A method of additively manufacturing a three-dimensional object may be performed using an irradiation sequence that is based at least in part on a predicted location of one or more fume plumes emitted from the powder material when irradiated by a plurality of energy beams. An exemplary method may include determining, with a computing device, an irradiation sequence for selectively consolidating powder material using an energy beam system of an additive manufacturing machine, and providing control commands, from the computing device to the energy beam system, configured to cause the energy beam system to emit a plurality of energy beams to selectively consolidate the powder material.
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B29C 64/277 - Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
B22F 10/28 - Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
B22F 10/366 - Scanning parameters, e.g. hatch distance or scanning strategy
B28B 1/00 - Producing shaped articles from the material
B28B 17/00 - SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER - Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
2.
UNPACKING DEVICE FOR UNPACKING AN ADDITIVELY MANUFACTURED THREE-DIMENSIONAL OBJECT FROM THE SURROUNDING CONSTRUCTION MATERIAL
An unpacking device (4) for unpacking an additively manufactured three-dimensional object (2) from the unsolidified construction material (3) surrounding it after completion of an additive construction process, wherein the unpacking device (4) is formed as a robot (7) having at least three robot axes (A1-A6), especially an industrial robot, wherein at least one unpacking tool (10) is arranged or formed on a robot axis (A6), which is provided for unpacking an additively manufactured three-dimensional object (2) from the unsolidified construction material (3) surrounding it after completion of an additive construction process, or the unpacking device (4) comprises at least one such robot (7).
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
B22F 12/88 - Handling of additively manufactured products, e.g. by robots
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
3.
DEVICE FOR THE GENERATIVE PRODUCTION OF A THREE-DIMENSIONAL OBJECT
A device (1) for the generative production of a three-dimensional object (2) by selectively solidifying construction material layers made of solidifiable construction material (3) layer by layer in a successive manner using at least one laser beam (5), comprising at least one device (4) for generating at least one laser beam (5) in order to selectively solidify individual construction material layers made of solidifiable construction material (3) layer by layer. The device (4) comprises at least one laser diode element (10) that is arranged or can be arranged directly over the construction plane (9) on which solidified construction material layers or construction material layers to be solidified are selectively formed and is designed to generate a laser beam (5) directed directly onto the construction plane, and/or the device (4) comprises at least one laser diode element (10) and at least one optical element (27).
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/277 - Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
B22F 10/28 - Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
An irradiation device for an additively manufacturing apparatus may include a working beam generation device configured to provide a working beam, a modulation beam generation device configured to provide a modulation beam, and a solid-state optical modulator that includes a crystalline material that exhibits a change in refractive index in response to photoexcitation of free electrons within the crystalline material. The irradiation device may include a power source coupled to the solid-state optical modulator and configured to introduce free electrons into the crystalline material. The modulation beam may cause photoexcitation of the free electrons within the crystalline material. The photoexcitation of the free electrons within the crystalline material may cause the crystalline material to exhibit a change in refractive index. The working beam, when incident upon the crystalline material, may exhibit a change in one or more parameters, such as a phase shift, attributable at least in part to the change in refractive index exhibited by the crystalline material.
G02F 1/03 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels or Kerr effect
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B28B 1/00 - Producing shaped articles from the material
B22F 10/28 - Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
B22F 12/43 - Radiation means characterised by the type, e.g. laser or electron beam frequency modulated
B23K 26/354 - Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
5.
ALIGNMENT OF ENERGY BEAMS IN ADDITIVE MANUFACTURING SYSTEMS AND MACHINES
An additive manufacturing system may include an irradiation device configured to emit an energy beam having a manufacturing power level selected to additively manufacturing a three-dimensional object by irradiating a powder material, and a controller configured to perform one or more beam alignment operations when irradiating the powder material. The irradiation device may include a beam source, one or more beam positioning elements, a beam splitter configured to split a measurement beam from the energy beam, and one or more beam sensors configured to determine one or more parameters of the measurement beam. The one or more beam alignment operations may include determining position information of the energy beam based on the one or more parameters of the measurement beam, and aligning the energy beam with an optical axis of the irradiation device by adjusting a position of the one or more beam positioning elements based on the position information.
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/282 - Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED] of the same type, e.g. using different energy levels
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
6.
METHOD AND APPARATUS FOR FLUID FLOW FOR ADDITIVE MANUFACTURING APPARATUS
A fluid flow apparatus configured to provide a flow of fluid with particular flow profiles to a process chamber of an additive manufacturing apparatus is provided. The fluid flow apparatus includes a plurality of openings forming a first flow region, a second flow region, a third flow region, and a fourth flow region in adjacent arrangement along an axis in the process chamber between the build platform and the laser window. A controller is configured to execute instructions that perform operations that include flowing, via the second flow region, the flow of fluid along a second distance along the axis at a second velocity range between approximately 1.0 meters per second (m/s) and 6.0 m/s, and flowing, via the fourth flow region, another flow of fluid along a fourth distance along the axis at a fourth velocity range between approximately 0.1 m/s and 4.5 m/s.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
7.
Additive manufacturing build units with process gas inertization systems
A build unit for additively manufacturing three-dimensional objects may include an energy beam system having one or more irradiation devices respectively configured to direct one or more energy beams onto a region of a powder bed, and an inertization system including an irradiation chamber defining an irradiation plenum, one or more supply manifolds, and a return manifold. The one or more supply manifolds may include a downflow manifold configured to provide a downward flow of a process gas through at least a portion of the irradiation plenum defined by the irradiation chamber, and/or a crossflow manifold configured to provide a lateral flow of the process gas through at least a portion of the irradiation plenum defined by the irradiation chamber. The return manifold may evacuate or otherwise remove process gas from the irradiation plenum defined by the irradiation chamber.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B22F 10/28 - Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
A build unit for additively manufacturing three-dimensional objects may include an energy beam system having one or more irradiation devices respectively configured to direct one or more energy beams onto a region of a powder bed, and an inertization system including an irradiation chamber defining an irradiation plenum, one or more supply manifolds, and a return manifold. The one or more supply manifolds may include a downflow manifold configured to provide a downward flow of a process gas through at least a portion of the irradiation plenum defined by the irradiation chamber, and/or a crossflow manifold configured to provide a lateral flow of the process gas through at least a portion of the irradiation plenum defined by the irradiation chamber. The return manifold may evacuate or otherwise remove process gas from the irradiation plenum defined by the irradiation chamber. While irradiating the region of the powder bed, the process gas may flow through the one or more supply manifolds, into the irradiation plenum, and from the irradiation plenum into the return manifold.
B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B22F 10/28 - Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
9.
ADDITIVE MANUFACTURING BUILD UNITS WITH PROCESS GAS INERTIZATION SYSTEMS
A build unit for additively manufacturing three-dimensional objects may include an energy beam system having one or more irradiation devices respectively configured to direct one or more energy beams onto a region of a powder bed, and an inertization system including an irradiation chamber defining an irradiation plenum, one or more supply manifolds, and a return manifold. The one or more supply manifolds may include a downflow manifold configured to provide a downward flow of a process gas through at least a portion of the irradiation plenum defined by the irradiation chamber, and/or a crossflow manifold configured to provide a lateral flow of the process gas through at least a portion of the irradiation plenum defined by the irradiation chamber. The return manifold may evacuate or otherwise remove process gas from the irradiation plenum defined by the irradiation chamber. While irradiating the region of the powder bed, the process gas may flow through the one or more supply manifolds, into the irradiation plenum, and from the irradiation plenum into the return manifold.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
An additive manufacturing machine may include an energy beam system configured to emit an energy beam utilized in an additive manufacturing process, and one or more optical elements utilized by, or defining a portion of, the energy beam system and/or an imaging system of the additive manufacturing machine. The imaging system may be configured to monitor one or more operating parameters of the additive manufacturing process. The additive manufacturing machine may include a light source configured to emit an assessment beam that follows an optical path incident upon the one or more optical elements, and one or more light sensors configured to detect a reflected beam comprising at least a portion of the assessment beam reflected and/or transmitted by at least one of the one or more optical elements. The additive manufacturing machine may include a control system configured to determine, based at least in part on assessment data comprising data from the one or more light sensors, whether the one or more optical elements exhibit an optical anomaly.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
A laser calibration device for calibrating an energy beam used in additive manufacturing, the laser calibration device including a body configured to be disposed in an additive manufacturing process chamber; a cover for the body, the cover comprising a plurality of holes; a photodiode; and a coating disposed on the body and configured to optically couple the photodiode with the plurality of holes, wherein the photodiode is configured to sense one or more parameters of the energy beam for determining calibrating instructions for the energy beam.
G01B 11/27 - Measuring arrangements characterised by the use of optical techniques for testing the alignment of axes for testing the alignment of axes
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/273 - Arrangements for irradiation using electron beams [EB] frequency modulated
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
12.
APPARATUS FOR ADDITIVELY MANUFACTURING THREE-DIMENSIONAL OBJECTS
Apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy source (4), which apparatus (1) comprises an application unit (6) with at least one application element (7) adapted to apply build material (3) on a build plane (8), characterized in by a determination unit (12) that is adapted to determine contact information relating to a force acting on the at least one application element (7), preferably during an application process.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/386 - Data acquisition or data processing for additive manufacturing
An adjustment to an irradiation parameter corresponding to a first irradiation unit and/or a second irradiation unit of an irradiation device of an additive manufacturing apparatus may be performed based at least in part on a simulation. The simulation may include simulating generation of a plurality of first calibration patterns by the first irradiation unit and a plurality of second calibration patterns by the second irradiation unit with a simulated change to the irradiation parameter of the irradiation device, and determining a calibration quality value based at least in part on position information relating to the plurality of first calibration patterns and the plurality of second calibration patterns. The calibration quality value may include an indication as to whether a calibration quality of the apparatus would be improved as a result of the adjustment to the irradiation parameter.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
14.
BUILD MATERIAL HANDLING UNIT FOR A POWDER MODULE FOR AN APPARATUS FOR ADDITIVELY MANUFACTURING THREE-DIMENSIONAL OBJECTS
Build material handling unit (2) for a powder module (3) for an apparatus for additively manufacturing three-dimensional objects, which apparatus is adapted to successively layerwise selectively irradiate and consolidate layers of a build material (4) which can be consolidated by means of an energy source, wherein the build material handling unit (2) is coupled or can be coupled with a powder module (3), wherein the build material handling unit (2) is adapted to level and/or compact a volume of build material (4) arranged inside a powder chamber (5) of the powder module (3) by controlling the gas pressure inside the powder chamber (5).
Sensor values captured by a sensor device are determined, one or more regions of a three-dimensional component having a deviation from an intended value are determined based at least in part on build coordinates for additively manufacturing the three-dimensional component corresponding to the sensor values, and a quality of the three-dimensional component is evaluated based at least in part on the one or more regions of the three-dimensional component having a deviation from the intended value. The sensor values correspond to an electromagnetic spectrum emitted by a melt pool formed by exposing a powder bed to a beam of radiation emitted from a laser apparatus, with the beam of radiation generating the melt pool in a melt region of the powder bed.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B23K 26/0622 - Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B23K 31/12 - Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by any single one of main groups relating to investigating the properties, e.g. the weldability, of materials
An optical system may include a first optical assembly and a first scan field expansion assembly. The first optical assembly may include or may be configured as a first flat-field lens. The first flat-field lens may have a first nominal scan field with a first flat focal plane. The first scan field expansion assembly may include one or more first field-expanding optical elements configured to provide a first expanded scan field coinciding with the first flat focal plane. The first expanded scan field may have a cross-sectional width and/or area that exceeds a corresponding cross-sectional width and/or area of the first nominal scan field. A method of additively manufacturing a three-dimensional object may include directing a first energy beam through the first optical assembly, and directing the first energy beam through the first scan field expansion assembly.
A process monitoring system for an additive manufacturing apparatus includes a scanner, a sensor device, and an optical focus-tracking device. The scanner includes an optical adjustment device that directs a melting beam emitted by a laser melting device onto a construction plane to generate a melting section of the construction plane. The sensor device may detect reflected radiation from the melting section and generate sensor data indicative of a size, shape, and/or temperature corresponding to the melting section. The optical focus-tracking device includes a focusing lens located between the scanner and the sensor device. The focusing lens may be actuatable by electronic machine data derived from the sensor data to impart a first focus adjustment with respect to the reflected radiation detected by the sensor followed by a second focus adjustment with respect to the melting beam directed by the optical adjustment device.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B23K 26/046 - Automatically focusing the laser beam
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B23K 26/082 - Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B23K 26/03 - Observing, e.g. monitoring, the workpiece
B28B 1/00 - Producing shaped articles from the material
B28B 17/00 - SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER - Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
18.
METHOD FOR PRODUCING A THREE-DIMENSIONAL COMPONENT
The invention relates to a method for manufacturing a three-dimensional component 14 by means of an additive construction method in which the component 14 is constructed by solidifying construction material 9 that can be solidified using radiation 18, especially a selective laser melting method or a selective laser sintering method, in which the component 14 is produced by successively solidifying construction material 9 that can be solidified using the impact of radiation 18 by melting or sintering, comprising the following features: providing an additive construction apparatus 1, especially an SLM apparatus or an SLS apparatus, comprising a process chamber 3, a construction platform 7 for carrying the construction material 9, and a radiation source arranged above the construction platform 7 for generating a point-type or linear energy input for creating a melting or sintering section in the construction material 9, providing a sensor apparatus 31 for selective detection of created melting or sintering sections and for the generation of sensor values therefrom for characterizing the melting or sintering sections, and storage of said sensor values together with coordinate values localizing the sensor values in the component 14, determination of load and flux information in the component 14 manufactured or to be manufactured by means of a calculation or measuring method for determining critical load areas in the component 14 manufactured or to be manufactured, spatial correlation of the sensor values determined for the evaluation of the component quality together with the coordinate values localizing said values with coordinates of the load and flux information, and assessment of the component 14 finished or to be finished, such that components 14 for which sensor values negatively impacting the component quality are determined in the range of critical or highly loaded sections of the load and flux information are classified as components 14 not corresponding to the requested component quality, and components 14 for which sensor values negatively impacting the component quality are determined with sufficient distance from critical or highly loaded sections of the load and flux information are classified as components 14 corresponding to the requested component quality.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
A method may of additively manufacturing a three-dimensional object includes determining a plurality of scanning segments for a build plane and/or for one or more object layers respectively corresponding to one or more regions of a powder bed defining the build plane, and determining an irradiation vector for irradiating the scanning segments with an energy beam. The irradiation vector determined for the respective scanning segments may include a hatching vector and/or a plurality of scanning vectors defining the hatching vector. The hatching vector and/or the scanning vectors defining the hatching vector may be oriented away from a normal point on the build plane. The method may include outputting an irradiation control command to an energy beam system based on the scanning segments and/or the irradiation vector for irradiating the scanning segments.
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
20.
METHODS OF DETERMINING AN INTERLACE PATH FOR AN ADDITIVE MANUFACTURING MACHINE
A method of additively manufacturing an object may include defining an interlace path for a plurality of energy beams from an energy beam system based at least in part on a route-finding algorithm. The interlace path may delineate a first contour zone of a build plane assigned to a first one of the plurality of energy beams from a second contour zone of the build plane assigned to a second one of the plurality of energy beams. An exemplary method may additionally or alternatively include outputting a control command based at least in part on the interlace path. The control command may be configured to cause the energy beam system to irradiate a layer of a powder bed with the plurality of energy beams.
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/277 - Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
G06F 17/17 - Function evaluation by approximation methods, e.g. interpolation or extrapolation, smoothing or least mean square method
21.
CONTROLLING IRRADIATION PARAMETERS OF AN ADDITIVE MANUFACTURING MACHINE
A method of additively manufacturing three-dimensional objects, and/or a method of controlling one or more irradiation parameters of the energy beam system, may include determining an irradiation setting using an irradiation control model and outputting an irradiation control command to an energy beam system based at least in part on the irradiation setting. The irradiation control model may be configured to determine the irradiation setting based at least in part on a power density factor and/or an irradiation vector factor. The irradiation control command may be configured to change one or more irradiation parameters for additively manufacturing a three-dimensional object. An additive manufacturing system may include an energy beam system and a control system that includes an irradiation controller. The irradiation controller may include a control module configured to perform such a method.
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
22.
APPARATUS FOR ADDITIVELY MANUFACTURING OF THREE-DIMENSIONAL OBJECTS
An apparatus (1) for additive manufacturing of three-dimensional objects (2) by successive, selective layer-by-layer exposure and thus solidification of construction material layers of a construction material (3) that can be solidified by means of an energy beam, comprising at least one temperature control device (11), which is provided for at least partial temperature control of a construction material layer formed in a construction plane, wherein the temperature control device (11) comprises at least one temperature control element (12), which is provided for generating an, especially electromagnetic, temperature control beam, wherein the at least one temperature control element (12) is formed as or comprises a temperature control diode.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B23K 26/03 - Observing, e.g. monitoring, the workpiece
B23K 26/06 - Shaping the laser beam, e.g. by masks or multi-focusing
B28B 1/00 - Producing shaped articles from the material
B28B 17/00 - SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER - Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
23.
Apparatus for additively manufacturing three-dimensional objects
Apparatus (1) for additively manufacturing of three-dimensional objects by means of successive layerwise selective irradiation and consolidation of layers of a build material which can be consolidated by means of an energy beam, with a stream generating unit (2) configured to generate a stream of a process gas (3) being capable of being charged with particles (4), in particular non-consolidated particulate build material and/or smoke and/or smoke residues, generated during operation of the apparatus (1) and a filter unit (5) configured to separate particles (4) from the stream of process gas (3), wherein the filter unit (5) comprises a filter chamber (6) with at least one filter element (7) at least partly arranged in the streaming path of the generated stream of process gas (3), wherein particles (4) in the stream of process gas (3) are separated from the process gas (3) by the filter element (7), wherein a particle reception chamber (13, 26, 28) is separably connected or connectable to a particle outlet (11) of the filter chamber (6) and configured to receive the particles (4) separated from the process gas (3).
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
B29C 64/259 - Enclosures for the building material, e.g. powder containers interchangeable
B29C 64/159 - Processes of additive manufacturing using only gaseous substances, e.g. vapour deposition
B29C 64/188 - Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
An irradiation assembly for additively manufacturing three-dimensional objects may include an irradiation device and a magnetic mounting device configured to displaceably support the irradiation device. The irradiation device may include one or more illumination elements respectively configured to emit an energy beam. The magnetic mounting device may include a magnetic slider element coupled to the irradiation device and a magnetic stator element couplable to a housing structure of an additive manufacturing machine. The magnetic stator element may include a displacement track configured to guide the magnetic slider element along a movement path above at least a portion of a construction plane of the additive manufacturing machine while the one or more illumination elements respectively emit the energy beam to selectively irradiate build material at specified regions of the construction plane.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B28B 1/00 - Producing shaped articles from the material
An apparatus for additively manufacturing three-dimensional objects may include at least one calibration unit, at least one irradiation device, and a determination device. The least one calibration unit may include at least one calibration region arranged in the beam guiding plane, and the at least one calibration region may include a plurality of sub-regions differing in respect of at least one optical property. The at least one irradiation device may be configured to guide a plurality of energy beams across the at least one calibration region comprising the plurality of sub-regions, and a plurality of calibration signals may be generated by the plurality of sub-regions being irradiated with the plurality of energy beams. The determination device may be configured to determine the plurality of calibration signals and to determine a calibration status of the irradiation device based at least in part on the determined plurality of calibration signals.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B23K 26/03 - Observing, e.g. monitoring, the workpiece
B23K 26/06 - Shaping the laser beam, e.g. by masks or multi-focusing
B23K 26/082 - Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
B23K 26/064 - Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
26.
Device for the additive production of a three-dimensional object
An apparatus for additive manufacturing of a three-dimensional object by successive layer-by-layer selective illumination and thus selective solidification of construction material layers formed in a construction plane, consisting of a solidifiable construction material by at least one energy beam, comprising a housing structure, and a combined coating and illumination assembly firmly arranged or formed on the housing structure of the apparatus, comprising a coating device provided for applying the construction material into the construction plane and for forming construction material layers to be solidified in the construction plane, and an illumination device provided for the selective illumination of respective construction material layers formed in the construction plane by the coating device, and a carrying device.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
B22F 10/00 - Additive manufacturing of workpieces or articles from metallic powder
An additive manufacturing machine includes an energy beam system situated in a fixed position relative to a reference plane coinciding with an expected location of a build plane, an energy beam system with an irradiation device configured to generate an energy beam and to direct the energy beam upon the build plane, and a position measurement system configured to determine a position of the build plane. A position measurement assembly includes one or more position sensors, and one or more mounting brackets configured to attach the one or more position sensors to an energy beam system of an additive manufacturing machine. The position measurement assembly is configured to determine a position of a build plane with the energy beam system situated in a fixed position relative to a reference plane coinciding with an expected location of the build plane.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
28.
Focus Adjustment and Laser Beam Caustic Estimation via Frequency Analysis of Time Traces and 2D Raster Scan Data
Methods of determining at least one parameter of an irradiation device of an apparatus for additively manufacturing three-dimensional objects may include generating an energy beam and guiding the energy beam across a structured test surface, generating a signal by detecting radiation that is emitted from the test surface, and determining the at least one parameter based on a frequency spectrum of the signal.
Methods for calibrating an irradiation device for an apparatus for additively manufacturing three-dimensional objects include generating at least two first and two second calibration patterns, in at least two different first positions and at least two different second positions; determining position information relating to the positions of the calibration patterns; generating a calibration quality value relating to a calibration status of the irradiation device; simulating at least two first calibration patterns and at least two second calibration patterns based on at least one changed irradiation parameter; determining a calibration quality value for the simulated calibration patterns; and repeating the simulation and determination of the calibration quality value until a maximum or minimum calibration quality value is reached.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
30.
METHOD AND APPARATUS FOR CONTROLLING THE EXPOSURE OF A SELECTIVE LASER SINTERING OR LASER MELTING APPARATUS
A method of additively manufacturing a three-dimensional object may include allocating irradiation of respective ones of a plurality of sequential layers of construction material between a first region and a second region based at least in part on a first irradiation time and/or a second irradiation time. Irradiation of the first region is allocated to a first scanner and the first irradiation time is indicative of a time required for the first scanner to irradiate the first region with respect to at least one of the plurality of sequential layers of construction material. Irradiation of the second region is allocated to a second scanner and the second irradiation time is indicative of a time required for the second scanner to irradiate the second region with respect to at least one of the plurality of sequential layers of construction material. The first irradiation time and the second irradiation time may be at least approximately the same.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/277 - Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B23K 26/06 - Shaping the laser beam, e.g. by masks or multi-focusing
H01S 3/101 - Lasers provided with means to change the location from which, or the direction in which, laser radiation is emitted
H01S 3/102 - Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
31.
PLANT FOR ADDITIVELY MANUFACTURING OF THREE-DIMENSIONAL OBJECTS
A system (1) for additive manufacturing of three-dimensional objects, comprising one or more working stations (21), which are provided for performing at least one working process in the additive manufacturing of three-dimensional objects, at least one freely positionable mobile storage unit (2) comprising a rack-like storage device (4) comprising at least one storage room (5) provided for storing at least one powder module (6), especially for the purpose of conveying the powder module (6) between different working stations (21) of the system (1), and at least one driverless, freely movable mobile conveying unit (3) comprising a receiving device (12) provided for receiving at least one mobile storage unit (2) for the purpose of conveying the storage unit (2) between different working stations (21) of the system (1).
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
B29C 64/259 - Enclosures for the building material, e.g. powder containers interchangeable
B29C 64/00 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
32.
Powder module for an apparatus for additive manufacturing of three-dimensional object
A powder module for an apparatus for additive manufacturing of three-dimensional objects, comprising a powder chamber limiting a powder room that can be filled with powdered construction material and a carrying device arranged in the powder room and limiting the powder room at the bottom, wherein between at least one powder chamber wall limiting the powder room and the carrying device a gap extending at least partially along the powder chamber wall limiting the powder room is formed, through which powdered construction material from the powder room can enter a powder module section lying below the carrying device, wherein the gap opens out into a receiving section of a receiving element arranged or formed on the powder chamber, wherein the receiving section is formed as or comprises an especially ring-shaped circumferential flow channel structure provided for receiving construction material from the gap.
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
B22F 10/00 - Additive manufacturing of workpieces or articles from metallic powder
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/307 - Handling of material to be used in additive manufacturing
B29C 64/255 - Enclosures for the building material, e.g. powder containers
An additive manufacturing apparatus may include a process chamber, a coating device, a shielding device, and a guiding device. The process chamber may include first and second working plane areas. The first working plane area may include a construction plane, and the second working plane area may house at least a part of the guiding device. The coating device may include a coating element assembly group that is, movably supported relative to the construction plane by the guiding device, and at least one coating element configured to form construction material layers in the construction plane. The shielding device may shield the second working plane area from intrusion of construction material or impurities from the first working plane area. The shielding device may include a shielding band, and the shielding band may be coupled for movement with the coating element assembly group. The shielding band may be guided movably along a plurality of supporting points that define an interior region of the second working plane area, and the guiding device may be arranged or formed above the first working plane area.
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/255 - Enclosures for the building material, e.g. powder containers
Method for operating at least one apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a powdered build material (3) which can be consolidated by means of an energy beam (4), whereby waste thermal energy (WTE) is generated during operation of the at least one apparatus (1), characterized in that the waste thermal energy (WTE) is at least partly used for generating electrical or mechanical energy (EE, ME) by means of at least one energy converting device (15) and/or the waste thermal energy (WTE) is at least partly used for operating at least one thermal energy consuming device.
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
The invention relates to a method for producing a three-dimensional component by an electron-beam, laser-sintering or laser-melting process, in which the component is created by successively solidifying predetermined portions of individual layers of building material that can be solidified by being exposed to the effect of an electron-beam or laser-beam source (2) by melting on the building material, wherein thermographic data records are recorded during the production of the layers, respectively characterizing a temperature profile of at least certain portions of the respective layer, and the irradiation of the layers takes place by means of an electron beam or laser beam (3), which is controlled on the basis of the recorded thermographic data records in such a way that a largely homogeneous temperature profile is produced, wherein, to irradiate an upper layer, a focal point (4) of the electron beam or laser beam (3) is guided along a scanning path (17), which is chosen on the basis of the data record characterizing the temperature profile of at least certain portions of the layer lying directly thereunder or on the basis of the data records characterizing the temperature profiles of at least certain portions of the layers lying thereunder.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B29C 64/386 - Data acquisition or data processing for additive manufacturing
B22F 10/28 - Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B23K 26/082 - Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
B23K 26/144 - Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
An apparatus for additively manufacturing three-dimensional objects may include a first detection device configured to detect a first process parameter during operation of the apparatus, and to generate a first data set comprising information relating to the first process parameter, a second detection device configured to detect a second process parameter during operation of the apparatus, and to generate a second data set comprising information relating to the second process parameter; and a data processing device configured to determine a mutual dependency between the first process parameter and the second process parameter based at least in part on the first data set and the second data set. The mutual dependency may include a possible influence or a real influence of the first process parameter on the second process parameter. The first process parameter may include a chemical parameter and/or a physical parameter of an atmosphere within a process chamber of the apparatus. The second process parameter may include a chemical parameter, a geometrical parameter, and/or a physical parameter of build material during operation of the apparatus.
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V. (Germany)
CONSTELLIUM SINGEN GMBH (Germany)
CONCEPT LASER GMBH (Germany)
BLM S.P.A. (Italy)
Inventor
Hasenauer, Thomas
Orloff, Sven
Hillebrecht, Martin
Emmelmann, Claus
Beckmann, Frank
Abstract
The present invention relates to a system consisting of a connection node and at least one first connection body, wherein: the connection node comprises a connection node central body, a first connection element for joining with the connection body, and at least one second connection element for joining with a second connection body; the first connection element and the second connection element are connected or may be connected to the connection node central body; and at least one portion of the connection node central body and/or of the first connection element and/or of the second connection element is manufactured by means of an additive process, for example 3D printing, or by means of a casting process.
Additive manufacturing systems may include a laser melting apparatus, a sensor device, and a visualization apparatus. A laser melting apparatus may form a three-dimensional component by exposing a powder bed to a beam of radiation based on build coordinates, with the beam of radiation providing an energy influx that generates a melt pool in a melt region of the powder bed. A sensor device may capture sensor values corresponding to the melt pool and/or the melt region. A visualization apparatus may display a representation of the three-dimensional component, with the display including the build coordinates and the sensor values in respect of a capture location thereof in the three-dimensional component. The displayed representation may be based on a display output that includes sensor values correlated with build coordinates.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B23K 26/0622 - Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
B23K 31/12 - Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by any single one of main groups relating to investigating the properties, e.g. the weldability, of materials
Method for determining an operational parameter for an imaging device for imaging at least one part of a build plane, in particular for a determination device for determining at least one parameter of an energy beam for an apparatus for additively manufacturing three-dimensional objects, comprising the steps: determining at least one spot parameter that relates to an extension of a spot, in particular a spot of an energy beam, in a determination plane; determining a difference between the determined spot parameter and a nominal spot parameter; determining an imaging parameter of the imaging device based on the determined difference adjusting the imaging parameter based on the determined difference.
Methods of additively manufacturing components include providing a first control command and/or a second control command to a cart selected from among a plurality of carts. The first control command may be configured to cause the selected cart to autonomously drive or fly to a construction container selected from among a plurality of construction containers and to receive automatically the selected construction container, and, upon the selected cart receiving automatically the selected construction container, to autonomously drive or fly the selected cart to a construction apparatus selected from among a plurality of construction apparatuses. The second control command may be configured to cause the selected cart to autonomously drive or fly to the selected construction apparatus and to receive automatically a construction container containing a component having been additively manufactured by the selected construction apparatus upon the selected construction apparatus automatically discharging the construction container containing the component.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/386 - Data acquisition or data processing for additive manufacturing
An apparatus for additively manufacturing a three-dimensional object formed by successive layerwise selective irradiation and consolidation of build material layers by at least one energy beam in a build area of the apparatus is provided, along with methods thereof. The apparatus may comprise a first build material supply device configured to supply an amount of build material to a first build material application device; wherein the first build material application device is configured to apply an amount of build material in the build area of the apparatus; and a second build material supply device configured to supply an amount of build material to a second build material application device, wherein the second build material application device is configured to apply an amount of build material to the supply area of the first build material supply device.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/255 - Enclosures for the building material, e.g. powder containers
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B22F 10/28 - Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B22F 12/55 - Two or more means for feeding material
Apparatus for additively manufacturing three-dimensional objects formed by irradiation and consolidation of layers of build material. The apparatus may include at least one build plane; at least one build material application device being adapted to apply an amount of build material in the at least one build plane, the at least one build material application device comprising at least one build material application element being moveably supported in a first motion path in which the at least one build material application element is moveable or moved across the at least one build plane, wherein the at least one build material application element is transferrable in a first orientation in which the at least one build material application element is operable to apply an amount of build material in the at least one build plane and in a second orientation in which the at least one build material application element is not operable to apply an amount of build material in the at least one build plane.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B29C 41/12 - Spreading-out the material on a substrate
43.
Apparatus for additively manufacturing three-dimensional objects
An apparatus for additively manufacturing three-dimensional objects formed of successive layerwise consolidation of layers of a build material which can be consolidated by an energy beam. The apparatus may include a determination device confirmed to determine at least one parameter of the energy beam for a specific build material, wherein the determination device comprises at least one determination base body arrangeable or arranged in a beam guiding plane, in particular a build plane; and a tempering unit confirmed to temper the determination base body. Determination devices, along with methods, are also provided for determining at least one parameter of an energy beam of an apparatus for additively manufacturing three-dimensional objects.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
Methods of controlling and/or operating an apparatus for additively manufacturing three-dimensional objects include simulating control and/or operation of at least one functionality of the apparatus using a provisional software product to check at least one pre-defined certification criterion upon which the at least one functionality of the apparatus are preconditioned, generating a machine-readable software product upon the provisional software product having satisfied the at least one pre-defined certification criterion, and controlling and/or operating the at least one functionality of the apparatus using the machine-readable software product. The software product may be generated by modifying the provisional software product based on a certification key provided to the provisional software product. The provisional software product may be unreadable by the apparatus and may require such modifying when generating the machine-readable software product as a precondition to such controlling and/or operating of functionality of the apparatus.
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B33Y 99/00 - Subject matter not provided for in other groups of this subclass
H04N 1/00 - PICTORIAL COMMUNICATION, e.g. TELEVISION - Details thereof
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
45.
Powder module for an apparatus for additive manufacturing of three-dimensional objects
A powder module for an apparatus for additive manufacturing of three-dimensional objects may include a powder chamber defining a powder room configured to receive a powdered construction material, a support structure configured to support the powder chamber, a carrying device disposed within the powder room and defining a bottom portion of the powder room, the carrying device being movably supported relative to the powder chamber, and a drive device configured to move the carrying device relative to the powder chamber. A maximum traveling distance of the carrying device may be from 800 millimeters to 2,000 millimeters. An apparatus for additive manufacturing of three-dimensional objects may include an aforementioned powder module.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/307 - Handling of material to be used in additive manufacturing
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
46.
Powder module for an apparatus for additively manufacturing three-dimensional objects
Powder module (1) for an apparatus (2) for additively manufacturing three-dimensional objects, which powder module (1) comprises a holding device (5) adapted to hold a build plate (3) of the powder module (1), wherein the holding device (5) comprises at least one clamping unit (6) connectable with and disconnectable from a recess (7) in the build plate (3), wherein the clamping unit (6) is moveable between a first position in which the clamping unit (6) is connected with the build plate (3) and a second position in which the clamping unit (6) is disconnected from the recess (7).
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
Method for additive manufacturing three-dimensional objects wherein at least one open sub-data set is changeable by user to comprise object specific identification number
Method for additively manufacturing three-dimensional objects (1) based on build data, in particular via successive layerwise selective irradiation and consolidation of layers of a build material which can be consolidated by means of an energy source, which build data define at least one part of an object (1) to be built in the additive manufacturing process, in particular a geometrical structure of the object (1), wherein build data are generated comprising at least two sub-data sets (3, 4) relating to different geometrical parts of the object (1); at least one sub-data set (3, 4) is defined as open sub-data set (4); all sub-data sets (3) except the at least one open sub-data set (4) are locked, wherein the locked sub-data sets (3) are unchangeable and the at least one open sub-data set (4) is changeable; and at least one three-dimensional object (1) is additively manufactured based on the build data.
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B22F 10/00 - Additive manufacturing of workpieces or articles from metallic powder
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
Methods of additively manufacturing a three-dimensional object include receiving manufacturing data from a memory chip physically associated with an exchangeable container configured for use with a system for additively manufacturing three-dimensional objects, and controlling a first operation comprising an operation of an active element of the exchangeable container and/or a second operation comprising an operation of a transporting path configured to transport the exchangeable container within the system for additively manufacturing three-dimensional objects, in which controlling the first operation and/or the second operation is based at least in part on an object to be and/or being additively manufactured using the exchangeable container.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
B29C 64/259 - Enclosures for the building material, e.g. powder containers interchangeable
B29C 64/386 - Data acquisition or data processing for additive manufacturing
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
B29C 67/00 - Shaping techniques not covered by groups , or
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 35/08 - Heating or curing, e.g. crosslinking or vulcanising by wave energy or particle radiation
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
49.
Build material handling unit for a powder module for an apparatus for additively manufacturing three-dimensional objects
Build material handling unit (2) for a powder module (3) for an apparatus for additively manufacturing three-dimensional objects, which apparatus is adapted to successively layerwise selectively irradiate and consolidate layers of a build material (4) which can be consolidated by means of an energy source, wherein the build material handling unit (2) is coupled or can be coupled with a powder module (3), wherein the build material handling unit (2) is adapted to level and/or compact a volume of build material (4) arranged inside a powder chamber (5) of the powder module (3) by controlling the gas pressure inside the powder chamber (5).
B29C 64/307 - Handling of material to be used in additive manufacturing
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B28B 1/00 - Producing shaped articles from the material
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
Method for calibrating an irradiation device for additively manufacturing three-dimensional objects by successive layerwise selective irradiation and consolidation of layers of a build material which can be consolidated by means of an energy beam, which irradiation device comprises a first and a second irradiation unit adapted to guide a first and a second energy beam, wherein at least two first and two second calibration patterns are generated, wherein the at least two first calibration patterns are generated in at least two different first positions via the first energy beam and the at least two second calibration patterns are generated in at least two different second positions via the second energy beam and position information are determined relating to the positions of the at least two first and second calibration patterns and calibration information are generated relating to a calibration status of the irradiation device based on the determined position information.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
Method for additively manufacturing at least one three-dimensional object, comprising assigning a parameter indicative of the time required for irradiating a respective irradiation zone to a plurality of irradiation zones of a respective build material layer, assigning a first energy beam to the irradiation zone whose parameter indicates that the irradiation zone has the longest and second longest time required for irradiating and irradiating these irradiation zones with at least one respective first and second energy beams, wherein after irradiation and consolidating the irradiation zone whose parameter indicates that the irradiation zone has the second longest time required for irradiating and irradiating with the second energy beam is completed, assigning the at least one second energy beam to the irradiation zone whose parameter indicates that the irradiation zone has the third longest time required for irradiating and irradiating this irradiation zone with the at least one second energy beam.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/277 - Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
Irradiation device (5) for an apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy source, which Irradiation device (5) comprises at least one irradiation unit (6-8), preferably an optical unit, arranged in a housing (9) of the Irradiation device (5), wherein a stream generating device (10) is provided that is adapted to guide a gas stream (11) that is adapted to be charged with residues present inside the housing (9) through the housing (9) of the Irradiation device (5) along a streaming path in which the gas stream (11) at least partially streams alongside or through the at least one irradiation unit (6-8) for removing residues from the housing (9).
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
53.
Plant for additively manufacturing at least one three-dimensional object
Plant for additively manufacturing at least one three-dimensional object, comprising at least one process station being configured to perform an additive manufacturing process and/or at least one preprocessing process for an additive manufacturing process and/or at least one postprocessing process for an additive manufacturing process; at least one conveying device configured to convey an item between at least two positions (P1, P2) of the plant, the conveying device comprising at least one conveying element, the at least one conveying element being at least partially bound to ground, and at least one conveying carriage being connectable or connected with the conveying element so as to be moveable between at least two positions (P1, P2) of the plant, the at least one conveying carriage comprising at least one supporting interface for supporting at least one item.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B22F 12/88 - Handling of additively manufactured products, e.g. by robots
B29C 64/386 - Data acquisition or data processing for additive manufacturing
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
B22F 12/86 - Serial processing with multiple devices grouped
B22F 12/82 - Combination of additive manufacturing apparatus or devices with other processing apparatus or devices
B29C 64/379 - Handling of additively manufactured objects, e.g. using robots
B22F 12/84 - Parallel processing within single device
B29C 64/00 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
Plant for additively manufacturing at least one three-dimensional object, comprising at least one process station for an additive manufacturing process, wherein at least one functional component, preferably a lifting device for a powder module, of the process station is at least partially enclosed by a housing structure of the process station, wherein the process station is coupled or can be coupled with at least one powder module, wherein the housing structure comprises at least one opening for loading and/or unloading the at least one powder module into or from the process station, wherein a platform is provided that is arrangeable or arranged adjacent to the at least one opening, wherein the platform comprises at least one positioning unit with at least one positioning surface for positioning a module carrier which is adapted to carry the at least one powder module.
B29C 64/307 - Handling of material to be used in additive manufacturing
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
B28B 1/00 - Producing shaped articles from the material
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
B23K 26/34 - Laser welding for purposes other than joining
B23K 26/354 - Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
Apparatus for additively manufacturing three-dimensional objects by means of successive layerwise selective irradiation and consolidation of layers of a build material which can be consolidated by means of an energy beam, which apparatus comprises an irradiation device adapted to guide an energy beam across a build plane, wherein a calibration device is provided comprising a positioning unit, a determination unit and a calibration unit, preferably arranged in a process chamber of the apparatus, that is adapted to at least partially reflect the energy beam, wherein the irradiation device is adapted to guide the energy beam to the calibration unit for generating a reflected part of the energy beam, wherein the positioning unit is adapted to position the irradiation device dependent on at least one parameter of the reflected part of the energy beam determined via the determination unit.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/277 - Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
Determination device (2) for determining at least one parameter of an energy beam (4), in particular an energy beam (4) generated via an irradiation device of an apparatus (1) for additively manufacturing three-dimensional objects, which determination device (2) comprises two determination units (5, 6) arrangeable or arranged in succession in a beam path (3) of the energy beam (4), characterized in that each determination unit (5, 6) builds or comprises at least one complementary pattern element (15, 18, 21, 23, 24, 27, 30), wherein at least two pattern elements (15, 18, 21, 23, 24, 27, 30) of the two determination units (5, 6) complement each other to a superordinate pattern (32, 35).
B29C 64/386 - Data acquisition or data processing for additive manufacturing
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/00 - Data acquisition or data processing for additive manufacturing
B28B 1/00 - Producing shaped articles from the material
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B23K 26/03 - Observing, e.g. monitoring, the workpiece
B23K 26/064 - Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
B23K 26/067 - Dividing the beam into multiple beams, e.g. multi-focusing
Apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective consolidation of layers of a build material (3) which can be consolidated by means of an energy source (4), which apparatus (1) comprises a stream generating device (6) adapted to generate a gas stream (7) in a process chamber (8) of the apparatus (1) and an application device (18) comprising an application unit (19) with an application element (20) that is moveable across a build plane (14) of the apparatus (1) for applying build material (3) in the build plane (14), wherein the application device (18) comprises at least one stream guiding unit (22) that is adapted to guide the gas stream (7) along a streaming path (26).
B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
Apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective consolidation of layers of a build material (3) which can be consolidated by means of an energy source (4), which apparatus (1) comprises an optical unit (10) with at least one optical surface (9) arranged in a process chamber (6) of the apparatus (1), wherein the apparatus (1) comprises at least one determination device (12) with at least one light source (13) and at least one determination unit (14) adapted to determine at least one radiation parameter of radiation (15) emitted from the light source (13) and reflected at the optical surface (9) of the optical unit (10), wherein the determination device (12) is adapted to determine at least one condition information of the optical unit (10) based on the determined radiation parameter.
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
Method for calibrating an irradiation device (2) for additively manufacturing three-dimensional objects which irradiation device (2) comprises at least two irradiation units (3, 4), comprising: guiding one of the at least two energy beams (6, 10) via the corresponding irradiation unit (3, 4) to a determination region (15), preferably a part of a build plane (8), for generating a calibration pattern (18, 19); imaging at least one part of the determination region (15) to an on-axis determination unit (12, 14) of the at least one other irradiation unit (3, 4); determining a position of the calibration pattern (18, 19) in the determination region (15) on basis of the image of the at least one part of the determination region (15); generating calibration information relating to a calibration status of at least one part of the irradiation device (2) based on the position of the calibration pattern (18, 19).
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B23K 26/04 - Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
B23K 26/32 - Bonding taking account of the properties of the material involved
60.
APPARATUS FOR ADDITIVELY MANUFACTURING THREE-DIMENSIONAL OBJECTS
Apparatus (11) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (19) which can be consolidated by means of an energy source, wherein a position determination device (1) is provided that is adapted to determine position data relating to a position of at least one part (3) of at least one object (2) based on a detection of a reflected part (8) of an energy beam (16) or a measurement beam (5) that is reflected at the at least one part (3) of the at least one object (2).
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/277 - Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
61.
Apparatus for additively manufacturing at least one three-dimensional object
Apparatus (1) for additively manufacturing at least one three-dimensional object (2) by means of successive layerwise selective consolidation of layers of build material (3), the apparatus (1) comprising a number of functional devices (7-10) operable at a defined operating voltage level, whereby the apparatus (1) comprises at least one voltage control device (13) configured to change the voltage level of a supply voltage (14) supplyable or supplied to the apparatus (1) from an electrical energy supply grid (15) from a supply grid voltage level different from the defined operating voltage level of the number of functional devices (7-10) of the apparatus (1) to the or a voltage level equal to the defined operating voltage level of the number of functional devices (7-10) of the apparatus (1).
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
Apparatus for additively manufacturing three-dimensional objects by means of successive layerwise selective irradiation and consolidation of layers of a build material which can be consolidated using at least one energy beam, wherein an irradiation device is adapted to generate and guide the energy beam to at least one position of a build plane, wherein a determination unit is adapted to determine at least one parameter of radiation propagating in a process chamber of the apparatus, wherein a calibration element is arrangeable or arranged in the process chamber, wherein the calibration element comprises at least one calibration section that is adapted to emit measurement radiation upon irradiation with the or an energy beam and in that the determination unit is adapted to detect the measurement radiation, wherein a control unit is adapted to calibrate the irradiation device.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
Method for operating an apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy beam (4), wherein at least one energy beam (4) is guided along at least one track segment (13, 16-18) in the build plane based on irradiation data generated based on a space-filling curve.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/277 - Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B33Y 50/00 - Data acquisition or data processing for additive manufacturing
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
Apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy source (4), wherein a control unit (6) is provided that is adapted to receive or generate encrypted object data relating to at least one three-dimensional object (2) to be built in a, in particular additive, manufacturing process performed on the apparatus (1), wherein the or a control unit (6) is adapted to decrypt the encrypted object data for performing the additive manufacturing process.
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B23K 26/00 - Working by laser beam, e.g. welding, cutting or boring
B28B 1/00 - Producing shaped articles from the material
B28B 17/00 - SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER - Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
Apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy beam (6, 6′) generated via an irradiation device (4), wherein the irradiation device (4) comprises at least one beam guiding unit (7, 7′) that is adapted to guide the energy beam (6, 6′) across a build plane (9) in which build material (3) is applied to be irradiated, wherein the at least one beam guiding unit (7, 7′) is arranged behind a point of impact (20) of the energy beam (6, 6′) in the build plane (9), in particular all possible points of impact (20), with respect to a streaming direction (16) of the gas stream (13) streaming over the build plane (9).
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B28B 1/00 - Producing shaped articles from the material
B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B23K 26/064 - Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
B23K 26/082 - Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
B23K 26/14 - Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
Apparatus (1) for additively manufacturing three-dimensional objects (2, 2′) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy source, which apparatus (1) comprises a stream generating device (6) that is adapted to generate a gas stream (7, 7′) inside a process chamber (5) of the apparatus (1), wherein the stream generating device (6) is adapted to control at least one parameter relating to a composition of the gas stream (7, 7′).
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
67.
METHOD FOR ADDITIVELY MANUFACTURING AT LEAST ONE THREE-DIMENSIONAL OBJECT
Method for additively manufacturing at least one three-dimensional object (2) by means of successive layerwise selective irradiation and consolidation of build material layers (3), whereby each build material layer (3) comprises at least one irradiation area (IA) which is to be irradiated and consolidated by means of at least one energy beam (5), whereby the at least one irradiation area (IA) is irradiated on basis of a main irradiation pattern (MP) for consolidating the irradiation area (IA), the main irradiation pattern (MP) comprising a plurality of irradiation pattern elements (IPE) being separately irradiatable or irradiated with the at least one energy beam (5), whereby the amount of energy input into the respective irradiation pattern element (IPE) in the main irradiation step is different from the amount of energy input into the irradiation pattern element (IPE) in the at least one additional irradiation step.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
Method for additively manufacturing at least one three-dimensional object (2) by means of successive layerwise selective irradiation and consolidation of build material layers (3), whereby each build material layer (3) comprises at least one irradiation area (IA) which is to be irradiated and consolidated by means of at least one energy beam (5), whereby the successive layerwise selective irradiation and consolidation of respective irradiation areas (IA) is performed on basis of at least one irradiation parameter set (IPS) resulting in a specific amount of energy input into the irradiation area (IA) of a respective build material layer (3).
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B23K 26/08 - Devices involving relative movement between laser beam and workpiece
B23K 26/06 - Shaping the laser beam, e.g. by masks or multi-focusing
B23K 26/14 - Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
69.
Method for operating an apparatus for additively manufacturing three-dimensional objects
Method for operating an apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy source, wherein irradiation data define at least two regions (8, 9) of object data relating to a three-dimensional object (2), which regions (8, 9) are irradiated based on at least two different irradiation parameters.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
B28B 1/00 - Producing shaped articles from the material
B28B 17/00 - SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER - Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
Method for additively manufacturing at least one three-dimensional object (2) by means of successive layerwise selective irradiation and consolidation of build material layers (3) by means of at least one energy beam (5), comprising irradiating and thereby consolidating an irradiation area (A) which is to be selectively irradiated and thereby consolidated of a first build material layer (3); and irradiating the irradiation area (A) of the second build material layer (3) in an area above the at least one sub-area (SA) of the irradiation area (A) of the first build material layer (3) in such a manner that the at least one sub-area (SA) of the irradiation area (A) of the first build material layer (3) is consolidated.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
Method for operating an apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy beam (4), wherein at least one part of a first layer (7) is irradiated based on at least one first irradiation parameter and at least one part of a second layer (8) is irradiated based on at least one second irradiation parameter, wherein the at least one first irradiation parameter and the at least one second irradiation parameter are different for the at least two layers (7, 8).
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
72.
APPARATUS FOR ADDITIVELY MANUFACTURING THREE-DIMENSIONAL OBJECTS
Apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy source.
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
Apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy source (4).
B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
G01J 1/42 - Photometry, e.g. photographic exposure meter using electric radiation detectors
G06T 17/30 - Surface description, e.g. polynomial surface description
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
Apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers (3) of a build material (4) which can be consolidated by means of an energy source.
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
Apparatus for additively manufacturing three-dimensional objects by means of successive layerwise selective irradiation and consolidation of layers of a build material which can be consolidated by means of an energy beam, comprising an irradiation device is adapted to generate the energy beam and guide the energy beam over a determination plane, in particular a build plane in which the build material is applied to be irradiated, wherein the irradiation device is adapted to generate at least one irradiation region, in particular a melt pool, in the determination plane, wherein a determination device is provided that is adapted to determine a focal position of the energy beam and/or a difference between a reference focal position and an actual focal position of the energy beam based on radiation that is emitted from at least one irradiation region.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B28B 1/00 - Producing shaped articles from the material
B28B 17/00 - SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER - Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
B23K 26/03 - Observing, e.g. monitoring, the workpiece
B23K 26/06 - Shaping the laser beam, e.g. by masks or multi-focusing
76.
Apparatus for additively manufacturing three-dimensional objects
Apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy source (4), which apparatus (1) comprises an application unit (6) with at least one application element (7) adapted to apply build material (3) on a build plane (8), characterized in by a determination unit (12) that is adapted to determine contact information relating to a force acting on the at least one application element (7), preferably during an application process.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/386 - Data acquisition or data processing for additive manufacturing
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
Plant (2) comprising at least one apparatus (1) for additively manufacturing three-dimensional objects by means of successive layerwise selective irradiation and consolidation of layers of a build material which can be consolidated by means of an energy source, which plant (2) comprises at least one module (6, 12-14) separably connected or connectable with the apparatus (1), wherein the at least one module (6, 12-14) is moveable in a loading direction (9) into the apparatus (1) and in an unloading direction (10) out of the apparatus (1), wherein the module (6, 12-14) is moved into a work position (11) along the loading direction (9) and out of the work position (11) along the unloading direction (10), wherein the loading direction (9) and the unloading direction (10) comprise at least one directional component extending in the same direction.
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B23K 26/354 - Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
B23K 26/34 - Laser welding for purposes other than joining
B28B 1/00 - Producing shaped articles from the material
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/259 - Enclosures for the building material, e.g. powder containers interchangeable
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
Plant (1) comprising at least one apparatus (2, 3, 17, 18) for additively manufacturing three-dimensional objects by means of successive layerwise selective irradiation and consolidation of layers of a build material which can be consolidated by means of an energy source, which plant (1) comprises at least one module (4) separably connected or connectable with the apparatus (2, 3, 17, 18), wherein the plant (1) comprises at least one tunnel structure (5) through which the at least one module (4) is moveable in a tunnel transport direction (6), wherein the at least one module (4) is moveable from the tunnel structure (5) into a work position (7) inside the apparatus (2, 3, 17, 18) along a loading direction (10) and the at least one module (4) is moveable from the work position (7) out of the apparatus (2, 3, 17, 18) along an unloading direction (12).
B29C 64/379 - Handling of additively manufactured objects, e.g. using robots
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
B29C 64/259 - Enclosures for the building material, e.g. powder containers interchangeable
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
Plant (1) comprising at least one apparatus (2-4) for additively manufacturing three-dimensional objects by means of successive layerwise selective irradiation and consolidation of layers of a build material which can be consolidated by means of an energy source, which plant (1) comprises at least one module (5) separably connected or connectable with the apparatus (2-4), wherein the plant (1) comprises at least one tunnel structure (7) through which the at least one module (5) is moveable in a tunnel transport direction (10).
B29C 64/379 - Handling of additively manufactured objects, e.g. using robots
B29C 64/182 - Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects in parallel batches
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/259 - Enclosures for the building material, e.g. powder containers interchangeable
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
Method for additively manufacturing at least one three-dimensional object, whereby a process gas stream streams across the build plane (BP), whereby the process gas stream is adapted to transport respective fume particles from a layer of build material (3) which are generated during selective irradiation and consolidation of the respective layer of build material (3); wherein it is determined that the process gas stream fulfils a pre-definable or pre-defined scheduling criterion; wherein the start time for starting irradiating and consolidating of a first area (A1) and/or the start time for starting irradiating and consolidating the at least one further area (A2, An) is determined on the basis of the determination that the process gas stream has fulfilled the pre-definable or pre-defined scheduling criterion.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
Apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy source (5), wherein a measurement beam source (4, 17) is provided which is adapted to generate a measurement beam (7), wherein a beam guiding unit (20) is provided that is adapted to guide the measurement beam (7) in the build plane (6) in the process chamber, wherein a determination device (8) is adapted to determine at least one parameter relating to the object (2) and/or a build material layer (9) based on interference.
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B23K 26/03 - Observing, e.g. monitoring, the workpiece
B29C 64/00 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
Build material application device for additively manufacturing a three-dimensional object, the build material application device comprising: at least one blade-like build material application member; at least one support unit for supporting the blade-like build material application member, wherein the support unit comprises at least two support unit members defining a receiving section for receiving a blade-like build material application member, a first support unit member is moveably supported relative to a second support unit member between a first operating position, in which a holding force is exertable or exerted on a blade-like build material application member received in the receiving section, and a second operating position, in which no holding force is exertable or exerted on a blade-like build material application member received in the receiving section.
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
Method for calibrating at least one apparatus (1) for additively manufacturing three-dimensional objects by means of successive layerwise selective irradiation and consolidation of layers of a build material which can be consolidated by means of an energy beam that can be generated via an irradiation element of an irradiation device (7) of the apparatus (1), wherein a determination unit (2) is provided for determining at least one parameter of radiation (3) inside a process chamber (5), wherein a calibration beam source (4) is arranged or generated inside the process chamber (5) of the apparatus (1), in particular in a build plane (9) or a region above the build plane (9), wherein at least one parameter, in particular the intensity, of radiation (3) emitted by the calibration beam source (4) is determined via the determination unit (2).
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
Apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy source, wherein an irradiation device (4) with at least one irradiation unit (5) is provided that comprises a common holding structure (6), in particular a common housing, holding at least two irradiation elements (7) in a defined spatial relation, wherein the at least two irradiation elements (7) are individually controllable.
B29C 64/282 - Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED] of the same type, e.g. using different energy levels
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
B28B 1/00 - Producing shaped articles from the material
85.
Apparatus for additively manufacturing three-dimensional objects
Apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy beam (5) that is guided inside a process chamber (6) of the apparatus (1), wherein a determination device (7, 8) is provided that is arranged inside the process chamber (6) and adapted to determine at least one parameter of the energy beam (5), preferably during an additive manufacturing process, in particular during a process step of the additive manufacturing process in which build material (3) is applied onto a build plane (11) of the apparatus (1).
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B28B 1/00 - Producing shaped articles from the material
B33Y 50/00 - Data acquisition or data processing for additive manufacturing
B29C 64/386 - Data acquisition or data processing for additive manufacturing
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
Device (1) for determining at least one component parameter, particularly the density and/or a density-related parameter, of a plurality of, particularly additively manufactured, components (3), the device (1) comprising:—a supporting unit (2) configured to support a plurality of components (3) whose at least one component parameter is to be determined, the supporting unit (2) comprising a supporting unit base body (4) comprising a plurality of receiving sections (5) in a defined spatial relationship, whereby at least one receiving section (5) is configured to detachably receive a component (3) whose component parameter is to be determined; one component parameter of components (3) whose at least one component parameter is to be determined being received in respective receiving sections (5) of the supporting unit (2).
G06K 9/00 - Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
G01N 21/01 - Arrangements or apparatus for facilitating the optical investigation
G01N 9/00 - Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
G01N 15/08 - Investigating permeability, pore volume, or surface area of porous materials
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B29C 64/00 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
B33Y 99/00 - Subject matter not provided for in other groups of this subclass
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B33Y 80/00 - Products made by additive manufacturing
Build material application device (5) for an apparatus (1) for additively manufacturing at least one three-dimensional object (2) by means of successive layerwise selective irradiation and consolidation of layers of build material (3) which can be consolidated by means of at least one energy beam (4), the build material application device (5) comprising: —at least one build material application element (8) configured to apply an amount of build material (3) in a build plane (E) of a respective apparatus (1) for additively manufacturing at least one three-dimensional object (2); —at least one spatter removal element (9) configured to remove spatters (10) present in a layer of build material (3) of a respective apparatus (1) for additively manufacturing a three-dimensional object (2), particularly to remove spatters (10) originating from a selective irradiation of the respective layer of build material (3).
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
Method for determining an amount of build material (3) which is to be applied in a build plane (BP) of an apparatus (1) for additively manufacturing at least one three-dimensional object (2) by means of successive layerwise selective irradiation and consolidation of layers of build material (3) applied in the build plane (BP) of the apparatus (1) by means of at least one energy beam (4), the method comprising the steps of: subdividing at least a part of the build plane (BP), particularly the complete build plane (BP), of the apparatus (1), in which build plane (BP) build material (3), which is to be selectively irradiated and consolidated during an additive manufacturing process of at least one three-dimensional object (2) by means of the apparatus (1), is to be applied, into a plurality of build plane elements (BPE), categorizing the build plane elements (BPE) in a first category.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
Method for additively manufacturing at least one three-dimensional object (2) by means of successive layerwise selective irradiation and consolidation of layers (3) of build material (4) which can be consolidated by means of at least one energy beam (5), comprising the steps of: —providing a plurality of process parameter sets (PPS1-PPSn) each comprising a plurality of process parameters (PP1-PPn) allowing for a selective consolidation of a layer (3) of build material (4), whereby each process parameter set (PPS1-PPSn) results in specific properties of the microstructure of an area of the respective layer (3) of build material (4) which was selectively irradiated and consolidated on basis of the respective process parameter set (PPS1-PPSn); —using at least two different process parameter sets (PPS1-PPSn) of the plurality of process parameter sets (PPS1-PPSn) for additively manufacturing at least one three-dimensional object (2) by means by means of the successive layerwise selective irradiation and consolidation of layers (3) of build material (4) which can be consolidated by means of at least one energy beam (5).
Method for operating at least one apparatus (1) for additively manufacturing of three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy source, wherein slice data are provided relating to an application of build material (3) in at least one section (14-18) of an object (2) to be built, wherein the slice data comprise a number of slices relating to corresponding layers of build material (3) to be applied, wherein the slice data comprise a number of first slices corresponding to a first section (14-18) of the object (2) and at least a number of second slices corresponding to at least a second section (14-18) of the object (2), wherein the number of first slices and the number of second slices differ.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
91.
APPARATUS FOR ADDITIVELY MANUFACTURING THREE-DIMENSIONAL OBJECTS
Apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of at least one energy beam (4), which apparatus (1) comprises an irradiation device (5) with at least one beam guiding element (7) on which the energy beam (4) is partially reflected, wherein a first beam part (10) extends between the beam guiding element (7) and a build plane (18) of the apparatus (1) and a second beam part (11) is transmitted through or scattered at the beam guiding element (7), wherein a determination device (12) is provided that is adapted to determine at least one parameter of the second beam part (11).
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
Apparatus (1) for additively manufacturing of three-dimensional objects (2) by means of successive layerwise selective consolidation of layers of a build material, comprising a build material removal device (3) with at least one build material removal unit (4) adapted to remove non-consolidated build material (5) surrounding an additively built object (2), wherein the build material removal device (3) comprises a build material removal chamber (6) delimiting a build material removal volume (7), wherein the build material removal chamber (6) is arranged or arrangeable above the object (2), wherein the object (2) is successively moveable into the build material removal chamber (6), wherein the at least one build material removal unit (4) is adapted to remove non-consolidated build material (5).
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
Method for operating at least one apparatus (1) for additively manufacturing of three-dimensional objects (2-4) by means of successive layerwise selective irradiation and consolidation of layers of a build material (5) which can be consolidated by means of an energy beam (6), wherein a communication interface (10) connected or connectable with the at least one apparatus (1) is adapted to receive at least a first data set (15-17) comprising object data from at least a first user (12-14), relating to at least one object (2-4) to be built, and at least a second data set (15-17) comprising object data from at least a second user (12-14), wherein a manufacturing process of at least two objects (2-4) is controlled dependent on the data sets (15-17) of the at least two users (12-14).
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control (DNC), flexible manufacturing systems (FMS), integrated manufacturing systems (IMS), computer integrated manufacturing (CIM)
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/171 - Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects
Powder module (5), in particular for an apparatus (1) for additively manufacturing of three-dimensional objects (2), which powder module (5) comprises a powder chamber (10) with at least one wall portion (11) defining a powder room, in which powder room a carrying element (9) is provided that is moveably supported relative to the powder chamber (10), at least one support unit (13) is adapted to provide a non-locating bearing of the carrying element (9) relative to the at least one wall portion (11).
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
Method for additively manufacturing three-dimensional objects, whereby flow of an inert process gas, preferably an inert gas or containing inert gas, is created, the inert process gas flowing through a chamber (3, 10) of at least one build apparatus (2) which is configured to additively manufacture three-dimensional objects by means of successive layerwise selective irradiation and consolidation of layers of a powdered build material (3) which can be consolidated by means of an energy beam, and/or through a chamber of at least one apparatus (2) which is configured to perform at least one pre-processing step of an additive manufacturing process, and/or through a chamber of at least one at least one apparatus (2) which is configured to perform at least one post-processing step of an additive manufacturing process, wherein the flow of process gas displaces a certain volume of fluid from the chamber (3, 10).
B28B 1/00 - Producing shaped articles from the material
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
Apparatus (1) for additively manufacturing of three-dimensional objects by means of successive layerwise selective irradiation and consolidation of layers of a build material which can be consolidated by means of an energy source, which apparatus (1) comprises a tool carrier device (2) adapted to position at least one tool unit (3) inside a process chamber (4) of the apparatus (1), wherein the tool carrier device (2) comprises at least one, in particular exchangeable, tool unit (3) that is moveable between a retracted position in which the tool unit (3) is received in a tool housing (6) enclosing the tool unit (3) and an extended position in which the tool unit (3) is at least partly extended from the tool housing (6).
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
A procedure for calibration of at least one scanning system of a laser sinter or laser melt facility can be carried out in a short time, can take place automatically, and thereby can be carried out before each individual construction process. The procedure may include generation of at least one line pattern through at least one scanning system on a surface at the level of a construction field.
B23K 26/34 - Laser welding for purposes other than joining
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/386 - Data acquisition or data processing for additive manufacturing
G05B 19/401 - Numerical control (NC), i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
B22F 10/00 - Additive manufacturing of workpieces or articles from metallic powder
Powder module (1) for an apparatus for additively manufacturing three-dimensional objects, the powder module (1) comprising a powder chamber (6) having a power chamber volume (7) and a carrying device (9), the carrying device (9) comprising: a carrying unit (8) being moveably supported along a motion axis between a first position, particularly a lower end position, and a second position, particularly an upper end position, relative to the powder chamber (6), a drive unit (10) for generating a drive force for moving the carrying unit (8) between the first position and the second position or vice versa, a coupling unit (11) for coupling the carrying unit (8) with the drive unit (10), and a second extension state, particularly corresponding to the second position of the carrying unit (8), a guiding unit (12) surrounding the coupling unit (11).
B22F 7/08 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/236 - Driving means for motion in a direction within the plane of a layer
B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
A method for additive manufacturing of an object, in particular a hybrid object, based on a data record describing an object to be additively manufactured, includes providing a data record describing the object to be additively manufactured, subdividing the data record into at least two sub-data records, wherein a first sub-data record describes a first sub-object forming a first object part of the object to be additively manufactured, and at least one other sub-data record describes another sub-object forming another object part of the object to be additively manufactured, forming the first sub-object based on the first sub-data record in a first additive construction process, and forming the at least one other sub-object based on the at least one other sub-data record in at least one separate other additive construction process, wherein the at least one other sub-object is formed at least partially, especially completely, on the first sub-object.
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B33Y 50/00 - Data acquisition or data processing for additive manufacturing
B29C 64/386 - Data acquisition or data processing for additive manufacturing
B28B 1/00 - Producing shaped articles from the material
B28B 17/00 - SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER - Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
B29C 64/236 - Driving means for motion in a direction within the plane of a layer
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B22F 3/105 - Sintering only by using electric current, laser radiation or plasma
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources