described herein contains a detectable amount of a biocompatible solvent, a bioresorbable solvent, and/or ethyl lactate.
B01J 2/06 - Processes or devices for granulating materials, in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
A61K 9/00 - Medicinal preparations characterised by special physical form
16.
APPARATUS, SYSTEM AND METHOD FOR MODULAR MANUFACTURE OF COOKING APPLIANCES
An apparatus, system and method for a manufactured cooking appliance. The apparatus, system and method may include: a generic device shell comprising at least a power supplying wire harness and a plurality of female latching points on a top and a front thereof; a folding module comprising a cooktop and, hinged to the cooktop, an oven front comprising at least an oven door fittedly associated with a frame and having a door hinge connected to the over door and passing through the frame; and a plurality of male latches associated with the folding module, including at least one male latch associated with the portion of the door hinge that passes through the frame, each capable of latching into a corresponded one of the plurality of female latching points so as to, upon the latching, form a completed one of the manufactured stove.
Apparatus, system and method for a predictive risk manager for managing a supply chain comprising a plurality of supply chain nodes. Included in a risk manager are: a managing central hub comprising a plurality of primary data regarding anonymized hardware and software product data from the plurality of supply chain nodes, and life cycle data for all parts employed at the plurality of supply chain nodes; an input to the managing central hub comprising current proprietary data regarding a product made at one of the plurality of supply chain nodes; a plurality of rules capable of recognizing a predictive non-competitive part related risk embedded in the proprietary data, the plurality of rules calculating a recommended redesign to address the predictive non-competitive part related risk before it arises; and an output from the managing central hub to a graphical user interface, wherein the non-competitive part related risk and the recommended redesign are presented on the graphical user interface.
A semi-crystalline blended polymer useful for additive manufacturing is comprised of an amorphous thermoplastic polymer and a thermoplastic semi-crystalline polymer, each of the polymers being essentially miscible in the other and being blended at a weight ratio of amorphous polymer/semi-crystalline polymer of greater that 1 to about 20. The semi-crystalline blended polymer displays a DSC melt peak enthalpy of at least about 3 joules/g. The semi-crystalline polymer may be made by blending the aforementioned polymers at the weight ratio and subject to heating between the melt temperature of the semi-crystalline polymer and the glass transition temperature of the amorphous polymer. The semi-crystalline blended polymer may revert to essentially an amorphous polymer when additive manufactured by fusing layers of said polymer powders together.
A functional test failure prediction (FTFP) engine. The engine includes: a plurality of inputs, capable of receiving at least: a product design; a manufacturing design for the product design; a plurality of specified functional parameters for the product design; bills of materials for the product design; and prior outcome feedback. Also included are: at least one algorithm for virtually applying a plurality of product-specific tests to the product design and the manufacturing design; a comparator capable of comparing an outcome of the algorithm to the specific functional parameters; at least one learning module capable of learning from at least the actual application of the product-specific tests; a feedback loop to provide at least the comparator outcome and the learning of the learning module back to the plurality of inputs as the prior outcome feedback; and a graphical user interface output capable of providing at least the outcome of the comparator.
G06F 30/27 - Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
G06F 30/398 - Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
G06F 11/34 - Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation
G06F 11/32 - Monitoring with visual indication of the functioning of the machine
G06F 119/18 - Manufacturability analysis or optimisation for manufacturability
20.
IMPROVED METHOD FOR FORMING THERMOPLASTIC ADDITIVE MANUFACTURING POWDERS
Useful thermoplastic polymer powders are formed by a method comprising: cooling a foam comprised of a thermoplastic foam below the brittleness temperature of the thermoplastic polymer, wherein the foam has an average strut dimension of 10 to 500 micrometers, and comminuting the cooled foam to form a thermoplastic polymer powder. The method allows for the efficient grinding of the thermoplastic polymer having improved morphology and desirable characteristics such as dry flow without flow aids.
9090 particle size of at most 300 micrometers and average particle size of 1 micrometer to 150 micrometers equivalent spherical diameter. In another instance, A composition is comprised of a semicrystalline polyketone powder having a melt peak and a recrystallization peak, wherein the melt peak and recrystallization peak fail to overlap.
A constrained master controller unit system for use in an internet-of-things device that applies machine learning. The system includes at least a data ingester; a data processor operable alternately with the data ingester in a respective pause/go/pause/go and go/pause/go/pause matched sequence; and a header preview for incoming data, wherein parameters, including at least timing and data volume, for the matched sequence are automatically selected based on the header preview. The non-header data is not processed by the header preview, and is processed by the data processor only during one of its respected go matched sequence.
A semicrystalline polyketone powder useful for additive manufacturing may be made by dissolving a polyketone having differential scanning calorimetry (DSC) monomodal melt peak, at a temperature above 50 °C to below the melt temperature of the polyketone, precipitating the dissolved polyketone by cooling, addition of a nonsolvent or combination thereof. The method may be used to form polyketones having a DSC melt peak with an enthalpy greater than the starting polyketone.
An apparatus, system and method of cooling sensitive electronics in a heated environment. The apparatus, system and method include the sensitive electronics adjacent to a heating chamber, and within an electronics chamber; a flow separator axially extending through the electronics chamber; and an air intake that flows air external to the heating chamber and electronics chamber into the electronics chamber axially to the flow separator, such that the flow forms a thermal break zone adjacent the heating chamber on one side of the flow separator, and a cooling zone on an other side of the flow separator about the sensitive electronics.
H05K 7/20 - Modifications to facilitate cooling, ventilating, or heating
G03B 17/55 - APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR - Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
25.
AI ENHANCED, SELF CORRECTING AND CLOSED LOOP SMT MANUFACTURING SYSTEM
An Al enhanced, self-correcting and closed loop SMT manufacturing system for fabricating PCBAs. The system includes a screen printer for depositing solder paste on solder pads on a RGB, an SRI sub-system for inspecting the solder paste deposited on the PCB to identify defects, a pick-and-place machine for placing circuit components on the solder paste, an AOI sub-system for inspecting the PCB after the circuit components are placed on the PCB, and a reflow soldering oven for bonding component leads both electrically and mechanically to the pads on the PCB. An AI/ML analysis engine is responsive to process data and variables from each of the screen printer, the SPI sub-system, the pick-and-place machine, the AOI sub-system and the reflow soldering oven and provides downstream feedback signals to each of the screen printer, the SPI sub-system, the pick-and-place machine, the AOI sub-system and the reflow soldering oven for self-correction purposes.
G01N 23/02 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material
G01N 23/083 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control (DNC), flexible manufacturing systems (FMS), integrated manufacturing systems (IMS), computer integrated manufacturing (CIM)
H05K 3/34 - Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
An additive manufacturing composition useful as a support material for common build materials (e.g., polyamide or polyester) is comprised of a blend of an elastomer toughened styrenic polymer having discreet domains of polymerized conjugate diene dispersed within a styrenic matrix and a vinyl aromatic-maleic anhydride copolymer. The composition may be used as a support material in additive manufacturing methods such as extrusion methods (e.g., fused filament fabrication). The compositions may be tuned to realize the desired adherence to facilitate the desired support while also allowing for the mechanical removal without breakage of the underlying part or residual adhered support material.
C08L 51/04 - Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
C08L 51/00 - Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
C08L 33/12 - Homopolymers or copolymers of methyl methacrylate
A composition useful for additive manufacturing is comprised of a thermoplastic elastomer blended with an aliphatic polyketone, wherein the thermoplastic elastomer is a continuous phase having dispersed therein separated domains of polyketone. The composition is useful for additive printing methods employing heating and extrusion of the composition to form extrudates that are printed an article comprised of fused layers of the composition. The composition facilitates the formation of extrusion based elastomeric additive manufactured articles.
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
B33Y 70/00 - Materials specially adapted for additive manufacturing
C08L 53/02 - Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
C08L 77/06 - Polyamides derived from polyamines and polycarboxylic acids
A method for flexible hybrid electronics (FHE) simultaneous printing of a plurality of electrical devices. The method includes providing a flexible substrate having a top surface and a bottom surface and providing vias through the substrate for all of the plurality of electrical devices. The method also includes printing circuit elements for the plurality of devices on the top surface of the substrate using a conductive ink, and printing circuit elements for the plurality of devices on the bottom surface of the substrate using the conductive ink, where printing the circuit elements on the top and bottom surfaces of the substrate causes the ink to flow through the vias to provide an electrical connection between the circuit elements on the top and bottom surfaces.
H01F 41/04 - Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils or magnets for manufacturing coils
H01F 41/00 - Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
H01F 27/00 - MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES - Details of transformers or inductances, in general
29.
DIFFERENTIAL PAIR IMPEDANCE MATCHING FOR A PRINTED CIRCUIT BOARD
A printed circuit board (PCB), such as an antenna backplane, including a first conductor and a second conductor forming a differential pair, a first junction and a second junction connected to the first conductor and the second conductor, respectively, and a first impedance matching stub and a second impedance matching stub connected to the first conductor and the second conductor, respectively. The differential pair has a first impedance, the first junction and the second junction have a second impedance, and the first impedance matching stub and the second impedance matching stub match the second impedance to the first impedance. The PCB may have a connector that has differential pins joined to the first and second junctions, and the first impedance matching stub and the second impedance matching stub match an impedance of the junctions, pins, and a connector to the first impedance.
H01R 12/00 - Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, ; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
H01R 12/51 - Fixed connections for rigid printed circuits or like structures
30.
ANTENNA BACKPLANE WITH REDUCED CROSSTALK AND METHOD FOR MAKING SAME
An antenna backplane including a printed circuit board (PCB) having a first differential pair with a first conductor and a second conductor and a second differential pair with a third conductor and a fourth conductor. The first conductor is positioned a first distance from the second differential pair and the second conductor is positioned a second distance from the second differential pair of conductors, where the first distance is greater than the second distance. The third conductor is positioned the second distance from the first differential pair and the fourth conductor is positioned a third distance from the first differential pair, where the third distance is greater than the second distance. A phase-shifting series resonant circuit is coupled between the first conductor and the fourth conductor that provides approximately an odd-integer multiple of a 180 degree phase shift at a predetermined frequency.
A semicrystalline polyarylethersulfone (PAES) useful for additive manufacturing may be made by a method comprising: dissolving an amorphous polyarylethersulfone in a polar aprotic halogenated hydrocarbon solvent at a temperature adequate to effectively form a solution, and subsequently and spontaneously bring about reprecipitation of a semicrystalline polyarylethersulfone from the solution. The semicrystalline polyarylethersulfone may have a crystallinity of at least 30% by weight. The semicrystalline PAES, upon being heated, melting and uniting together in layers during additive manufacturing cools without substantially recrystallizing, allows for deformation-free articles to be formed having low residual stress.
C08G 65/40 - Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols and other compounds
C08G 65/46 - Post-polymerisation treatment, e.g. recovery, purification, drying
An apparatus, system and method for providing an o-ring gripper. The embodiments may include an end effector, comprising: a housing; a movable stripping bar mechanically associated with the housing; a plurality of modules at least partially within the housing; and at least two interleaved angular jaws, wherein each of the at least two jaws provides at least two of the at least four fingers, and wherein an increase in angle between the at least two jaws effects an expansion of an area bounded by each of the at least four fingers; wherein a movement of the stripper bar distally from the housing strips the o-ring from the retention groove for placement.
Disclosed herein is a wipes device for dispensing warm wetted wipes. A wipes device includes a wipes dispensing structure configured to permit a user to remove a wetted wipe, a wipes housing configured to hold dry wipes, wherein the wetted wipe is accessible via the wipes dispensing structure, an evaporation device unit positioned relative to the wipes housing, a water container connected to the evaporation device unit, and an additive housing connected to the evaporation device unit, where the evaporation device unit is configured to the wet the dry wipes by vaporizing a combination of water from the water container and an additive from the additive housing for a defined event.
A ball grid array (BGA) including at least one BGA chip and a plurality of solder balls directly connected to a printed circuit board (RGB), where the solder balls include an epoxy. A method for producing a BGA package including providing a BGA having a plurality of epoxy-containing solder balls, positioning the BGA on a RGB, and applying heat to reflow the epoxy-containing solder balls and to create a connection between the BGA and the RGB.
Apparatuses, systems and methods to track use of print filament wound on a print spool on a printer in an additive manufacturing print. Included are: an identifier associated with the print spool; a network ledger comprising at least the identifier, prior ones of the plurality of additive manufacturing prints using the 3D print filament, and authorized ones of the at least one printer acceptable to run enhanced print algorithms during ones of the plurality of additive manufacturing prints; a confirmation block in the ledger of a sufficient amount of the print filament on the print spool to execute a current one of the plurality of manufacturing prints; a controller for executing the current one of the plurality of manufacturing prints including the enhanced print algorithms; and an update block generator for generating an update block to the ledger confirming the amount of the print filament used corresponded to the identifier.
B29C 64/386 - Data acquisition or data processing for additive manufacturing
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/00 - Data acquisition or data processing for additive manufacturing
36.
METHOD AND APPARATUS FOR STACKING PRINTED CIRCUIT BOARD ASSEMBLIES WITH SINGLE REFLOW
Disclosed herein are implementations of methods and devices for stacking printed circuit board (PCB) assemblies (PCBA) with a single reflow process which decreases impact on surface mount technology (SMT) component and solder joint reliability.
H05K 3/34 - Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
H05K 13/08 - Monitoring manufacture of assemblages
Support blocks for printed circuit boards (PCB's) and printed circuit board assemblies (PCBA's), wherein the support blocks are produced from a 3D printing process. The support block including a bottom surface having a vacuum connection; a top surface having at least one vacuum hole; at least one recessed surface that is offset from the top surface; and at least one vacuum channel extending from the vacuum connection to the at least one vacuum hole.
An apparatus, a system, and a method for improvements in fused filament fabrication (FFF). Characteristics of a filament may be measured during production of the filament and the characteristics stored in a memory for retrieval by a 3D printer. The 3D printer adjusts print settings as necessary based on the measured characteristics, thereby resulting in better print quality.
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
Methods and systems for finite impulse response filter under a constrained sampling rate. A method for constrained sampling rate filtering includes segmenting an input signal with a first rate into a defined number of streams, wherein the defined number of streams sets an effective sample rate of each stream to at least less than a second rate and the second rate is less than the first rate, determining filter coefficients for a finite impulse response filter, grouping the filter coefficients into subsets of filter coefficients to match the defined number of streams, applying in parallel, for each of the defined number of streams, a subset of filter coefficients to a corresponding stream, and combining at least some outputs from the defined number of streams conditionally based on the second rate.
Methods and systems for inter-path delay estimation. A method for inter-path delay estimation includes injecting, nearly simultaneously, a continuous wave tone at an input test point in a first communication path and at an input test point in a second communication path, combining output signals from the first communication path and the second communication path, measuring a magnitude of a combined output signal using an envelope detector, and adjusting a delay element in one of the first communication path and the second communication path until the magnitude of the combined output signal is maximized.
An apparatus, system and method for providing a clamping system for a part associated with a pallet. The apparatus, system and method may include: two opposing jaws on the pallet, each comprising a gripper for gripping the part, and a jaw base. The jaw base may include: gearing that synchronizes actuation of the opposing jaws; and a roller distal from the gripper. The part-clamp may also include: a centering spring that compresses to put pressure against the other of the opposing jaws; and a cam off the pallet, comprising a cam shaft that drives a cam face into the rollers to actuate the two grippers.
An apparatus, system and method for providing an automated contact cutter. The contact cutter includes a contact reel holder for holding therein a bandoleer comprising a plurality of stamped contacts; at least an inlet roller comprising an inlet pin, a turn roller, and a receiving roller mechanically connected by at least one motor drive belt to a drive motor, wherein the inlet roller is capable of receiving an end portion of the bandoleer onto the inlet pin for loading; a cutter between the turn roller and the receiving roller that is capable of cutting ones of the stamped contacts from the bandoleer for picking by a pick and place robot; and a comb capable of combing at least the bandoleer and cut and partially cut ones of the stamped contacts.
B65H 35/04 - Delivering articles from cutting or line-perforating machines; Article or web delivery apparatus incorporating cutting or line-perforating devices, e.g. adhesive tape dispensers from or with transverse cutters or perforators
B65H 23/26 - Registering, tensioning, smoothing, or guiding webs longitudinally by transverse stationary or adjustable bars or rollers
B65H 41/00 - Machines for separating superposed webs
43.
POLYESTER/POLY(METHYL METHACRYLATE) ARTICLES AND METHODS TO MAKE THEM
A polymeric composition comprised of poly(methylmethacrylate) (PMMA) and polylactic acid (PLA) having a surface charge potential of at least about 50 volts in the absence of any other charge enhancing component may be made by melt blending PMMA and PLA, extruding the melt blend through a die and cooling at a rate through Tg of the PLA of at 10 ?/min to 1000?/second. The polymeric composition may be made by melt blowing into a nonwoven fabric. The nonwoven fabric may be charged to a surface potential of at least about 50 electron volts. Such filters may have greater than 95% efficiency at a pressure drop of less than 2 mm Hg even after being exposed to high temperatures (~70C) for an hour or more.
D04H 1/4382 - Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
D04H 1/56 - Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
D04H 3/016 - Non woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
D04H 3/16 - Non woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
B01D 39/16 - Other self-supporting filtering material of organic material, e.g. synthetic fibres
C08L 33/12 - Homopolymers or copolymers of methyl methacrylate
C08L 67/04 - Polyesters derived from hydroxy carboxylic acids, e.g. lactones
44.
IMPROVED MELT BLOWN ARTICLES AND METHODS TO FORM THEM
A blended polymer comprising, an amorphous thermoplastic polymer and a thermoplastic semi-crystalline polymer, each of the polymers being essentially miscible in the other and being blended at a weight ratio of amorphous polymer/semi-crystalline polymer of greater that 0.05 to about 20 forms a melt blown nonwoven fabric having essentially no defects with long fiber lengths having uniform diameters. The nonwoven fabrics when used as a filter may have greater than 95% efficiency at a pressure drop of less than 2 mm Hg even after being exposed to high temperatures (~70°C) for an hour or more.
D04H 1/56 - Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
D04H 3/016 - Non woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
D04H 3/16 - Non woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
An apparatus, system and method for providing a floating end effector for grasping small precision parts. The end effector includes at least one end effector module having at least: tooling for grasping a part for pickup and placement; a module shaft connected on a first end to the tooling, and having a second end opposite the tooling; and at least two air bearing associated with the second end, wherein the at least two air bearings in combination impart degrees of freedom to the tooling in at least x and y axes and in theta.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
46.
APPARATUS, SYSTEM AND METHOD FOR A VARIABLE SWATH END EFFECTOR
An apparatus, system and method for providing a variable swath end effector. The variable swath end effector may include: two arms, each for retaining a portion of a retained element; two pairs of bearing rails, each pair being uniquely mechanically associated with a one of the two arms, wherein a level of one pair of bearing rails is staggered from a second level of the other pair of bearing rails in a perpendicular axis, and wherein the staggered pairs of bearing rails are interleaved with each other; and a motor capable of driving a belt in mechanical association with each of the two arms, wherein actuation of the motor drives the belt to synchronously move each of the two arms across a respective one of the pairs of bearing rails to vary the swath between the two arms.
An apparatus, system and method capable of providing a high precision connection between a plurality of pins of a C form factor pluggable (CFP) and a connection pad of a printed circuit board (PCB). The apparatus, system and method include: a connector mask suitable to receive therein a body of the CFP; a ruler suitable to receive therein the connector mask, and sized and shaped for direct physical associated with the PCB about the connection pad; and an adjustment mechanism at least partially passing through the ruler for contacting at least the connector mask and capable of adjusting the position of the pins in relation to the connection pad.
An apparatus, system and method for testing a micro-optical component system. The apparatus, system and method may include a receiver for receiving the micro optical component system; a light source; and a coupler for passing aspects of light from the light source through the micro optical component system to a termination, and for passing remaining aspects from the light source back reflected from the micro optical component system to a power meter. A reading at the power meter of the back reflection may correspond to a diagnosis of the micro optical component system.
A face mask and method of producing a face mask are presented. The face mask includes ear slots, rather than known ear loop bands. The face masks may be provided to customers on a continuous roll. Methods of producing the face masks are also disclosed that eliminate processing steps associated with traditional face mask manufacturing.
Ways of preparing a partially crystalline polycarbonate powder are provided that include dissolving an amorphous polycarbonate in a polar aprotic solvent to form a first solution of solubilized polycarbonate at a first temperature. The first solution is then cooled to a second temperature, the second temperature being lower than the first temperature, where a portion of the solubilized polycarbonate precipitates from the first solution to form a second solution including the partially crystalline polycarbonate powder. Certain partially crystalline polycarbonate powders resulting from such methods are particularly useful in additive manufacturing processes, including powder bed fusion processes.
C08J 3/14 - Powdering or granulating by precipitation from solutions
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
C08L 69/00 - Compositions of polycarbonates; Compositions of derivatives of polycarbonates
51.
PRODUCING SEMI-CRYSTALLINE PULVERULENT POLYCARBONATE AND USE THEREOF IN ADDITIVE MANUFACTURING
Ways of preparing a partially crystalline polycarbonate powder are provided that include dissolving an amorphous polycarbonate in a polar aprotic solvent to form a first solution of solubilized polycarbonate at a first temperature. The first solution is then cooled to a second temperature, the second temperature being lower than the first temperature, where a portion of the solubilized polycarbonate precipitates from the first solution to form a second solution including the partially crystalline polycarbonate powder. Certain partially crystalline polycarbonate powders resulting from such methods are particularly useful in additive manufacturing processes, including powder bed fusion processes.
An end capped condensation polymer may be formed by heating a condensation polymer in the presence of an end capping compound to form cleaved condensation polymer reacting at least a portion of the cleaved condensation polymer with the end capping compound to form the end capped condensation polymer. The end capped condensation polymers may be used to form additive manufactured articles having high solids loading and improved processing due to improved rheological behavior.
B29C 64/00 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
C08G 69/36 - Polyamides derived from amino carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines, and polycarboxylic acids
C08L 23/10 - Homopolymers or copolymers of propene
C08L 77/00 - Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
C08L 77/02 - Polyamides derived from omega-amino carboxylic acids or from lactams thereof
C08K 5/09 - Carboxylic acids; Metal salts thereof; Anhydrides thereof
Copolymers of condensation polymers are formed by a method of cleaving and reacting with a chain extender to form an end capped cleaved condensation polymer that is further reacted with a second compound that may be comprised of a further chain extender and condensation polymer that react with a reactive group still remaining in the chain extender capping the cleaved condensation polymer. The method allows the formation of block copolymers, branched copolymers and star polymers of differing condensation polymers bonded through the residue of a chain extender.
B29C 64/00 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
C08G 69/36 - Polyamides derived from amino carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines, and polycarboxylic acids
C08L 23/10 - Homopolymers or copolymers of propene
C08L 77/00 - Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
C08L 77/02 - Polyamides derived from omega-amino carboxylic acids or from lactams thereof
C08K 5/09 - Carboxylic acids; Metal salts thereof; Anhydrides thereof
C08G 69/48 - Polymers modified by chemical after-treatment
B33Y 70/00 - Materials specially adapted for additive manufacturing
C08G 81/00 - Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
C08L 53/00 - Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
C08L 67/00 - Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
54.
METHOD FOR IMPROVING ADHESION IN AND BETWEEN LAYERS OF ADDITIVE MANUFACTURED ARTICLES
An additive manufactured condensation polymer article with improved build or Z direction strength may be formed by physically mixing or depositing thereon a chain extender that extends and chemically bonds the polymer chains within and between layers upon heating and fusing during the additive manufacturing process.
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/00 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
C08G 69/36 - Polyamides derived from amino carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines, and polycarboxylic acids
C08K 5/09 - Carboxylic acids; Metal salts thereof; Anhydrides thereof
C08L 23/10 - Homopolymers or copolymers of propene
C08L 77/00 - Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
C08L 77/02 - Polyamides derived from omega-amino carboxylic acids or from lactams thereof
An apparatus, system and method for providing an optical coupler. The optical coupler may be a miniature fiber optic coupler, which may include: a housing having dimensions of less than 4mm x 4mm x 4mm; an input into the housing capable of receiving a fiber optic sending line; a sending line prism having dimensions of less than 2mm x 2mm within the housing in optical communication with the sending line; a receiving line prism having dimensions of less than 2mm x 2mm in optical communication with the sending line prism at a corresponded angle in a range of 30 to 60 degrees and capable of receiving a signal incoming on the sending line and redirecting the received signal; and a receiving line in optical communication with the receiving line prism and capable of receiving and outputting the redirected received signal.
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
H04B 10/80 - Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups , e.g. optical power feeding or optical transmission through water
B25J 9/04 - Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian co-ordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical co-ordinate type or polar co-ordinate type
B25J 9/10 - Programme-controlled manipulators characterised by positioning means for manipulator elements
56.
APPARATUS, SYSTEM AND METHOD FOR PROVIDING SELF EXTRACTING GRIPS FOR AN END EFFECTOR
An apparatus, system and method for a wedge clamp suitable to provide self extracting grips for an end effector suitable to hold semiconductor wafers, or other substrates such as rectangular panels. The apparatus, system and method may include two inner jaws at least mechanically associated with a robotic base; two outer arms associated with the inner jaws via at least one arms cam; and a plurality of wedge clamps. Each of the wedge clamps may comprise: a spring; a cam loaded on the spring; and a cam travel path into which the cam is slidably associated. A contraction of the inner jaws and a consequent arms camming of the outer arms applies pressure to a circumferential edge of the semiconductor wafer such that the circumferential edge depresses each of the cams along its respective cam travel path and against its respective one of the springs. The jaws close may synchronously about a center point of the substrate, thereby keeping it centered.
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
An apparatus, system and method for a wafer leveling rim, and for installing a wafer leveling rim. The leveling rim for a semiconductor wafer may include: a thin, substantially rigid receiver ring suitable to receive a circumferential rim of the semiconductor wafer; and a substantially flexible containment ring removably associated with the rigid receiver ring. Thereby, the rigid receiver ring imparts rigidity to a circumferential shape of the semiconductor wafer, and the containment ring retains the semiconductor wafer within the rigid receiver ring.
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
H01L 21/683 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping
H01L 21/68 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for positioning, orientation or alignment
58.
APPARATUS, SYSTEM AND METHOD FOR PROVIDING A MANUFACTURING GRIPPING NOZZLE
An apparatus, system and method for providing a manufacturing gripping nozzle. The apparatus, system and method for gripping an in-process component during processing may include: a chuck; at least two walls extending from the chuck; at least two peripheral guides having a size and shape correspondent to a periphery of the component and placed atop the at least two walls distal from the chuck, wherein the at least two peripheral guides are capable of positionally maintaining the periphery during the processing; and at least one Bernoulli cup within a cavity bounded by the chuck, the at least two walls, and the component, wherein the at least one Bernoulli cup noncontactedly grips the component.
B65G 49/06 - Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
B65G 47/91 - Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers
B25J 15/06 - Gripping heads with vacuum or magnetic holding means
59.
SYSTEMS AND METHODS FOR ASSESSMENT AND VISUALIZATION OF EXCESS AND OBSOLETION IN SUPPLY CHAIN MANAGEMENT SYSTEM
An apparatus, system and method for an excess and obsoletion application and engine resident in a supply chain management system. Included are at least one rule set; at least one database of distinct customers, wherein the at least one database has relationally accessible in accordance with ones of the distinct customer entries in the at least one database at least the manufactured product for the distinct customer correspondent; a full parts and materials list correspondent to the manufacturing of the manufactured product; definitions from the contract for each of the manufactured products and each of the distinct customer regarding when ones of the parts and the materials become excess or obsolete; and a graphical user interface (GUI) suitable to provide access to details of at least the manufactured product, the full parts and materials list, and the definitions, such that a claim for excess or obsoletion may be made through the GUI.
An apparatus, system and method of operating an autonomous mobile robot having a height of at least one meter. The apparatus, system and method may include a mobile robot body; at least two phased array antennas associated with the mobile body, wherein the phased array antennas enable wireless communication between on-board features of the mobile robot, including at least mobility hardware proximate to a base of the mobile robot body, and off-board sensors related to at least navigation of the mobility hardware; and a processing system communicative with the on-board features and the off-board sensors via intercommunication with the phased antennas, and comprising non-transitory computing code which, when executed by at least one processor associated with the processing system.
An apparatus, system and method for a substrate flipper capable of accommodating substrates of varying sizes. The apparatus, system and method may include a base housing providing at least a portion of a rotating feature; an arm enclosure rotatably associated with the rotating feature and providing at least one arm actuator, and at least one gripper actuator; two arms at two substantially distal points with respect to one another along the arm enclosure, each of the two arms being communicatively associated with the at least one arm actuator; and a gripper associated with each of the two arms distal from the arm enclosure, communicatively associated with the at least one gripper actuator and capable of gripping one of the substrates upon actuation of the gripper. The actuation of the at least one arm actuator effectuates a change in distance between central longitudinal axes of each of the two arms.
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
B25J 11/00 - Manipulators not otherwise provided for
B25J 13/08 - Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
An apparatus, system and method for providing a stationary chuck for positionally maintaining an associated in-process wafer. The stationary chuck may include a base plate having, on an upper surface thereof, a plurality of machined concentric ridges that form a series of concentric circular zones; a silicon carbide coating on the upper surface of the base plate; and a plurality of silicon carbide inlays capable of being bonded onto the silicon carbide coating in the concentric circular zones.
H01L 21/683 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
63.
HEALTH AND VITAL SIGNS MONITORING PATCH WITH DISPLAY AND MAKING OF SAME
A vital signs monitoring patch with integrated display (VSM) includes a user access layer for accessing a display section and a first printed silver-silver chloride (Ag-AgCl) electrode. A polyethylene foam layer including battery and plunger cut-outs. A printed circuit board assembly (PCBA) layer including vitals sign monitoring sensors and the battery and connected to the first and second printed Ag-AgCl electrodes. The polyethylene foam layer bonded to the user access layer and the PCBA layer. A sensor layer including reflection mode oximetry components and the second printed Ag-AgCl electrode. A hydrogel conductive adhesive to interact between a user skin and the second printed Ag-AgCl electrode. A medical tape layer bonded to the user skin and the sensor layer. A plunger connected to the PCBA layer and configured to power on the VSM, where user access of the first printed Ag-AgCl electrode completes a circuit with the second printed Ag-AgCl electrode.
A61B 5/0205 - Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
A61B 5/00 - Measuring for diagnostic purposes ; Identification of persons
A61B 5/1455 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value using optical sensors, e.g. spectral photometrical oximeters
A61B 5/28 - Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
A61B 5/257 - Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
A61B 5/265 - Bioelectric electrodes therefor characterised by the electrode materials containing silver or silver chloride
A vital signs monitoring ring with integrated display includes a ring housing, the ring housing comprising at least two windows and a printed circuit board assembly (PCB A) layer configured to be attached to the ring housing. The PCB A layer includes a display section, a sensor section, a transmission mode oximetry measurement section configured to be in alignment with the at least two windows, a power supply, and a switch configured to power on the vital signs monitoring ring with integrated display via the power supply. The display section is configured to display physiological and action parameters associated with a user by sensing the physiological and action signals from a digit of user wearing the vital signs monitoring ring with integrated display using at least the sensor section and the transmission mode oximetry measurement section.
A61B 5/00 - Measuring for diagnostic purposes ; Identification of persons
A61B 5/1455 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value using optical sensors, e.g. spectral photometrical oximeters
A61B 5/145 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value
A precision squeegee grinder including a grinder assembly configured to grind an edge of a squeegee blade, a squeegee mounting assembly configured to hold the squeegee blade, a grinder assembly vertically alignable with respect to the squeegee mounting assembly, a latitudinal movement assembly connected to the grinder assembly, the latitudinal movement assembly configured to position the grinder assembly with respect to the squeegee blade in defined increments, a longitudinal movement assembly connected to the latitudinal movement, the longitudinal movement assembly configured to move the grinder assembly along a width of the squeegee blade, and a base assembly. The grinder assembly, the squeegee mounting assembly, the latitudinal movement assembly, and the longitudinal movement assembly are connected to the base assembly. The squeegee mounting assembly, the latitudinal movement assembly, and the longitudinal movement assembly enable triaxial alignment between the grinder assembly and the squeegee blade.
B24B 9/02 - Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
B24B 41/06 - Work supports, e.g. adjustable steadies
B24B 55/00 - Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
Compositions useful for making additive manufactured articles are comprised of a styrenic thermoplastic elastomer, the styrenic thermoplastic elastomer being comprised of a block copolymer being comprised of at least two blocks of a vinyl aromatic monomer and at least one block of a conjugated diene monomer, and a solid particulate filler dispersed therein, wherein the filler has a surface area of 0.05m2/g to 120m2/g. The compositions may be formed into filaments for use in fused filament fabrication additive manufacturing. The filaments display good printability without drying or storage under dry conditions.
C08L 53/02 - Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
B33Y 70/10 - Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
Disclosed herein are wearable bands for biomarker tracking and methods for making the wearable bands. The biomarker tracking wearable band having a printed circuit board assembly (PCBA), the PCBA including an electrocardiography (ECG) sensor utilizing printed Silver-Silver Chloride (Ag-AgCl) electrodes and an optical photoplethysmography (PPG) sensor utilizing more than two light emitting diodes (LEDs), and a directly over molded band encasing the PCBA.
Disclosed herein are implementations of acoustic metamaterial structures and geometric configurations of acoustic metamaterial structures which produce sound amplification or cancellation. An acoustic metamaterial device for using with a sound source includes a plurality of fins, where each fin is made from a very dense material with respect to air which creates the anisotropic properties of the acoustic metamaterial device, where each fin has a length dimension, a width dimension, and a thickness dimension, the width and length dimension being equal and substantially perpendicular to the direction of sound wave propagation from the sound source, where each fin is sized different from other fins along the width and length dimension, and where the plurality of fins are interconnected such that planes formed by the width and length dimension of each fin faces perpendicular to the sound wave propagation direction from the sound source.
Disclosed herein are integrated closures for a container. The integrated closure includes a base and a lid connected to the base via a hinge, where the lid and hinge are configured to permit the lid to open towards a center of the integrated closure, and a film. The film including a first portion connected to at least a portion of a bottom surface of the base, a second portion connected to at least a bottom surface of the lid, and a third portion connected to the first portion and releasably connected to the second portion. The integrated closure including a tamper indicator membrane connected to an edge of the lip and a corresponding edge of the base. The base further including a retention mechanism, the retention mechanism configured to engage and retain the lid in an open position.
B65D 47/08 - Closures with discharging devices other than pumps with discharge nozzles or passages having articulated or hinged closures
B65D 47/36 - Closures with frangible parts adapted to be pierced, torn, or removed, to provide discharge openings
B65D 77/20 - Container closures formed after filling by applying separate lids or covers
B65D 85/72 - Containers, packaging elements or packages, specially adapted for particular articles or materials for edible or potable liquids, semiliquids, or plastic or pasty materials
70.
METHOD AND SYSTEM FOR MANAGING SECURE IOT DEVICE APPLICATIONS
Methods and systems for managing secure IoT data are described. A docker container system for managing secure Internet of Things (IoT) device data includes a machine control container configured to collect IoT device data from device data producing machines, a translation container configured to translate collected IoT device data into a common semantic format, client- specific container applications configured to aggregate, filter, and process translated IoT device data to generate processed IoT device data, and send the processed IoT device data to at least one of client applications and data storage, and a secure container proxy service configured to apply security-based protocols to the processed IoT device data. The client- specific container applications deployed absent the security-based protocols.
Disclosed herein are implementations of methods and devices for stacking printed circuit board (PCB) assemblies (PCBA) with a single reflow process which decreases impact on surface mount technology (SMT) component and solder joint reliability. A method includes transferring solder paste on to a bottom PCB and forming a bottom PCBA by placing SMT components on the bottom PCB. A middle PCB is stacked on the bottom PCBA and solder paste is transferred on to the middle PCB. A top PCB is stacked on the middle PCB and solder paste is transferred on to the top PCB. SMT components are placed on the top PCB to form a stacked assembly. The stacked assembly is reflowed in a single reflow so that all solder paste simultaneously or nearly simultaneously melts to bond SMT components to respective PCB boards and to bond respective PCBs to each other.
H05K 3/34 - Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
Disclosed herein are devices and methods for side mounting of microelectromechanical systems (MEMS) transducers on tapered horn antennae. A hole may be made in a sidewall of a tapered horn antenna, where the hole may be substantially cylindrical, tapered and the like. An internal port opening of a MEMS microphone may be aligned with the hole and attached to the sidewall of the tapered horn antenna. The hole may be tapered with a diameter at one end the same or slightly larger than the diameter of the port opening of the MEMS microphone and a larger diameter at another end of the hole. A tube may be used to connect the internal port opening of the MEMS antenna to the hole in the tapered horn antenna. The tapered horn antenna may have multiple holes, each having a respective MEMS transducer.
The disclosure provides an apparatus, system and method of providing a lid having an integrated solute that is removably affixed to the lid. The lid may include a top lid portion comprising at least one port that passes from the top portion of the lid through to a bottom portion of the lid; the bottom lid portion comprising a first circular lip at least substantially about an outer circumference thereof suitable for fitting firmly about an opening in a container for containing a solution, and a second circular lip having a diameter less than the first lip; and the integrated solute being removably affixed within the second circular lip, wherein, upon removal of the solute through the opening and into the container, the solution is formed and is consumable through the at least one port.
B65D 51/28 - Closures not otherwise provided for combined with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials
B65D 81/32 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging two or more different materials which must be maintained separate prior to use in admixture
A method of identifying opposing ends of a cable within a cabling assembly having a plurality of cables. The method includes transmitting a signal to a first end of a cable of the plurality of cables, receiving the signal at a second end of the cable of the plurality of cables, transmitting an output signal from a connector operably coupled to the second end of the cable of the plurality of cables to a processor. The connector is one of a plurality of connectors. The method additionally includes identifying using an indicator device the connector of the plurality of connectors that is operably coupled to the second end of the cable.
Disclosed are processes and materials for adhesive circuit patterning which strengthen and protect printed circuit traces and adhesive bonded joints of surface mounted devices in flexible or stretchable electronics in a single process. A method for adhesive circuit pattering include deposing a circuit pattern on a thermal adhesive film. One or more surface mounted device(s) are attached to a cured printed circuit to form an assembled printed circuit. The assembled printed circuit may be placed on a stretchable substrate. The thermal adhesive film is melted on the assembled printed circuit and the stretchable substrate to protect and reinforce joint bonds and the circuit pattern of the assembled circuit pattern and attach the assembled printed circuit to the stretchable fabric in one melting or curing step.
H05K 3/20 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
H05K 3/14 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material
The disclosure is of and includes at least an apparatus, system and method for modular manufacturing. The apparatus, system and method may include at least a device shell capable of providing at least the structure of a manufactured device, wherein the device shell comprises a plurality of receivers; a plurality of modules, each comprising a plurality of components suitable, in combination, to provide functional aspects to the manufactured device; a plurality of connectors externally associated with each of the plurality of modules, wherein the plurality of connectors are capable of being respectively received by ones of the plurality of receivers to thereby fasten each of the plurality of modules into the device shell.
An apparatus, system and method for placing components on a circuit board by a pick and place machine. The apparatus, system and method may include a rotational table suitable to receive and hold the circuit board for the pick and place machine; at least one sensor capable of sensing an off-center fiducial on the circuit board after association with the rotational table; and at least one processor connective with at least one computing memory having therein non-transitory computing code. The steps performed by execution of the code may include receiving sensor data from the sensor indicative of at least a physical location the off-center fiducial; dividing the board into radial sections based on the sensor data; accessing at least one placement program for placement of at least first components by the pick and place machine; monitoring for a change to a second at least one of the radial sections based on rotation of the rotational table according to the sensor data; and accessing at least one second placement program for placement of second components upon a change to the physical location.
An apparatus, system and method for dispensing underfill to components on a printed circuit board. The apparatus, system, and method includes a dispensing end effector suitable for dispensing underfill to components on a printed circuit board within an underfill chamber. The dispensing end effector may include: an electromechanical connection to at least one dispensing robot arm capable of physically situating the dispensing proximate to the circuit board; a communicative connection to a dispense controller capable of communicatively controlling at least the dispensing; a dispenser which includes an underfill output port, which is capable of the dispensing, and which is removably mounted to the electromechanical association; and a protective enclosure at least substantially about the dispenser.
H05K 3/34 - Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
79.
APPARATUS, SYSTEM, AND METHOD OF PROVIDING UNDERFILL ON A CIRCUIT BOARD
An apparatus, system and method for dispensing underfill to components on a printed circuit board. The apparatus, system and method may include an underfill chamber having an input through which the printed circuit board is received; at least one dispensing robot capable of dispensing the underfill to the components; a lower heater suitable to substantially evenly heat at least half of or the entirety of an underside of the printed circuit board once the printed circuit board is within the underfill chamber; and an overhead heater capable of heating up to half of a topside of the printed circuit board once the printed circuit board is within the underfill chamber.
H05K 13/00 - Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
H05K 3/34 - Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
80.
APPARATUS, SYSTEM, AND METHOD OF PROVIDING A CIRCUIT BOARD CARRIER FOR A PICK AND PLACE SYSTEM
The disclosure is and includes at least an apparatus, system and method for a rotary table suitable to receive surface mount technology (SMT) components onto a circuit board associated therewith. The apparatus, system and method may include a frame suitable for insertion into a pick and place machine, and having a receiving inset therein; a fixture suitable for removable insertion to the receiving inset; a plurality of roller bearings interactively associated with the fixture, and which impart a low friction roll to at least a perimeter potion of the fixture; and at least one guide on the frame suitable to at least partially positional maintain the circuit board associated with the fixture.
An apparatus, system and method for a carrier suitable to carry a circuit board through a semiconductor underfill process. The apparatus, system and method includes a modular carrier capable of supporting a printed circuit board during at least an underfill process, the modular carrier comprising: an outer frame having, at least about a center point thereof, at least one open aspect; and at least one frame inset suitable to be removably placed within the at least one open aspect, and capable of supporting at least a first type of the printed circuit board.
The disclosed apparatus, system and method may include: at least two hobs suitable to receive and extrude therebetween a print material filament for the additive manufacturing; a material guide suitable to receive the extruded print material filament; at least one heater element coupled to a transition point along the material guide distally from the at least two hobs, wherein the transition point comprises an at least partial liquefication of the print material within the material guide by the at least one heater element to allow for printing of the at least partially liquefied print material; and at least one secondary heater at least partially about an upper aspect of the transition point and suitable to at least heat the upper aspect upon a clog in the material guide to liquefy the clog.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
83.
APPARATUS, SYSTEM AND METHOD FOR IN-LINE ADDITIVE MANUFACTURING NOZZLE INSPECTION
An additive manufacturing apparatus, system, and method. More particularly, the disclosed in-line nozzle inspection apparatus, system and method are suitable to monitor an additive manufacturing print nozzle, and may include: at least one sensor integrated with a motion driver for the print nozzle; a plurality of imaging lenses suitable to provide a substantially complete field of view at least about a tip of the print nozzle; and a comparative engine suitable to compare the field of view state to an acceptable state of the print nozzle, and to execute a cleaning of the print nozzle if the field of view state is unacceptable.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
84.
APPARATUS, SYSTEM AND METHOD FOR DIGITALLY MASKED PRINT AREA HEATING
The disclosure is of and includes at least an apparatus, system and method for an additive manufacturing system. The apparatus, system and method may include at least: a heated print nozzle suitable to deliver at least partially liquefied print material to a print build in a print area; at least two projected digital masks suitable for providing a pixelization masking of the print area; and at least one print area heater suitable to deliver heat to ones of the masked pixels in the print area responsive to at least one controller.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
85.
APPARATUS, SYSTEM AND METHOD OF HEAT FILTERING FOR ADDITIVE MANUFACTURING
An apparatus, system and method for additive manufacturing. The apparatus, system and method include at least a print bed having thereon powdered print material; a dispersing head suitable to disperse one or more heat-actuated agents onto the powdered print material as indicated by a print plan; a broadband infrared energy source suitable to pass over the print bed so as to actuate the dispersed agent; and a heat energy filter interfaced to the broadband energy source so as to filter the actuating energy to one or a range of wavelengths of the infrared energy source that is less than the available broadband.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
86.
APPARATUS, SYSTEM AND METHOD FOR A HYBRID ADDITIVE MANUFACTURING NOZZLE
An additive manufacturing apparatus, system, and method. The apparatus, system and method are for a hybrid additive manufacturing print nozzle that may include a delivery conduit; an extruder capable of extruding print material through the delivery conduit; a high thermal mass heater about the delivery conduit proximate to the extruder; a low thermal mass heater about the delivery conduit distal from the extruder and proximate to an exit from the delivery conduit; and a controller capable of executing at least a print build using the print material, and of controlling both the high thermal mass heater and the lower thermal mass heater.
B29C 64/386 - Data acquisition or data processing for additive manufacturing
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/00 - Data acquisition or data processing for additive manufacturing
87.
APPARATUS, SYSTEM AND METHOD FOR ULTRASONIC-BASED ADDITIVE MANUFACTURING
An apparatus, system and method of using ultrasonic energy for additive manufacturing. The apparatus, system and method may include comprising: a print bed of print material responsive to ultrasonic energy; and an ultrasonic print head suitable to deliver the ultrasonic energy to the print bed to thereby form the print material into a printed output according to a print plan that exerts control over the ultrasonic print head.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
88.
APPARATUS, SYSTEM AND METHOD FOR TEMPERATURE MAINTENANCE OF A FILAMENT MELT IN AN ADDITIVE MANUFACTURING PRINT HEAD
The disclosed apparatus, system and method may include at least two hobs suitable to receive and extrude therebetween a print material filament for the additive manufacturing; a material guide suitable to receive the extruded print material filament; at least one heater element coupled to a transition point along the material guide distally from the at least two hobs, wherein the transition point comprises an at least partial liquefication of the print material within the material guide by the at least one heater element to allow for printing of the at least partially liquefied print material; at least one peltier device at least partially about an upper aspect of the transition point and suitable to at least sink heat from the upper aspect of the transition point to thereby preclude partial liquefication of the print material above the upper aspect; and a print nozzle in fluid communication with the at least partially liquefied print material and suitable to print the at least partially liquefied print material.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
89.
APPARATUS, SYSTEM AND METHOD OF OPERATING AN ADDITIVE MANUFACTURING NOZZLE
Apparatuses, systems and methods of providing heat to enable an FDM additive manufacturing nozzle having refined print control and enhanced printing speed. The heating element may include at least one sheath sized to fittedly engage around an outer circumference of the FDM printer nozzle; at least one wire coil at least partially contacting an inner diameter of the sheath; and at least one energy receiver associated with the at least one wire coil.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 70/00 - Materials specially adapted for additive manufacturing
90.
APPARATUS, SYSTEM AND METHOD FOR ENHANCED DRIVE FORCE IN AN ADDITIVE MANUFACTURING PRINT HEAD
The disclosure is of and includes at least an apparatus, system and method for a print head for additive manufacturing. The apparatus, system and method may include two proximate hobs suitable to receive and extrude therebetween a print material filament for the additive manufacturing, each of the two hobs comprising a diameter of greater than 15mm; at least one motor capable of imparting a rotation to a respective one of the two hobs, wherein the extrusion results from the rotation; and an interface to a liquefier capable of outputting the extruded print material filament after at least partial liquefication by at least one nozzle heater to perform the additive manufacturing.
B29C 64/232 - Driving means for motion along the axis orthogonal to the plane of a layer
B29C 64/236 - Driving means for motion in a direction within the plane of a layer
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
91.
APPARATUS, SYSTEM AND METHOD FOR KINEMATIC-BASED HEATING OF AN ADDITIVE MANUFACTURING PRINT FILAMENT
An additive manufacturing apparatus, system, and method for kinematic-based heating of a print filament. The apparatus, system and method may include: a print nozzle suitable to deliver at least partially liquefied print material to form a print build responsive to motion control of the print nozzle in at least two axes by a kinematic controller; at least one heater about the print nozzle suitable to effectuate the at least partial liquefication of the at least partially liquefied print material; and a correlative interface between the kinematic controller and the at least one heater, wherein the correlative interface monitors upcoming ones of the motion control so as to anticipatorily actuate the at least one heater according to the upcoming ones of the motion control.
B29C 64/386 - Data acquisition or data processing for additive manufacturing
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/00 - Data acquisition or data processing for additive manufacturing
92.
APPARATUS, SYSTEM AND METHOD OF PROVIDING DYNAMIC HOB PINCH FORCE IN AN ADDITIVE MANUFACTURING PRINT HEAD
The disclosure is of and includes at least an apparatus, system and method for a print head for additive manufacturing. The apparatus, system and method may include at least two proximate hobs suitable to receive and extrude therebetween a print material filament for the additive manufacturing; a motor capable of imparting a rotation to at least one of the two hobs, wherein the extrusion results from the rotation; a dynamic force adjustment capable of exerting force on one of the two hobs to urge the force-receiving hob toward the other of the two hobs; and a controller communicatively connected with the dynamic force adjustment and capable of controlling the force exertion thereof.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
93.
LEVELER FOR 3D PRINTING BUILD PLATE THERMAL EXPANSION
An apparatus, system and method for limiting build plate expansion in a 3D print environment. The apparatus, system and method may include a decoupling leveler associated with mounts for a build plate in the print environment; and a plurality of adjustments passing substantially through and mounted within the decoupling leveler. The leveler may be decoupled from the mounts during heating and cooling of the print environment, and recoupled via a positional clamped by the plurality of adjustments during printing on the build plate.
B29C 64/386 - Data acquisition or data processing for additive manufacturing
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/00 - Data acquisition or data processing for additive manufacturing
94.
APPARATUS, SYSTEM AND METHOD OF ADDITIVE MANUFACTURING USING ULTRA-FINE JETTED MATERIAL
An apparatus, system and method for additive manufacturing. The apparatus, system and method may include a solution dispenser comprising a carrier having embedded therein particles having a size of about 1-5 microns; a jet suitable to disperse the solution from the dispenser; and a tunable heat filter suitable to burn off the carrier, and make molten the particles, as the solution passes therethrough; wherein an additive manufacturing print build receives the molten particles.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B33Y 70/00 - Materials specially adapted for additive manufacturing
95.
3D PRINTING LIQUEFIER NOZZLE FLEXURE FOR IMPROVED IRONING
An apparatus, system and method for providing a liquefier nozzle flexure to at least enable ironing of a 3D print, to thereby improve print quality. The apparatus, system and method may include: a controllable print head for providing the 3D print; a liquefier capable of liquefying deposit material for providing the 3D print; and the liquefier nozzle flexure mounted between the print head and the liquefier that allows a distance between the print head and the liquefier to vary when a resistance is encountered at a print nozzle tip.
B29C 64/232 - Driving means for motion along the axis orthogonal to the plane of a layer
B29C 64/236 - Driving means for motion in a direction within the plane of a layer
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
96.
APPARATUS, SYSTEM AND METHOD OF COMBINING ADDITIVE MANUFACTURING PRINT TYPES
An apparatus, system and method of additive manufacturing. The apparatus, system and method include at least: a rastering print head suitable to print an outer contour for the additive manufacturing print; a secondary print head suitable to print infrared-actuated print material within the outer counter; and an infrared actuator, suitable to flow the infrared-actuated print material within the outer contour.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
97.
APPARATUS, SYSTEM AND METHOD FOR A LAMINATION PRESS
A lamination apparatus, system, and method. The apparatus, system and method are for a lamination press for laminating at least one laminating film to a subject, which may include: an upper press comprising a gel plate, an upper vacuum chamber, and tooling suitable to apply the laminating film; a lower press suitable to maintain the subject to receive the laminating film, and comprising a lower vacuum chamber, an air bearing stage, and servo-positioned tooling; and an aligner that applies the servo-positioned tooling to maintain positional balance and alignment of the subject by the air bearing stage during the laminating while enabling vertical flexure of the lower press, wherein the positional balance and alignment is substantially continuously monitored by a controller.
B32B 37/10 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using direct action of vacuum or fluid pressure
B32B 37/00 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
98.
APPARATUS, SYSTEM AND METHOD OF COATING ORGANIC AND INORGANIC PRINT MATERIALS
The disclosed exemplary apparatuses, systems and methods may provide a pulverant suitable to provide a three-dimensional molding by use of the pulverant in a layer-by-layer additive manufacturing process in which regions of respective layers of pulverant are selectively melted via introduction of electromagnetic energy. The pulverant may comprise a spray dried, thermoplastic polyurethane polymer (TPU) coated, inorganic or organic base particle.
The embodiments are and include at least an apparatus, system and method for forming print material particles for additive manufacturing (AM) printing. The apparatus, system and method include at least a melt chamber comprising a polymer melt; a vertical extruder that fluidically receives the polymer melt; an atomizer that atomizes the polymer melt from the vertical extruder and that distributes the atomized polymer melt; a fall chamber comprising a plurality of zones into which the atomized polymer melt is distributed; and a collector to receive the print material particles formed of the atomized polymer melt after falling through the plurality of zones.
The disclosed exemplary apparatuses, systems and methods provide a three-dimensional foam molding, produced via a layer-by-layer additive manufacturing process in which regions of respective layers of pulverant are selectively melted via introduction of electromagnetic energy. These apparatuses, systems and methods may include layers of the pulverant comprising at least thermoplastic polyurethane polymer (TPU) coated upon a base particle, wherein the TPU is coated via one of spray drying and a fluidized vessel.