The present disclosure describes a polymer mouthguard for protecting the teeth of a wearer. The mouthguard includes a lingual portion, a facial portion, and an occlusal portion connected with one another in the shape of an arch and together defining a trough for receiving the upper (maxillary) or lower (mandibular) teeth of a wearer. At least one, or both, of the facial portion and the occlusal portion have a shock absorbing lattice formed therein. The mouthguard can be produced as a single object by the process of additive manufacturing (e.g., stereolithography).
Provided is method of making a three-dimensional object comprising polyurea, which may include: (a) dispensing a one part (1K) dual cure resin into a stereolithography apparatus, the resin comprising or consisting essentially of a photoinitiator, a reactive blocked polyisocyanate, optionally a catalyst such as a polyurethane blowing catalyst, and optionally a polyepoxide; (b) additively manufacturing from said resin an intermediate object comprising the light polymerization product of said reactive blocked polyisocyanate; (c) optionally cleaning said intermediate object; and (d) reacting said polymerization product in said intermediate with water in the presence of a catalyst such as a polyurethane blowing catalyst (which may be included in the resin, the water, or both) to generate polyamine in situ that sequentially reacts with the remainder of the polymerization product to form urea linkages and thereby produce a three-dimensional object comprising polyurea. Dual cure resins useful for the method are also provided.
Methods of making a three-dimensional object from a light polymerizable resin are described. A method may include: (a) providing a window, a light polymerizable resin, a laterally translatable substrate between said window and said resin to which said resin is adhered, and a carrier platform above said window; (b) irradiating said resin with light through said window and said translatable substrate, and vertically advancing said carrier away from said window, to produce a growing object on said carrier platform and consume resin beneath said growing object; and (c) laterally advancing said translatable substrate with said resin adhered thereto across said window to drag fresh resin beneath said growing object, continue producing said growing object and continue consuming fresh resin, until said three-dimensional object is produced.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
A method of additively manufacturing a plurality of parts in a manner that facilitates efficient collection of metrology data on the parts is described herein. The method includes the steps of: additively manufacturing a construct, the construct comprising: (i) a backing, and (ii) a plurality of parts connected to the backing; inserting the backing into an imaging apparatus in an orientation in which the plurality of parts are positioned for imaging; then imaging the plurality parts in the imaging apparatus to collect image data from each part, and then removing the construct from the imaging apparatus and separating the parts from the backing.
G01N 23/046 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
G01N 23/083 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
Provided herein according to some embodiments is a dual cure stereolithography resin that includes a Diels-Alder adduct, which adduct is light polymerizable in the first, light, cure to produce an intermediate object, and on heating the intermediate object yields a bis-maleimide that can further react and/or polymerize during the second, heat, cure.
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
C08L 69/00 - Compositions of polycarbonates; Compositions of derivatives of polycarbonates
C08L 79/08 - Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
Provided herein is a method of recycling reactive prepolymers from additively manufactured articles or recovered coating material that comprises a crosslinked polymer formed from a single-cure resin comprising a reactive blocked prepolymer and a crosslinker, by forming and recovering a regenerated reactive prepolymer. Light-polymerizable resins, methods of making recyclable objects from such resins, and methods for sustainable manufacturing are also provided.
C08J 11/08 - Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
C08J 11/18 - Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
7.
SYSTEMS AND METHODS FOR ADDITIVELY MANUFACTURING SEMI-CUSTOM OBJECTS
A computer-implemented method of making a semi-custom product for a user, includes the steps of: (a) providing a set of data files, each data file representing a distinct variant of the product; (b) providing personal data from the user, the personal data including at least first and second distinct user attributes; (c) providing product preference data from the user, the product preference data including at least first and second distinct product attributes; and then (d) ranking the set of data files with (i) the personal data and (ii) the product preference data to identify a best fit data file, the best fit data file representing a variant of the product that most closely meets the product preference data based on the personal data.
Provided herein is an additive manufacturing method of making a three-dimensional object comprising polyurea, comprising: (a) dispensing a one part (1K) dual cure resin into a stereolithography apparatus, the resin comprising or consisting essentially of a photoinitiator, a reactive blocked polyisocyanate, and optionally a polyepoxide, the reactive blocked polyisocyanate comprising the reaction product of a polyisocyanate and an amine or hydroxyl (meth)acrylate or (meth)acrylamide monomer blocking agent; (b) additively manufacturing from said resin an intermediate object comprising the light polymerization product of said reactive blocked polyisocyanate; (c) optionally cleaning said intermediate object; and (d) reacting said polymerization product in said intermediate with water to generate polyamine in situ that sequentially reacts with the remainder of the polymerization product to form urea linkages and hereby produce a three-dimensional object comprising polyurea. One part (1K) dual cure resins useful for the method are also provided.
B29C 64/112 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
The present invention concerns methods of forming a three-dimensional object, and polymerizable liquids such as dual cure resins useful for making a three-dimensional object by sterolithography, such as by continuous liquid interface production (CLIP).
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
Provided herein is a method of making a three-dimensional object (31) by bottom-up additive manufacturing, which method may include: providing a carrier platform (14), a light source (13), and a light transmissive window (11) therebetween, the light transmissive window comprising a gas permeable member having a top surface and a bottom surface; depositing a liquid resin (21) on the window, the resin comprising a cyclic olefin monomer and a ring-opening metathesis polymerization (ROMP) photocatalyst; contacting a gas to said gas permeable member bottom surface; and exposing said resin to light from said light source while advancing aid carrier platform away from said window to form said three-dimensional object on said carrier platform. An apparatus useful for carrying out the method and a method useful for recycling the object are also provided.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 80/00 - Products made by additive manufacturing
B01J 35/00 - Catalysts, in general, characterised by their form or physical properties
Provided herein according to some embodiments is a dual cure additive manufacturing resin, comprising: (i) a light polymerizable component, (ii) a photoinitiator, (iii) a heat polymerizable component, and (iv) a non-reactive diluent, which resin is useful for the production of three-dimensional objects by additive manufacturing. Methods of using the same are also provided.
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
In some embodiments, a method of determining the fill level of a resin pool in a bottom-up additive manufacturing apparatus includes the steps of: (a) providing an additive manufacturing apparatus including a build platform and a light transmissive window (12), the build platform (15) and the window (12) defining a build region therebetween, with the window (12) carrying a resin pool, the pool having a resin top surface portion; (b) advancing the build platform (15) and the window (12) towards one another until the build platform (15) contacts the resin top surface portion; (c) detecting the impact of the build platform (15) with the resin top surface portion; and (d) determining the fill level of the resin pool from the detected impact.
Methods, systems, and/or apparatuses for making an object on a bottom-up stereolithography apparatus that includes a light source, a drive assembly, optionally a heater and/or cooler, and a controller. The light source, optional heater and/or cooler, and/or the drive assembly have at least one adjustable parameter that is adjustable by said controller. An example method comprises (a) installing a removable window cassette on said apparatus in a configuration through which said light source projects, said window cassette comprising an optically transparent member having a build surface on which an object can be produced, and with said optically transparent member having at least one thermal profile associated therewith; and then (b) modifying said at least one adjustable parameter by said controller based on said at least one thermal profile of said optically transparent member; and then (c) producing the object on said build surface from a light-polymerizable liquid by bottom-up stereolithography.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
Provided is a method of recycling an additively manufactured object into a reusable thermoplastic polymer, which method in some embodiments may include: (a) providing at least one additively manufactured object produced by stereolithography from a dual cure resin, the object comprising (i) a light polymerized polymer, and (ii) a heat polymerized polymer intermixed with said light polymerized polymer; (b) comminuting the object to produce a particulate material therefrom; (c) contacting the particulate material to a polar, aprotic solvent for a time and at a temperature sufficient to extract the heat polymerized polymer from the particulate material into said solvent, leaving residual particulate material comprising said light polymerized polymer in solid form; (d) separating the residual particulate material from said solvent; and then (e) separating the heat polymerized polymer from said solvent to provide a reusable thermoplastic polymer material in solid form.
A method of cleaning residual resin from an additively manufactured object, includes: (a) enclosing an additively manufactured object in an inner chamber of a centrifugal separator, the additively manufactured object including a light polymerized resin with a surface coating of viscous, unpolymerized, residual resin; (b) flooding the chamber with a volatile organic solvent vapor without contacting liquid organic solvent to the object, the vapor present in an amount sufficient to reduce the viscosity of the residual resin; and (c) spinning the additively manufactured object in the chamber to centrifugally separate at least a first portion of the residual resin from the object.
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
B08B 3/08 - Cleaning involving contact with liquid the liquid having chemical or dissolving effect
B08B 5/00 - Cleaning by methods involving the use of air flow or gas flow
B08B 7/02 - Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
B08B 7/04 - Cleaning by methods not provided for in a single other subclass or a single group in this subclass by a combination of operations
An integrated additive manufacturing system includes: (a) at least one resin supply; (b) a plurality of additive manufacturing machines on which parts may be produced, each of the additive manufacturing machines operatively associated with the at least one resin supply; and (c) at least one peripheral machine operatively associated with each of the additive manufacturing machines and the at least one resin supply.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/188 - Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
B29C 64/255 - Enclosures for the building material, e.g. powder containers
B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
Provided herein according to aspects of the present invention are resins that: (a) are suitable for use in additive manufacturing techniques such as bottom-up and top-down stereolithography, (b) produce objects that are bioresorbable, and (c) produce objects that are flexible or elastic (preferably at at least typical room temperatures of 25° C., and in some embodiments at typical human body temperatures of 37° C.). Such resins may include: (a) a bioresorbable polyester oligomer having reactive end groups; (b) non-reactive diluent; (c) optionally reactive diluent; and (d) a photoinitiator.
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
A resin composition useful for additive manufacturing is provided, which resin composition may exhibit improved shelf life through inhibition of crystallization. Such resin composition may include a crystallization inhibitor as taught herein, and/or a prepolymer produced by reaction of an isocyanate with multiple isomers and comprising a lower percentage of the structurally symmetric isomer. Methods of forming a three-dimensional object using such resin composition are also provided.
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
A resin useful for producing objects is provided, which resin contains a photoinitiator of low cytotoxicity. The resins may be suitable for use in additive manufacturing techniques such as bottom-up and top-down stereolithography, produce objects that are bioresorbable and non-cytotoxic, and/or produce objects that are flexible or elastic. Methods of use of the resin and objects produced therefrom are also provided.
A method of forming a three-dimensional object is carried out by: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid including a mixture of (i) a light polymerizable liquid first component, and (ii) a second solidifiable component that is different from the first component; (c) irradiating the build region with light through the optically transparent member to form a solid polymer scaffold from the first component and also advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, and containing the second solidifiable component carried in the scaffold in unsolidified and/or uncured form; and (d) concurrently with or subsequent to the irradiating step, solidifying and/or curing the second solidifiable component in the three-dimensional intermediate to form the three-dimensional object.
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
Provided herein are methods of making (meth)acrylate blocked polyurethanes with zirconium catalysts, dual cure resins containing (meth)acrylate blocked polyurethanes and zirconium catalysts, methods of using the same in additive manufacturing, and products made therefrom.
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
C08F 299/06 - Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
C08G 18/10 - Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
A method of making a three-dimensional object from a polymerizable resin, the method comprising the steps of: (a) providing a carrier platform on which the three-dimensional object can be formed; (b) producing the three-dimensional object adhered to the carrier platform from the polymerizable resin by stereolithography, the object having residual resin on the surface thereof; (c) immersing the object in a wash liquid with the object remaining adhered to the carrier platform; (d) agitating (i) the object in said wash liquid (e.g., by spinning), (ii) the wash liquid with the object immersed therein (e.g., by sonication of the wash liquid), or (iii) both the object in the wash liquid and the wash liquid with the object immersed therein, to at least partially remove residual resin from the surface of the object; (e) separating the object from the wash liquid, with the object remaining adhered to the carrier platform, the object having residual wash liquid on the surface thereof; (f) agitating the object (e.g., by spinning) to at least partially remove residual wash liquid from the surface thereof; and (g) repeating steps (c) through (f) at least once to remove additional polymerizable resin from the surface thereof, wherein steps (c) through (f) are carried out in the same vessel, said immersing step (c) comprises filling the vessel with the wash liquid, and the separating step (e) comprises draining the wash liquid from the vessel.
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
B08B 3/10 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
B08B 3/12 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
23.
Methods for producing three-dimensional objects with apparatus having feed channels
A method of forming a three-dimensional object, wherein said three-dimensional object is an insert for use between a helmet and a human body, is described. The method may use a polymerizable liquid, or resin, useful for the production by additive manufacturing of a three-dimensional object, comprising a mixture of (i) a light polymerizable liquid first component, and (ii) a second solidifiable component that is different from said first component.
C08F 2/46 - Polymerisation initiated by wave energy or particle radiation
C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
C08G 61/04 - Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
C08K 3/013 - Fillers, pigments or reinforcing additives
C08K 3/01 - Use of inorganic substances as compounding ingredients characterised by their specific function
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
G03F 7/027 - Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
G03F 7/038 - Macromolecular compounds which are rendered insoluble or differentially wettable
G03F 7/38 - Treatment before imagewise removal, e.g. prebaking
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B29C 64/386 - Data acquisition or data processing for additive manufacturing
C08G 18/81 - Unsaturated isocyanates or isothiocyanates
C08G 18/10 - Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
C08G 18/76 - Polyisocyanates or polyisothiocyanates cyclic aromatic
B29C 64/255 - Enclosures for the building material, e.g. powder containers
B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
C08J 5/00 - Manufacture of articles or shaped materials containing macromolecular substances
C08L 75/14 - Polyurethanes having carbon-to-carbon unsaturated bonds
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 33/00 - SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING - Details thereof or accessories therefor
B29K 105/00 - Condition, form or state of moulded material
B29K 75/00 - Use of polyureas or polyurethanes as moulding material
B29K 105/04 - Condition, form or state of moulded material cellular or porous
B29L 11/00 - Optical elements, e.g. lenses, prisms
B29L 31/10 - Building elements, e.g. bricks, blocks, tiles, panels, posts, beams
A connective or supportive sheath comprising, consisting of, or consisting essentially of a hollow tube having a circumferential or perimeter wall, the wall having an inner surface and an outer surface, the wall comprising interconnected, radially projecting, partitions, the partitions forming radially extending pores, the pores extending from said inner surface through said outer surface, and wherein the tube is comprised of, consists of, or consists essentially of a flexible or elastic polymer.
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
A method of making a three-dimensional object by additive manufacturing from a blended resin including (i) at least one light polymerizable first component and, (ii) at least one, or a plurality of, second solidifiable components that are different from said first component, the method including: providing a first resin and a second resin, where the resins produce three-dimensional objects having different mechanical properties from one another when all are produced under the same process conditions; mixing the first and second resins with one another to produce the blended resin, the blended resin producing a three-dimensional object having mechanical properties intermediate between that of objects produced by the first and second resins when all are produced under the same process conditions; and dispensing the blended resin to the build region of an additive manufacturing apparatus; and then optionally but preferably producing a three-dimensional object from the blended resin in the apparatus.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
B29K 63/00 - Use of epoxy resins as moulding material
B29K 75/00 - Use of polyureas or polyurethanes as moulding material
B29K 83/00 - Use of polymers having silicon, with or without sulfur, nitrogen, oxygen or carbon only, in the main chain, as moulding material
26.
METHODS FOR PRODUCING THREE-DIMENSIONAL OBJECTS WITH APPARATUS HAVING FEED CHANNELS
A method of forming a three-dimensional object (e.g. comprised of polyurethane, polyurea, or copolymer thereof) is carried out by: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid comprising a mixture of: (i) a light polymerizable liquid first component, and (ii) a second solidifiable component that is different from the first component; (c) irradiating the build region with light through the optically transparent member to form a solid blocked polymer scaffold and advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, with the intermediate containing the second solidifiable component; and then (d) contacting the three-dimensional intermediate to water to form the three-dimensional object.
B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
C08K 3/013 - Fillers, pigments or reinforcing additives
C08K 3/01 - Use of inorganic substances as compounding ingredients characterised by their specific function
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
G03F 7/027 - Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
G03F 7/038 - Macromolecular compounds which are rendered insoluble or differentially wettable
G03F 7/38 - Treatment before imagewise removal, e.g. prebaking
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B29C 64/386 - Data acquisition or data processing for additive manufacturing
C08G 18/81 - Unsaturated isocyanates or isothiocyanates
C08G 18/10 - Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
C08G 18/76 - Polyisocyanates or polyisothiocyanates cyclic aromatic
B29C 64/255 - Enclosures for the building material, e.g. powder containers
B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
C08J 5/00 - Manufacture of articles or shaped materials containing macromolecular substances
C08L 75/14 - Polyurethanes having carbon-to-carbon unsaturated bonds
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
27.
LOFTED LATTICE STRUCTURES AND METHODS OF MAKING THE SAME
An additively manufactured lattice includes a plurality of symmetrically oriented repeating unit cells. Each of the unit cells is comprised of a vertically oriented tubular structure having a top edge and bottom edge, said tubular structure defined by a circumferential side wall extending from said top edge to said bottom edge. The side wall has a lower portion, an intermediate portion, and an upper portion, with the lower portion terminating at the bottom edge, the upper portion terminating at the top edge, and the intermediate portion positioned between the lower portion and the upper portion. A plurality of spaced legs is included with each unit cell, with each leg formed as an outfolding of the side wall, each outfolding beginning at the side wall intermediate portion and extending progressively further outward through the side wall lower portion to the bottom edge.
A41D 13/015 - Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches with shock-absorbing means
B33Y 80/00 - Products made by additive manufacturing
28.
PRODUCTION OF LIGHT-TRANSMISSIVE OBJECTS BY ADDITIVE MANUFACTURING
Provided herein is a method of making a clear or translucent object by additive manufacturing, comprising (a) providing a clear or translucent light polymerizable resin, the resin comprising: (i) light-polymerizable monomers, prepolymers, or a combination thereof; (ii) a photoinitiator; and (iii) a polysubstituted linear polyacene ultraviolet light absorbing compound which compound is polysubstituted with bromo, chloro, —Se—R′, —S—R′ or combinations thereof, where each R′ is independently selected from alkyl, aryl, and arylalkyl; and then (b) producing by stereolithography with ultraviolet light a clear or translucent object from said light polymerizable resin.
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
Provided herein according to aspects of the present invention is a method of additively manufacturing an object having a particle surface coating thereon, using an intermediate object produced in an additive manufacturing process by light polymerization of a dual cure resin, said intermediate object having residual dual cure resin from which it was produced remaining on a surface portion thereof in unpolymerized form; forming a solid particle coating adhered to the resin coating film; and then further curing the intermediate object.
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
30.
Reduction of polymerization inhibitor irregularity on additive manufacturing windows
An apparatus for producing a three-dimensional object by additive manufacturing includes a drive assembly operatively associated with a carrier and a window mount and configured to advance the carrier and the window mount away from one another. A first fluid switch is connected to a first fluid orifice when a window is present, or connected to the window mount and configured for connection to the window when the window is absent. A second fluid switch is connected to a second fluid orifice when the window is present, or connected to the window mount and configured for connection to the window when the window is absent. A fluid supply is connected to both the first and second fluid switch, and the fluid includes a polymerization inhibitor.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
A method of forming a three-dimensional object includes: providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; filling the build region with a polymerizable liquid, irradiating the build region with light through the optically transparent member to form a solid polymer from the polymerizable liquid, and advancing said carrier away from said build surface to form said three-dimensional object from said solid polymer. The irradiating step includes projecting focused light at the build region, and the advancing step is carried out at a rate that is dependent on an average light intensity of the focused light.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B29C 64/112 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
A dental model, includes (a) an upper segment, said upper segment having a shape corresponding to at least a portion of a dental arch of a human patient; (b) a base segment having an external surface and a bottom surface; (c) at least one internal cavity formed in said base segment, and optionally said upper segment, said at least one internal cavity extending through said bottom surface; and (d) at least one wash channel extending from said external surface of said base segment through said base segment and into said at least one internal cavity.
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
The present invention concerns methods of forming a three-dimensional object, and polymerizable liquids such as dual cure resins useful for making a three-dimensional object by sterolithography, such as by continuous liquid interface production (CLIP), wherein the three-dimensional object is flame retardant.
C08L 51/00 - Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
Surface texturing of objects during additive manufacturing, including systems and methods thereof. For example, a method of surface texturing a three-dimensional (3D) object during additive manufacturing of the object: (a) irradiating a resin segment with patterned light at a build plane to polymerize said resin and grow said 3D object, then (b) advancing said object away from said build plane to bring a new segment of said resin in contact with said growing 3D object and establish a new build plane, and then repeating steps (a) through (b) until said 3D object is formed. For resin segments that correspond to portions of said 3D object to which surface texture is applied, said irradiating step is carried out by sequentially irradiating each resin segment with: (i) a first sub-exposure pattern and (ii) a second sub-exposure pattern, one of which is modified to include a texture pattern on a surface thereof.
B29C 64/282 - Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED] of the same type, e.g. using different energy levels
Systems, methods, and devices may be configured to detect and remediate component failures in three-dimensional object printers (10, 10a-f) preemptively. For example, systems may include: (a) a plurality of printers (10, 10a-f) each configured to produce three-dimensional objects (13), each printer including: (i) a plurality of subsystems; and (ii) at least one sensor; and (b) processor(s) (41, 42) and memory resource(s) (21) storing an inventory of available replacement components for at least some of said subsystems. The one or more memory resources may (21) store instructions that may cause the one or more processors to: (i) identify a predetermined pattern in data sensed during a process of producing a three-dimensional object by a sensor of a printer as an indicator of likely failure of a subsystem or component thereof; and (ii) assign a component in inventory to said printer based on a unique identifier of the printer and the indicator of likely failure identified in the signal.
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
An additive manufacturing system includes: (a) a build platform dispensing assembly carrying a plurality of build platforms; (b) at least two additive manufacturing apparatus, each apparatus configured for receiving a removable build platform on which objects can be produced; (c) a build platform buffering assembly configured for removably receiving at least one build platform on which an object has been produced; (d) a cleaning apparatus; and (e) a robot operatively associated with each cleaning apparatus, the at least two additive manufacturing apparatus, the build platform dispensing assembly, and the build platform buffering assembly.
B29C 64/379 - Handling of additively manufactured objects, e.g. using robots
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
An additively manufactured cushion includes an array of interconnected surface lattice unit cells. The surface lattice unit cells are comprised of a unit cell surface portion configured as a Schoen F-RD minimal surface unit cell, and the unit cell surface portion is comprised of a rigid, flexible, or elastic polymer. In some embodiments, the surface lattice unit cells have an average width of from 1 to 100 millimeters and an average volume fraction of from 5 or 10 percent to 50 or 60 percent.
An additive manufacturing apparatus (10) includes (a) a light polymerizable resin unit comprising a surface on which a light polymerizable resin can be supported; (b) a light engine (17) configured to illuminate a region of the light polymerizable resin unit; (c) a carrier platform on which an object can be produced; (d) a drive assembly operatively associated with the carrier platform for advancing said carrier platform (12) and said light polymerizable resin unit away from one another as said object is produced; (e) a purge chamber (300) surrounding at least a portion of said light engine (17); and (f) a purge gas in said purge chamber, or a purge gas supply operatively associated with said purge chamber (300).
Provided herein according to aspects of the present invention are resins that: (a) are suitable for use in additive manufacturing techniques such as bottom-up and top-down stereolithography, (b) produce objects that are bioresorbable, and (c) produce objects that are flexible or elastic (preferably at at least typical room temperatures of 25° C., and in some embodiments at typical human body temperatures of 37° C.). Such resins may include: (a) a bioresorbable polyester oligomer having reactive end groups; (b) non-reactive diluent; (c) optionally reactive diluent; and (d) a photoinitiator.
B29C 35/08 - Heating or curing, e.g. crosslinking or vulcanising by wave energy or particle radiation
C08F 2/46 - Polymerisation initiated by wave energy or particle radiation
C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
C08G 61/04 - Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
B33Y 70/00 - Materials specially adapted for additive manufacturing
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
C08G 63/91 - Polymers modified by chemical after-treatment
A method of forming a three-dimensional object is carried out by: providing a carrier and a pool of immiscible liquid, the pool having a liquid build surface, the carrier and the liquid build surface defining a build region therebetween; filling the build region with a polymerizable liquid, wherein the immiscible liquid is immiscible with the polymerizable liquid (in some embodiments wherein the immiscible liquid has a density greater than the polymerizable liquid); irradiating the build region through at least a portion of the pool of immiscible liquid to form a solid polymer from the polymerizable liquid and advancing the carrier away from the liquid build surface to form the three-dimensional object comprised of the solid polymer from the polymerizable liquid. Optionally, but in some embodiments preferably, the method is carried out while also continuously maintaining a gradient of polymerization zone between the liquid build surface and the solid polymer and in contact with each thereof, the gradient of polymerization zone comprising the polymerizable liquid in partially cured form.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/188 - Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
41.
Divided resin cassettes for enhanced work flow in additive manufacturing of dental products and the like
The present disclosure describes a resin cassette for an additive manufacturing apparatus. The resin cassette includes a light-transmissive window, a frame connected to and surrounding the window, and at least one dame connected to the frame. The frame and window form a well for receiving a light polymerizable resin. The dam extends over and continuously contacts the window and partitions the well into a plurality of independent build regions, each independent build region configured for receiving different light polymerizable resins. Additive manufacturing apparatuses and methods of concurrently making three-dimensional objects are also described.
B29C 64/259 - Enclosures for the building material, e.g. powder containers interchangeable
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/171 - Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B33Y 80/00 - Products made by additive manufacturing
Described herein are methods, systems and apparatus (including associated control methods, systems and apparatus), for the production of a three-dimensional object by “bottom up” additive manufacturing, in which a carrier is vertically reciprocated with respect to a build surface, to enhance or speed the refilling of the build region with a solidifiable liquid. In preferred (but not necessarily limiting) embodiments, the three-dimensional object is produced from a liquid interface by continuous liquid interface production (i.e., “CLIP”).
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/255 - Enclosures for the building material, e.g. powder containers
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/232 - Driving means for motion along the axis orthogonal to the plane of a layer
B29K 105/00 - Condition, form or state of moulded material
43.
Systems and methods for resin recovery in additive manufacturing
A method of producing multiple batches of objects by stereolithography, includes the steps of: (a) dispensing an initial or subsequent batch of dual cure resin into a stereolithography apparatus, the resin including a light polymerizable component and a heat polymerizable component; (b) producing an intermediate object by light polymerization of the resin in the apparatus, wherein the intermediate object retains excess resin on a surface thereof; then (c) separating excess resin from the intermediate object; (d) blending the excess resin with additional dual cure resin to produce a subsequent batch of dual cure resin; (e) repeating steps (a) through (c), and optionally repeating step (d), to produce additional object(s); and (f) baking the objects, together or separately, to produce multiple batches of objects.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/176 - Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects sequentially
A method of cleaning residual resin from an additively manufactured object, includes: (a) enclosing an additively manufactured object in an inner chamber of a centrifugal separator, the additively manufactured object including a light polymerized resin with a surface coating of viscous, unpolymerized, residual resin; (b) flooding the chamber with a volatile organic solvent vapor without contacting liquid organic solvent to the object, the vapor present in an amount sufficient to reduce the viscosity of the residual resin; and (c) spinning the additively manufactured object in the chamber to centrifugally separate at least a first portion of the residual resin from the object.
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
B08B 3/08 - Cleaning involving contact with liquid the liquid having chemical or dissolving effect
B08B 5/00 - Cleaning by methods involving the use of air flow or gas flow
B08B 7/02 - Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
45.
DUAL PRECURSOR RESIN SYSTEMS FOR ADDITIVE MANUFACTURING WITH DUAL CURE RESINS
A method of forming a dual cure three-dimensional object by additive manufacturing may be carried out by mixing a first precursor liquid and a second precursor liquid to produce a polymerizable liquid comprising a mixture of (i) a light polymerizable liquid first component, and (ii) a second solidifiable component (e.g., a second reactive component) that is different from the first component (e.g., that does not contain a cationic photoinitiator, or is further solidified by a different physical mechanism, or further reacted, polymerized or chain extended by a different chemical reaction). In the foregoing: (i′) at least one reactant of the second solidifiable component is contained in the first precursor liquid, and (ii′) at least one reactant or catalyst of the second solidifiable component is contained in the second precursor liquid. Once mixed, the three-dimensional object may be formed from the resin by a dual cure additive manufacturing process.
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
A helmet liner includes: (a) an open lattice body portion comprised of a polymer, the body portion having opposite face portions and a circumferential side portion; (b) a helmet contact surface portion formed on one of the face portions; and (c) a skin contact portion formed on the other of the face portions, the skin contact portion configured with the lattice body portion so air can circulate through both the body portion and the skin contact portion.
A method of separating excess resin from at least one object, includes: (a) stereolithographically producing at least one object on at least one carrier platform, each carrier platform having a planar build surface to which at least one object is connected, each object carrying excess resin on a surface thereof; then (b) mounting each carrier platform to a rotor; (c) centrifugally separating excess resin from each object by spinning the rotor with each carrier platform connected thereto while each object remains connected to each carrier platform; and then (d) removing each carrier platform from the rotor with each object thereon, with excess resin separated therefrom.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
Provided herein is a method of making a flexible partial denture, which may include: (a) producing a partial denture base by additive manufacturing (e.g., bottom-up or top-down stereolithography) from a dual cure resin, with the dual cure resin comprising a light polymerizable component and a heat polymerizable component, with the denture base including at least one tooth socket; (b) inserting an acrylic artificial tooth into each at least one tooth socket to produce an assembled intermediate product; and then (c) baking said assembled intermediate product for a time sufficient to cure said heat polymerizable component in said denture base and retained dual cure resin, bond said tooth into each at least one socket with said retained dual cure resin, and produce said flexible partial denture. A flexible partial denture produced and resin formulations useful for the same are also provided.
An adhesion barrier is comprised of, consists of, or consists essentially of a sheet having a top surface and a bottom surface. The sheet includes either (i) interconnected links or (ii) interconnected, vertically aligned, partitions. The links form pores or the partitions form pores, with the pores extending from the top surface through the bottom surface. The sheet is comprised of, consists of, or consists essentially of a flexible or elastic polymer.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A61L 31/12 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material
A61L 31/14 - Materials characterised by their function or physical properties
Provided herein according to some embodiments is a dual cure additive manufacturing resin, comprising: (i) a light polymerizable component, (ii) a photoinitiator, (iii) a heat polymerizable component, and (iv) a non-reactive diluent, which resin is useful for the production of three-dimensional objects by additive manufacturing. Methods of using the same are also provided.
B29C 45/14 - Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
C08F 2/46 - Polymerisation initiated by wave energy or particle radiation
C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
C08G 61/04 - Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
A method for the production of an object by additive manufacturing includes inputting a boundary shape and desired mechanical properties for said object, subdividing said boundary shape into work cells, providing lattices in a database, each lattice including a geometry and a mechanical property, filling a first one of said work cells with a lattice from the database, the lattice selected based on the correspondence of the mechanical properties of said lattice to said desired mechanical properties of said object, filling the remaining ones of said work cells with lattices from said database to produce a filled boundary shape, each said lattice selected based on the correspondence of the mechanical properties of said lattice to the desired mechanical properties of the object and the compatibility of adjacent lattices in adjacent work cells with one another, then performing a modification operation on the lattice of a work cell.
Provided herein is a dual cure resin useful for the production of objects by stereolithography, said resin comprising a mixture of: (a) a light-polymerizable component; and (b) a heat-polymerizable component, said heat-polymerizable component comprising: (i) a dicyclopentadiene-containing polyepoxide resin; (ii) a cyanate ester resin; (iii) an epoxy-reactive toughening agent; and (iv) a core shell rubber toughener.
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
C08F 283/10 - Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass on to polymers containing more than one epoxy radical per molecule
Provided herein according to some embodiments is polymerizable liquid useful for the production of a three-dimensional object by additive manufacturing, said polymerizable liquid comprising a mixture of: (a) at least one photopolymerizable component; (b) a photoinitiator; (c) at least one heat polymerizable component; and (d) heat expandable microspheres. A method of making a three-dimensional object from such a polymerizable liquid by additive manufacturing and objects so produced are also provided.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/188 - Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
Provided herein is a resin product useful for the production of three-dimensional objects by additive manufacturing, and methods using the same. The resin may include a reactive blocked prepolymer comprising a prepolymer blocked with reactive blocking groups; a polyol; a photoinitiator; and at least one organometallic catalyst. A packaged product useful for the production of three-dimensional objects by additive manufacturing, the product comprising a single container having a single chamber and a resin in the chamber with all components mixed together, is also provided.
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B33Y 70/00 - Materials specially adapted for additive manufacturing
B01J 31/12 - Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
C08F 2/44 - Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
C08F 4/50 - Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths, or actinides selected from alkaline earth metals, zinc, cadmium, mercury, copper, or silver
A method of measuring the viscosity of a resin in a bottom-up additive manufacturing apparatus, includes the steps of: (a) providing an additive manufacturing apparatus including a build platform and a light transmissive window, said build platform and said window defining a build region there between, with said window carrying a resin; (b) advancing said build platform and said window towards one another until said build platform contacts said resin; (c) detecting the force exerted on said build platform by said resin; and (d) generating in a processor a viscosity measure of said resin from said detected force.
B29C 64/232 - Driving means for motion along the axis orthogonal to the plane of a layer
G01N 11/10 - Investigating flow properties of materials, e.g. viscosity or plasticity; Analysing materials by determining flow properties by moving a body within the material
G01L 5/00 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
G01N 11/00 - Investigating flow properties of materials, e.g. viscosity or plasticity; Analysing materials by determining flow properties
56.
PRODUCTION OF CUSTOM GARMENTS BY ADDITIVE MANUFACTURING
A method of making a support garment, comprising: (a) receiving, into a computing system, a 3D image of a human body portion; (b) generating in said computing system an initial virtual 3D model of a support garment in a configuration corresponding to said 3D image, said garment having an outer surface, an inner (body facing) surface, and a thickness dimension therebetween, (c) generating from said initial virtual 3D model a flattening virtual 3D model of said support garment in said computing system, the flattened virtual model in a configuration for additive manufacturing thereof with either said outer surface or said inner surface adhered to a generally planar build platform; and (d) identifying a first zone of either said initial or said flattened virtual 3D model; (e) modifying (before or after step (c), preferably after step (c)) said first zone of said virtual 3D model to comprise a perforated sheet.
Various embodiments described herein provide a method of making an object from a three-dimensional geometry file and a light polymerizable resin on a light-transmissive window by projection of light through the window in a bottom-up stereolithography process. The method may comprise: slicing the file into a series of sequential images. Temperature fluctuations in the resin may be calculated for at least some of the sequential images upon light polymerization thereof based on sequential exposure of the resin to light, the light corresponding to the series of sequential images. During producing of the object, the production may be modified based on the calculated temperature fluctuations by: (i) reducing production speed during at least a portion of the production; (ii) activating a window cooler during at least a portion of the production; or (iii) increasing production speed during at least a portion of the production.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
58.
BLOCKING GROUPS FOR LIGHT POLYMERIZABLE RESINS USEFUL IN ADDITIVE MANUFACTURING
Provided herein is a method of forming a three-dimensional object in which the polymerizable liquid includes a mixture of (i) a light polymerizable first component, and (ii) a heat polymerizable second component; the heat polymerizable second component comprising (i) a first blocked reactive constituent that is blocked with a volatile blocking group, and optionally (ii) a curative. Upon heating a formed three-dimensional intermediate sufficiently, the volatile blocking group is cleaved and vaporizes out of the three-dimensional intermediate, to form the three-dimensional object. Also provided is a three-dimensional object produced by the method. Further provided is a polymerizable liquid composition useful for carrying out the method, and prepolymers and monomers useful for the polymerizable liquid composition.
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
C08G 18/12 - Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
C09D 11/101 - Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
C09D 11/102 - Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
B29C 64/188 - Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
The present disclosure describes an additive manufacturing apparatus. The apparatus includes a chamber (11) having a planar circumferential top edge portion (12) defining a chamber orifice (13); a stage (15) movably positioned in the chamber (11), the two together configured to receive a viscous resin; a dispenser (30) facing the stage (15) and operatively associated therewith, the dispenser (30) configured to apply a planar coating of viscous resin; a primary drive (22) operatively associated with the dispenser (30) and chamber (11), the primary drive (22) configured to move the dispenser (30) across the chamber orifice (13); a light engine (40) facing the stage (15) and operatively associated therewith, the light engine (40) configured to expose a coating of resin on the stage (15) planar top surface (12) to patterned light; and a stage drive (24) operatively associated with the stage (15) and configured to retract the stage (15) into the chamber (11), following exposure of a coating of resin. Methods of making a three-dimensional object by additive manufacturing are also described.
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
B29C 64/255 - Enclosures for the building material, e.g. powder containers
B33Y 70/10 - Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
B33Y 80/00 - Products made by additive manufacturing
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
Provided is a method of making a cured object having a surface coating bonded thereto, which may include: providing an intermediate object produced in an additive manufacturing process such as stereolithography by light polymerization of a dual cure resin, the resin comprising a mixture of (i) a light polymerizable first component, and (ii) a second component that is different from the first component; applying a first reactive coating composition to a surface portion of the object to form a first coating thereon; optionally, but in some embodiments preferably, applying a second reactive coating composition to the first coating to form a second coating thereon; and heating the object at (and for) a time and to a temperature sufficient to bond the first coating to the surface portion, and bond the second coating when present to the first coating, and form the cured object having a surface coating bonded thereto.
B29C 64/307 - Handling of material to be used in additive manufacturing
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/188 - Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
B29C 64/194 - Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control during lay-up
61.
Apparatuses for additively manufacturing three-dimensional objects
The present disclosure describes an apparatus for additively manufacturing a three-dimensional object. The apparatus includes a radiation source, a carrier on which the three-dimensional object is made, an applicator assembly configured to apply a polymerizable liquid, and a frame, with the applicator assembly and the radiation source connected to the frame. A first drive assembly interconnects the applicator assembly and the frame and a second drive assembly interconnects the carrier and the frame. The frame defines a build region between the applicator assembly and the carrier. The applicator assembly includes a polymerizable liquid supply chamber, an application roller, and a metering roller. The applicator assembly may optionally include a post-metering roller. An apparatus comprising a first and a second applicator assembly and a smaller scale version of the apparatus are also described.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
A method of forming a three-dimensional object, is carried out by (a) providing a carrier and a build plate, the build plate comprising a semipermeable member, the semipermeable member comprising a build surface with the build surface and the carrier defining a build region therebetween, and with the build surface in fluid communication by way of the semipermeable member with a source of polymerization inhibitor; (b) filling the build region with a polymerizable liquid, the polymerizable liquid contacting the build surface, (c) irradiating the build region through the build plate to produce a solid polymerized region in the build region, while forming or maintaining a liquid film release layer comprised of the polymerizable liquid formed between the solid polymerized region and the build surface, wherein the polymerization of which liquid film is inhibited by the polymerization inhibitor; and (d) advancing the carrier with the polymerized region adhered thereto away from the build surface on the build plate to create a subsequent build region between the polymerized region and the build surface while concurrently filling the subsequent build region with polymerizable liquid as in step (b). Apparatus for carrying out the method is also described.
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B29C 35/08 - Heating or curing, e.g. crosslinking or vulcanising by wave energy or particle radiation
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
A61M 37/00 - Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
A61F 2/82 - Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
B33Y 80/00 - Products made by additive manufacturing
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
63.
BUILD PLATE ASSEMBLIES FOR CONTINUOUS LIQUID INTERPHASE PRINTING HAVING LIGHTING PANELS AND RELATED METHODS, SYSTEMS AND DEVICES
A build plate assembly for a three-dimensional printer includes: a lighting panel having individually addressable pixels configured to selectively emit light and/or transmit light from illumination below the pixels to a top surface top surface of the lighting panel; a rigid, optically transparent, gas-impermeable planar screen or base having an upper surface having an uneven surface topology and a lower surface that is affixed to the top surface of the lighting panel; and a flexible, optically transparent, gas-permeable sheet having upper and lower surfaces, the upper surface comprising a build surface for forming a three-dimensional object, the sheet lower surface positioned opposite the base, wherein the build plate is configured to permit gas flow to the build surface.
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
64.
Serially curable resins useful in additive manufacturing
Provided is a method of forming a three-dimensional object, which may include the steps of: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid that comprises a reactive blocked monomer and/or prepolymer comprising a self-polymerizing monomer and/or prepolymer blocked with a light-polymerizable blocking group; (c) irradiating the build region with light through said optically transparent member to form a solid polymer scaffold from the reactive blocked monomer and/or prepolymer and also advancing the carrier away from the build surface to form a three-dimensional intermediate; and then (d) heating and/or microwave irradiating, the three-dimensional intermediate sufficiently to degrade the scaffold and regenerate the monomer and/or prepolymer in de-blocked form, which monomer and/or prepolymer in turn self-polymerize, to form said three-dimensional object.
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
Provided herein is a method of recycling additively manufactured articles or recovered coating material that comprises a crosslinked polymer formed from a single-cure resin comprising a reactive blocked prepolymer, into a regenerated resin useful for additive manufacturing. Recyclable light-polymerizable resins, methods of making recyclable objects from such resins, and methods for sustainable manufacturing are also provided.
Apparatus for, and associated method of, making a three-dimensional object from a light polymerizable resin by inkjet additive manufacturing are described. The methods and apparatus employ dual precursor resins, including but not limited to dual cure resins having a first component photopolymerizable and a second component polymerizable by a mechanism different from the first component.
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
67.
Window thermal profile calibration in additive manufacturing
a) having a build surface on which an object can be produced, and with said optically transparent member having at least one thermal profile associated therewith; and then (b) modifying said at least one adjustable parameter by said controller based on said at least one thermal profile of said optically transparent member; and then (c) producing the object on said build surface from a light-polymerizable liquid by bottom-up stereolithography.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
A method of improving production performance of an additive manufacturing system includes obtaining a first production plan and a second production plan, different from the first production plan, for the manufacture of a plurality of objects using a fleet of additive manufacturing apparatus, automatically generating a first allocation of a first quantity of the plurality of objects to the fleet of additive manufacturing apparatus using the first production plan, automatically generating a second allocation of a second quantity of the plurality of objects to the fleet of additive manufacturing apparatus using the second production plan, comparing a production performance of the first and second quantity of the plurality of objects after being manufactured by the fleet of additive manufacturing apparatus, and based on the comparison of the production performance, automatically regenerating the first and second allocations to change the first and second quantities.
B29C 64/176 - Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects sequentially
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 50/00 - Data acquisition or data processing for additive manufacturing
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/386 - Data acquisition or data processing for additive manufacturing
69.
SHOCK ABSORBING LATTICE STRUCTURE PRODUCED BY ADDITIVE MANUFACTURING
An energy absorbing lattice structure having a predetermined energy absorbing load vector, may include, in combination, a first lattice substructure comprised of a first set of interconnected struts, and, interwoven with said first lattice substructure, a second lattice substructure comprised of a second set of interconnected struts.
Provided herein is a dual cure resin useful for the production of an object by additive manufacturing, comprising or consisting essentially of: (a) a photoinitiator; (b) not more than 5, 10 or 20 ppm of a polyurethane catalyst (e.g., tin, tertiary amine, bismuth, zinc, zirconium, or nickel catalysts); (c) a polyol; (d) free (i.e., unblocked) polyisocyanate; and (e) blocked polyisocyanate, the isocyanate groups of which are blocked by reaction with an amine (meth)acrylate blocking agent. Methods of making an object with the resin are also provided.
C08F 2/46 - Polymerisation initiated by wave energy or particle radiation
C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
C08G 61/04 - Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
A method of separating excess resin from at least one object, includes: (a) stereolithographically producing at least one object on at least one carrier platform, each carrier platform having a planar build surface to which at least one object is connected, each object carrying excess resin on a surface thereof; then (b) mounting each carrier platform to a rotor; (c) centrifugally separating excess resin from each object by spinning the rotor with each carrier platform connected thereto while each object remains connected to each carrier platform; and then (d) removing each carrier platform from the rotor with each object thereon, with excess resin separated therefrom.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
BUILD PLATES FOR CONTINUOUS LIQUID INTERFACE PRINTING HAVING PERMEABLE BASE AND ADHESIVE FOR INCREASING PERMEABILITY AND RELATED METHODS, SYSTEMS AND DEVICES
A build plate for a three-dimensional printer includes a rigid, optically transparent, gas-permeable planar base having an upper surface and an opposing lower surface; a gas permeable adhesive layer on the base upper surface; and a flexible, optically transparent, gas-permeable sheet having upper and lower surfaces, the upper surface comprising a build surface for forming a three-dimensional object, the sheet lower surface positioned on the adhesive layer opposite the base.
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
A method of separating excess resin from at least one object includes: (a) stereolithographically producing at least one object, each object having at least one retention feature (32) formed thereon, each object carrying excess resin on a surface thereof; then (b) mounting each object on at least one transfer frame (21), each transfer frame having at least one retention member (22) that mates with the retention feature; (c) connecting each transfer frame to a rotor with the at least one object carried thereon; (d) centrifugally separating excess resin from each object by spinning the rotor with each transfer frame connected thereto while the at least one object remains connected to each transfer frame by the retention feature; then (e) removing each transfer frame from the rotor, with excess resin separated from each at least one object thereon.
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B08B 7/02 - Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
B08B 7/00 - Cleaning by methods not provided for in a single other subclass or a single group in this subclass
B08B 3/08 - Cleaning involving contact with liquid the liquid having chemical or dissolving effect
B08B 7/04 - Cleaning by methods not provided for in a single other subclass or a single group in this subclass by a combination of operations
74.
Window Variability Correction in Additive Manufacturing
A method of making an object on a bottom-up stereolithography apparatus is provided. The apparatus includes a light source, a drive assembly, and a controller operatively associated with the light source and the drive assembly, with the light source and/or the drive assembly having at least one adjustable parameter that is adjustable by the controller. The method includes installing a removable window cassette on the apparatus in a configuration through which the light source projects, the window cassette comprising an optically transparent member having a build surface on which an object can be produced, and with the optically transparent member having and at least one variable property therein; and then modifying the at least one adjustable parameter by the controller based on the at least one variable optical property of the window; and then producing the object on the build surface from a light-polymerizable liquid by bottom-up stereolithography.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
A biological specimen collection instrument configured for collecting a biological specimen to be analyzed includes: (a) a handle; (b) an elongate flexible or elastomeric stem extending from said handle, said stem having a distal portion terminating at a tip; and (c) a flexible or elastomeric lattice collection element connected to said stem distal portion, said lattice collection element having a body portion and a distal end portion, with at least said body portion, and optionally said distal end portion, having openings therein in a configuration that forms at least one biological specimen collection space.
The present disclosure describes an apparatus (10) for additively manufacturing a three-dimensional object. The apparatus (10) includes a radiation source (13), a carrier (1) on which the three-dimensional object is made, an applicator assembly (3) configured to apply a polymerizable liquid, and a frame (8), with the applicator assembly and the radiation source connected to the frame. A first drive assembly (4) interconnects the applicator assembly and the frame and a second drive assembly (2) interconnects the carrier and the frame. The frame defines a build region (6) between the applicator assembly and the carrier. The applicator assembly includes a polymerizable liquid supply chamber, an application roller (11), and a metering roller (12). The applicator assembly may optionally include a post-metering roller (14). An apparatus comprising a first and a second applicator assembly and a smaller scale version of the apparatus are also described.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B29C 64/232 - Driving means for motion along the axis orthogonal to the plane of a layer
A method of forming a three-dimensional object is carried out by providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; filling the build region with a polymerizable liquid; irradiating the build region through the optically transparent member to form a solid polymer from the polymerizable liquid and advancing the carrier away from the build surface to form the three-dimensional object from the solid polymer, while also concurrently with the irradiating and/or advancing steps: (i) continuously maintaining a dead zone of polymerizable liquid in contact with the build surface, and (ii) continuously maintaining a gradient of polymerization zone between the dead zone and the solid polymer and in contact with each thereof. The gradient of polymerization zone comprises the polymerizable liquid in partially cured form (e.g., so that the formation of fault or cleavage lines between layers of solid polymer in the three-dimensional object is reduced). Apparatus for carrying out the method is also described.
A61M 29/02 - Inflatable dilators; Dilators made of swellable materials
A61B 17/24 - Surgical instruments, devices or methods, e.g. tourniquets for use in the oral cavity, larynx, bronchial passages or nose; Tongue scrapers
The present invention concerns methods of forming a three-dimensional object, and polymerizable liquids such as dual cure resins useful for making a three-dimensional object by stereolithography, such as by continuous liquid interface production (CLIP), wherein the three-dimensional object is flame retardant.
C08L 51/00 - Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
Provided is a method of making a cured object having a surface coating bonded thereto, which may include: providing an intermediate object produced in an additive manufacturing process such as stereolithography by light polymerization of a dual cure resin, the resin comprising a mixture of (i) a light polymerizable first component, and (ii) a second component that is different from the first component; applying a first reactive coating composition to a surface portion of the object to form a first coating thereon; optionally, but in some embodiments preferably, applying a second reactive coating composition to the first coating to form a second coating thereon; and heating the object at (and for) a time and to a temperature sufficient to bond the first coating to the surface portion, and bond the second coating when present to the first coating, and form the cured object having a surface coating bonded thereto.
B29C 64/307 - Handling of material to be used in additive manufacturing
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/188 - Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
B29C 64/194 - Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control during lay-up
Provided herein are methods of making a reactive particulate material by free radically polymerizing a single-cure resin to produce a polymer, the resin comprising: a reactive blocked polyurethane prepolymer, a reactive blocked polyurea prepolymer, a reactive blocked polyurethane-polyurea copolymer, or a combination thereof, wherein said polymerizing is carried out by dispersive polymerization (e.g., an emulsion, suspension or dispersion polymerization process), to form said reactive particulate material. Methods of use of the reactive particulate material and material sets including the same are also provided.
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
C08L 55/00 - Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups
C09D 175/16 - Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
Provided herein are methods of recycling additively manufactured objects, which may include making a reactive particulate material by recycling preformed articles or recovered coating material. Methods of use of the reactive particulate material and material sets including the same are also provided.
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
C08L 55/00 - Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups
C09D 175/16 - Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
An additively manufactured lattice structure includes (a) a first three-dimensional lattice including a repeating interconnected array of a first lattice unit cell, (b) a second three-dimensional lattice including a repeating interconnected array of a second lattice unit cell, wherein said second lattice unit cell is different from said first lattice unit cell, and (c) a first transition segment interconnecting said first three-dimensional lattice and said second three-dimensional lattice. The first transition segment includes (i) a first three-dimensional transitional lattice including a repeating array of said first lattice unit cell and (ii) interleaved with and interconnected to said first three-dimensional transitional lattice, a second three-dimensional transitional lattice including a repeating array of said second lattice unit cell.
Provided herein is a method of recycling additively manufactured articles or recovered coating material that comprises a crosslinked polymer formed from a single-cure resin comprising a reactive blocked prepolymer, into a regenerated resin useful for additive manufacturing. Recyclable light-polymerizable resins, methods of making a recyclable objects from such resins, and methods for sustainable manufacturing are also provided.
Provided herein is a resin product useful for the production of three-dimensional objects by additive manufacturing, and methods using the same. The resin may include a reactive blocked prepolymer comprising a prepolymer blocked with reactive blocking groups; a polyol; a photoinitiator; and at least one organometallic catalyst. A packaged product useful for the production of three-dimensional objects by additive manufacturing, the product comprising a single container having a single chamber and a resin in the chamber with all components mixed together, is also provided.
B29C 35/04 - Heating or curing, e.g. crosslinking or vulcanising using liquids, gas or steam
C08F 2/46 - Polymerisation initiated by wave energy or particle radiation
C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
C08G 61/04 - Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B33Y 70/00 - Materials specially adapted for additive manufacturing
B01J 31/12 - Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
C08F 2/44 - Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
C08F 4/50 - Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths, or actinides selected from alkaline earth metals, zinc, cadmium, mercury, copper, or silver
A rotor for separating residual resin from additively manufactured objects in a centrifugal separator, the rotor including a rotor base and a plurality of engagement members configured to secure additively manufactured, light polymerized, objects to the rotor base, each object carrying unpolymerized resin on a surface thereof. The improvement includes a plurality of catch pans removably connected to the base, each catch pan configured to receive unpolymerized resin therein upon centrifugal separation of the resin from the additively manufactured, light polymerized, objects.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
86.
THREE-DIMENSIONAL PRINTED SCAFFOLD FOR CAPTURING TOXINS AND RELEASING AGENTS
A chemical absorber to absorb and release compounds includes a porous scaffold of lattices, modified surfaces of the scaffold, wherein the modification is selected based upon an ability to bond with or release a particular compound, and a center hole in the scaffold to accommodate a guide wire.
B01J 20/28 - Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
B01J 20/30 - Processes for preparing, regenerating or reactivating
A method of producing multiple batches of objects by stereolithography, includes the steps of: (a) dispensing an initial or subsequent batch of dual cure resin into a stereolithography apparatus (11), the resin including a light polymerizable component and a heat polymerizable component; (b) producing an intermediate object by light polymerization of the resin in the apparatus (12), wherein the intermediate object retains excess resin on a surface thereof; then (c) separating excess resin from the intermediate object (13); (d) blending the excess resin with additional dual cure resin to produce a subsequent batch of dual cure resin (15); (e) repeating steps (a) through (c), and optionally repeating step (d), to produce additional object(s); and (f) baking the objects, together or separately, to produce multiple batches of objects (14).
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/176 - Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects sequentially
Provided herein is a method of making an object having a matte surface finish by stereolithography. The method may include: (a) stereolithographically producing an intermediate object by polymerization of a dual cure resin with a first light having a first peak wavelength, the object having excess unpolymerized resin retained on the surface thereof; (b) separating a portion of said excess unpolymerized resin from said object while leaving a thin film of unpolymerized resin on the surface thereof; (c) partially curing said thin film by exposing said thin film to a second light at a second peak wavelength; and then (d) further curing said intermediate object by heating, microwave irradiating, or both heating and microwave irradiating, to produce an object having a matte surface finish.
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
C08K 3/013 - Fillers, pigments or reinforcing additives
An epoxy dual cure resin useful for additive manufacturing of three-dimensional objects includes: (i) a photoinitiator; (ii) monomers and/or prepolymers that are polymerizable by exposure to actinic radiation or light; (iii) optionally, a light absorbing pigment or dye; (iv) an epoxy resin; (v) optionally, but in some embodiments preferably, an organic hardener co-polymerizable with the epoxy resin; (vi) optionally but preferably a dual reactive compound having substituted thereon a first reactive group reactive with said monomers and/or prepolymers that are polymerizable by exposure to actinic radiation or light, and a second reactive group reactive with said epoxy resin (e.g., an epoxy acrylate); (vii) optionally a diluent; (viii) optionally a filler; and (ix) optionally, a co-monomer and/or a co-prepolymer. Methods of using the same in additive manufacturing are also described.
C08G 59/68 - Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups characterised by the catalysts used
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
Provided herein are methods of making (meth)acrylate blocked polyurethanes with zirconium catalysts, dual cure resins containing (meth)acrylate blocked polyurethanes and zirconium catalysts, methods of using the same in additive manufacturing, and products made therefrom.
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
C08F 299/06 - Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
C08G 18/10 - Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
A build plate for a three-dimensional printer includes: a rigid, optically transparent, gas-impermeable planar base having an upper surface and a lower surface; and a flexible, optically transparent, gas-permeable sheet having an upper and lower surface, the sheet upper surface comprising a build surface for forming a three-dimensional object, the sheet lower surface positioned on the base upper surface. The build plate includes a gas flow enhancing feature configured to increase gas flow to the build surface.
B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 35/08 - Heating or curing, e.g. crosslinking or vulcanising by wave energy or particle radiation
A method of encapsulating at least one object in a polymer shell includes (a) providing a carrier having a release surface and at least one object releasably secured thereto, each object having a heighth dimension and a width dimension; (b) providing a light polymerizable resin, the resin supported on a light transmissive window; (c) advancing each object on the carrier into the light polymerizable resin to a position spaced away from the window by a distance sufficient to maintain a dead zone or release layer of unpolymerized resin directly on the window; (d) forming a first portion of the polymer shell around each object by projecting patterned light through the window; (e) forming a subsequent portion of a polymer shell on or around each object by advancing the object on the carrier away from the window and projecting patterned light through the window; and (f) repeating step (e) until each object is encapsulated in a polymer shell.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
H01L 21/02 - Manufacture or treatment of semiconductor devices or of parts thereof
H01L 23/31 - Encapsulation, e.g. encapsulating layers, coatings characterised by the arrangement
B81C 1/00 - Manufacture or treatment of devices or systems in or on a substrate
A removable window cassette (100) for a bottom-up stereolithography apparatus includes (a) a light-transmissive window (110) having a rigid bottom portion (112), a semipermeable top portion (114), and a fluid flow region therebetween; (b) a circumferential frame (120) surrounding said window and into which said window is recessed, said frame having a top portion, a bottom portion, and an internal wall portion (120C), said frame internal wall portion defining with said window semipermeable top portion a well into which a polymerizable liquid may be received; and (c) a plurality of clamp draw-in pins (140) connected to said frame bottom portion and extending downward therefrom; and (d) at least a first and second port (150A, 150B) connected to said frame bottom portion, with said first port in fluid communication with said second port through said window fluid flow region.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/259 - Enclosures for the building material, e.g. powder containers interchangeable
A cassette includes a light transmissive window through which a temporally and spatially modulated image is passed. The window has a bottom surface, as part of the cassette, or as a separate component which may be separately interchangeable in the apparatus, or a part of the apparatus. In some embodiments: (i) the window bottom surface comprises a convex surface or consists essentially of a convex surface (e.g., without additional optical structure associated therewith); (ii) the window bottom surface comprises a concave surface or consists essentially of a concave surface (e.g., without additional optical structure associated therewith); (iii) the window bottom surface has a diffraction grating or Fresnel lens thereon or operatively associated therewith; (iv) a combination of (i) and (iii); or (v) a combination of (ii) and (iii).
B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
95.
Methods of reducing distortion of additively manufactured objects
A method of making a three-dimensional object (11) from a light polymerizable dual cure resin (16), includes the steps of: (a) producing a green intermediate object by light polymerization of the resin in a stereolithography process (e.g., continuous liquid interface production); (i) the object comprising a body portion and a circumferential boundary portion (12) included in at least part of the body portion i (ii) the stereolithography process including overexposing the boundary portion (as compared to the exposure of the body portion) with light; (b) cleaning the intermediate object; and then (c) baking the object to produce the three-dimensional object.
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B29C 64/188 - Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
B29C 64/182 - Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects in parallel batches
Various embodiments described herein provide a method of making an object from a three-dimensional geometry file and a light polymerizable resin on a light-transmissive window by projection of light through the window in a bottom-up stereolithography process. The method may comprise: slicing the file into a series of sequential images. Temperature fluctuations in the resin may be calculated for at least some of the sequential images upon light polymerization thereof based on sequential exposure of the resin to light, the light corresponding to the series of sequential images. During producing of the object, the production may be modified based on the calculated temperature fluctuations by: (i) reducing production speed during at least a portion of the production; (ii) activating a window cooler during at least a portion of the production; or (iii) increasing production speed during at least a portion of the production.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
A method of forming a three-dimensional object, comprising: providing a carrier and an optically transparent member having a build surface, said carrier and said build surface defining a build region therebetween; filling said build region with a polymerizable liquid, continuously or intermittently irradiating said build region with light through said optically transparent member to form a solid polymer from said polymerizable liquid, continuously or intermittently advancing (e.g., sequentially or concurrently with said irradiating step) said carrier away from said build surface to form said three-dimensional object from said solid polymer, said optically transparent member comprising a flexible layer having upper and lower opposing sides, wherein the flexible layer upper side defines the build region, the method further comprising forming a region of reduced pressure adjacent the flexible layer lower side.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
B29C 64/255 - Enclosures for the building material, e.g. powder containers
B29C 64/268 - Arrangements for irradiation using electron beams [EB]
A resin cassette for an additive manufacturing apparatus is provided. The apparatus has a light engine and a cassette mount operatively associated therewith, with the light engine configured to project an enlarged projected image through the resin cassette when positioned on the cassette mount. The resin cassette includes a light transmissive window configured to pass the enlarged image therethrough. The window has internal structures defining fluid flow passages therein, with the internal structures distributed across the length and width of said window. These internal structure create reflective and/or refractive surfaces within the window. The window includes a circumferential frame connected to and surrounding said window, said window and frame together forming a well configured to receive a light polymerizable resin. The shape of the internal structures is progressively varied (e.g., in a plurality of step-wise increments, and/or in a continuous or “smoothed” fashion) across the length and width of the window to reduce reflections and/or refractions within said window when said enlarged image is projected therethrough.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
An apparatus for manufacturing an object from a light polymerizable resin includes (a) an carrier platform on which an object can be produced; (b) a resin cassette configured for carrying a light-polymerizable resin, said cassette including a light-transmissive window having a liquid inhibitor supply bed therein, said supply bed having an inlet and an outlet; (c) a light source positioned beneath said resin cassette and configured for projecting an enlarged image through said window; (d) a drive operatively associated with said resin cassette and said carrier platform; (e) a gas exchanger comprising a liquid side, a gas side, and an oxygen permeable barrier therebetween; said liquid side having an inlet and an outlet, with said supply bed inlet connected to said liquid side outlet, and said supply bed outlet connected to said liquid side inlet; (f) an oxygen carrying liquid in said liquid inhibitor supply bed and said gas exchanger liquid side; and (g) a pump operatively associated with said supply bed and said gas exchanger liquid side for circulating said oxygen carrying liquid therebetween; and (h) an oxygen gas source operatively associated with said gas exchanger gas side.
B29C 64/259 - Enclosures for the building material, e.g. powder containers interchangeable
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
A resin cassette for an additive manufacturing apparatus includes (a) a light transmissive window; (b) a circumferential frame connected to and surrounding the window, the window and frame together forming a well configured to receive a light polymerizable resin; and (c) a fluorophore layer in or on the window.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask