An accessory control handgrip apparatus for weapon includes a rail clamp assembly, a grip base extending from the grip base assembly, a grip sleeve slidably received on the grip base, a keypad disposed on the grip sleeve, and one or more connectors for operably coupling the keypad to an accessory device.
A pressure pad accessory controller for a weapon includes a rail interface, a pressure pad portion, a keypad having one or more user-depressible control elements disposed on the pressure pad portion, and one or more electrical connectors for operably coupling the keypad to one or more accessory devices.
A laser accessory device comprises a housing having a front side having a port, a rear side opposite the front side, a left side, a right side opposite the left side, a top side, and a bottom side opposite the top side. One or more laser emitters within the housing are configured to emit a beam through the port. A first cover assembly is positioned on the front side, the first cover assembly including a first safety cover and a first frame securing the first safety cover to the housing. The first safety cover is movable between a closed position covering the port and an open position not covering the port.
An adapter assembly for attaching a circumaural device to a mounting interface on a helmet comprises a fastener element configured to releasably couple to the mounting interface. A pressure relief assembly coupled to the fastener element has a pivoting subassembly and an adjustment subassembly. The pivoting subassembly I pivotable about a pivot axis and has a range of travel between an upright position and an extended position. One or more attachment arms have a proximal end coupled to the pressure relief assembly and a distal end for attaching the circumaural device. The adjustment subassembly has a manually operable control portion to cause pivoting movement of the pivoting subassembly toward the upright position to decrease a pressure of an attached circumaural device on a wearer's head or toward the extended position to increase a pressure of an attached circumaural device on the wearer's head.
A shroud assembly for headgear includes a frame having a first side configured to face toward an exterior surface of the headgear and a second side opposite the first side and configured to face away from the headgear, the first side having a shape that matches a contour of the headgear. An insert separately formed from the frame is removably attached to the first side of the frame, the insert configured for removable attachment to a mounting assembly. The frame includes first and second spaced apart walls disposed on the front side of the frame on opposite sides of the insert, the first and second walls spaced a sufficient distance apart to provide an interference fit between the mounting assembly and the first and second spaced apart walls.
A fire control system comprises a fixed base and a sight assembly rotatably attached to the fixed base. The sight assembly includes an optical range finder for calculating a distance to a selected target and a camera having a zoom lens assembly and an optical sensor for generating an image signal representative of a target scene including a selected target. The zoom lens assembly includes a zoom controller and zoom lens optical elements, wherein the zoom controller is configured to change a magnification of the zoom lens optical elements responsive to a calculated distance to the selected target. In a further aspect, a method for imaging a target is provided.
A helmet mounting system for attaching an accessory device to a helmet includes one or more cables with a hook for removably engaging the brim of the helmet. Each cable has an end attached to a spool which is rotatable in a first direction for winding of the cable(s) around the spool and a second direction for unwinding the cable. A tensioning mechanism is coupled to the spool. In certain embodiments, one or more accessory devices are electrically coupled to a power and data management module for routing power, data and control signals to the one or more accessory devices. Accessory devices are interchangeable, providing a modular system that can be customized to meet mission requirements and accessory devices are removable and replaceable as mission requirements change.
An optical bench for supporting a reflex sight in a weapon-mounted sight assembly includes a reflex sight mounting portion having a first surface for receiving a reticle light source and a first reticle lens mounting arm spaced apart from a second reticle lens mounting arm. The first and second reticle lens mounting arms are attached to the reflex sight mounting portion and the first and second reticle lens mounting arms are configured to engage opposite sides of a reticle lens to support the reticle lens in an optical path of the reticle light source. The first and second reticle lens mounting arms are sufficiently resilient to accommodate thermal expansion and contraction of the reticle lens. In further aspects, a weapon sight assembly employing an optical bench and a method for manufacturing an optical bench are provided.
A grenade launcher system comprises a grenade launcher receiver and a grenade launcher barrel attached to the grenade launcher receiver. A trigger assembly is attached to the grenade launcher receiver at a position adjacent the grenade launcher barrel. The grenade launcher receiver has an elongate channel disposed on an upper surface of the grenade launcher receiver, the elongate channel extending parallel to the grenade launcher barrel and configured to slidably and removably receive a mounting rail. In certain embodiments, the grenade launcher system is configured to operate in an underslung configuration relative to a firearm. In certain embodiments, the grenade launcher system is configured to operate in a standalone configuration without a firearm.
An interface system for a helmet mounting system comprises a helmet strap assembly. A helmet shroud includes a shroud interface assembly configured to mate with a first hot shoe of a helmet mount assembly. The shroud interface assembly comprises a high speed data interface configured to be electrically coupled to the first hot shoe when the shroud interface assembly is coupled with the first hot shoe. A battery mount assembly comprises a second hot shoe portion which is configured to mate with a hot shoe receiver of a battery pack. The second hot shoe portion comprises a high speed data interface which is configured to be electrically coupled to high speed contacts on the hot shoe receiver of the battery pack when the second hot shoe portion is coupled with the hot shoe receiver of a battery pack.
A torpedo apparatus comprises a propulsion module operable to propel the torpedo apparatus through water and a steering module operatively coupled to the propulsion module. The steering module including a plurality of fins which are controllable for controlling a direction of travel of the torpedo apparatus through water. A plurality of head modules are removably and interchangeably attachable to the torpedo apparatus, wherein each of the head modules houses at least one guidance assembly and at least one utility assembly. A power supply module is configured to provide power to the propulsion module, the steering module, and an attached one of the head modules.
In one aspect, a sighting device for a weapon includes an orientation sensor configured to detect a weapon cant, a display having one or more visual indicators, and a processor. The processor is configured to receive information regarding weapon cant from the orientation sensor and is further configured to control the one or more visual indicators of the display output to provide a visual indication of excessive weapon cant. In a further aspect, a method of sighting a target is provided.
A hot shoe interface system for transmitting high speed data includes a hot shoe portion including a first set of electrical contacts configured to receive high speed data from a first device. A second set of electrical contacts is configured to receive a power signal and a third set of electrical contacts is configured to receive low speed data from the first device. A first set of optical terminals is configured to receive optical data from the first device. A hot shoe receiver further includes a fourth set of electrical contacts configured to provide the high speed data to a second device. A fifth set of electrical contacts is configured to receive the power signal and a sixth set of electrical contacts is configured to provide the high speed data to the second device. A second set of optical terminals is configured to transmit optical data to the second device.
H01R 12/71 - Coupling devices for rigid printing circuits or like structures
H01R 33/76 - Holders with sockets, clips or analogous contacts, adapted for axially-sliding engagement with parallely-arranged pins, blades, or analogous contacts on counterpart, e.g. electronic tube socket
H01R 33/94 - Holders formed as intermediate parts for linking a counter-part to a coupling part
A weapon system for a firearm includes a processor, the processor having an associated memory, and an optical reader, the optical reader configured to receive operator-identification information and transmit the operator-identification information to the processor.
F41A 17/06 - Electric or electromechanical safeties
F41A 17/30 - Multiple safeties, i.e. safeties acting on at least one element of the firing mechanism and at least one other element of the gun, e.g. the moving barrel
G06K 9/00 - Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
G06K 7/14 - Methods or arrangements for sensing record carriers by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
A61F 11/14 - Protective devices for the ears external, e.g. earcaps or earmuffs
A weapon system for a firearm having a barrel includes a powered accessory rail interface having an upper accessory rail and a lower accessory rail. A first accessory device is removably attachable to the upper accessory rail and is configured to receive electrical power and data signals over the powered accessory rail interface. A second accessory device is removably attachable to the lower accessory rail, the second accessory device configured to receive electrical power and data signals over the powered accessory rail interface. A power supply is electrically coupled to the powered accessory rail interface.
A ballistic helmet system having an integrated circuit layer electrically coupled to one or more powered devices, where the ballistic helmet is configured to operate and control the powered devices. The ballistic helmet system comprises a base layer configured to retain the circuit layer. The circuit layer comprises one or more circuit substrates, which may be formed of a flexible material capable of withstanding elevated temperatures that may result from the bonding and curing process of the helmet components.
In one aspect, an unmanned aerial system for crowd control, includes a chassis for attaching components of the unmanned aerial system and one or more rotary wings, each of the one or more rotary wings drivable by a respective motor. A container stores a pressurized source of a crowd control agent and a nozzle is provided for dispersing the crowd control agent into the air. An electronically controlled valve selectively places the nozzle into fluid communication with the container. In a further aspect, a modular unmanned aerial system for crowd control is provided.
A wearable illuminating and video recording system for use in conjunction with a handheld firearm includes a housing having first and second ports in a surface of the housing. A light source is disposed within the housing and positioned to emit light through the first port. A camera module is disposed within the housing and positioned to detect images through the second port. A recording module is disposed within the housing for receiving a video signal from the camera and storing data representative of the video signal. A power supply is disposed within the housing for providing power to operate the light source, camera, and recording module. An RF tag is disposed within the housing and a circuit including an RFID reader is associated with the firearm. The RFID reader is configured to transmit signals to the RF tag and receive signals from the RF tag and the circuit is configured to control operation of the firearm.
A combined reflex and laser sighting device with co-aligned iron sights is provided. In one aspect, the laser elements are co-aligned with each other, the reflex sight is co-aligned with the laser elements, and the iron sights are then co-aligned with the reflex sight and lasers, such that both the reflex sight, laser sight, and iron sights can all be calibrated or boresighted to a weapon together in a single operation. In another aspect, one or more laser elements are mounted to a laser bench and aligned with a reflex sight and iron sights attached to the laser bench. In yet another aspect, a plurality of laser elements are provided on the laser bench and are co-aligned with each other, the reflex sight, and the iron sights. In yet another aspect, an elevation adjustment apparatus for a laser sight includes selectable primary and secondary adjustment assemblies.
A modular helmet interface with a mounting cleat, threaded insert, and adhesive layer is provided. In one aspect, a mounting cleat is affixed to a helmet, such as a ballistic helmet, by an adhesive layer, the mounting cleat having an outer portion and a threaded insert within a cavity formed in the outer portion. The outer portion has an inward facing surface configured to receive an adhesive layer for coupling the inward facing surface to the helmet surface. In another aspect, a mounting cleat is secured to a helmet by way of a cleat-receiving securing member, the securing member affixed to the helmet by an adhesive layer. In a more limited aspect, a helmet having multiple mounting cleats configured to support an accessory mounting rail or a helmet mount assembly.
A helmet mount system for attaching a device to a helmet comprises a threaded interface assembly having an outer portion and a threaded insert received within a cavity formed in the outer portion. The outer portion has an inward facing surface configured to receive an adhesive layer for coupling the inward facing surface to a surface of the helmet. In a further aspect, a ballistic helmet having the helmet mount system herein is provided, wherein the helmet mount system does not penetrate a ballistic layer of the ballistic shell.
A42B 3/04 - Parts, details or accessories of helmets
A42B 3/06 - Impact-absorbing shells, e.g. of crash helmets
F16M 13/02 - Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
F16B 47/00 - Suction cups for attaching purposes; Equivalent means using adhesives
A modular helmet interface with a mounting cleat and adhesive layer is provided. In one aspect, a mounting cleat is affixed to a helmet, such as a ballistic helmet, by an adhesive layer, the mounting cleat having a cavity filled with the adhesive used to secure the cleat to the helmet. In a further aspect, the mounting cleat has one or more annular grooves for improving the bond between the cleat and the helmet. In another aspect, a mounting cleat is secured to a helmet by way of a cleat-receiving securing member, the securing member affixed to the helmet by an adhesive layer.
A torpedo apparatus comprises a propulsion module operable to propel the torpedo apparatus through water and a steering module operatively coupled to the propulsion module. The steering module including a plurality of fins which are controllable for controlling a direction of travel of the torpedo apparatus through water. A plurality of head modules are removably and interchangeably attachable to the torpedo apparatus, wherein each of the head modules houses at least one guidance assembly and at least one utility assembly. A power supply module is configured to provide power to the propulsion module, the steering module, and an attached one of the head modules.
In one aspect, a shroud assembly for headgear includes a frame having a shape that matches a contour of the headgear. An insert is formed of metal or metal alloy and is attached to a front side of the frame. The insert is configured for removable attachment to a mounting assembly. The frame includes first and second spaced flexible walls disposed on the front side of the frame on opposite sides of the insert. The first and second flexible walls are spaced a sufficient distance apart to provide an interference fit between the mounting assembly and the first and second flexible walls. In another embodiment, the shroud assembly further includes a friction pad disposed on a rear surface of the frame for increasing friction between the shroud assembly and the headgear. In another aspect, a method for attaching a mounting assembly to headgear is provided.
In one aspect, a sensor system for advanced smart weapons barrels includes one or more sensors, the sensors connected to a processor by way of conductive elements. The smart weapons barrel system may include one or more barrel segments, such segments being removably attached to each other. In certain embodiments, the sensors are positioned along the barrel segments and generate an electrical signal in response to a projectile being fired by the host firearm as the projectile moves past the respective sensor. The processor receives raw data from the sensor signal and may extrapolate and/or calculate further information in order to determine any number of a variety of metrics or other data analysis, including, but not limited to, round count projectile velocity, rate of fire, etc.
A modular unmanned aerial system includes a chassis for attaching components of the modular unmanned aerial system and one or more rotary wings. Each of the one or more rotary wings is drivable by a respective motor. A central controller is provided for controlling operation of the modular unmanned aerial system. A modular interface portion attached to the chassis and adapted for removably mounting one or more modular devices.
A grenade launcher is provided comprising a chassis, a barrel assembly, and a pivot mechanism. The pivot mechanism comprises a first pivot bar on the barrel assembly extending transversely. The first pivot bar has a first hinge barrel disposed at one transverse end thereof and is attachable in a first orientation wherein the first hinge barrel is on a left side of the barrel assembly and a second orientation wherein the first hinge barrel is on a right side of the barrel assembly. A second pivot bar is disposed on the chassis and has a second hinge barrel disposed at one transverse end thereof. The second pivot bar is attachable in a first orientation wherein the second hinge barrel is on a left side of the barrel assembly and a second orientation wherein the second hinge barrel is on a right side of the barrel assembly. A pivot pin extends in vertical openings in the first and second hinge barrels and defines a pivot axis for pivoting movement of the barrel assembly between a closed position and either a left or a right open position.
A rescue system includes a wearable article, such as a wristband, which includes a radio frequency identification (RFID) tag, a radio frequency (RF) beacon, and a power supply. One or more RFID readers (collectively, an RF network) are located on a vessel, the RFID readers being configured to communicate with the RFID tag. Should the RF network detect a passenger overboard event, a modular rocket system is deployed. The modular rocket system comprises a guidance module, the guidance module including a guidance system for guiding the modular rocket system toward a target. A flight control module is removably attached to the guidance module, said flight control module including a plurality of airfoils. A flotation module is removably attached to the flight control module, said flotation module including a flotation device. A rocket motor module removably attached to the flotation module, said rocket motor module including a rocket motor configured to propel the modular rocket system.
B63C 9/22 - Devices for holding or launching life-buoys, inflatable life-rafts, or other floatable life-saving equipment
G06K 19/077 - Constructional details, e.g. mounting of circuits in the carrier
A44C 5/00 - Bracelets; Wrist-watch straps; Fastenings for bracelets or wrist-watch straps
G05D 1/10 - Simultaneous control of position or course in three dimensions
G01S 5/02 - Position-fixing by co-ordinating two or more direction or position-line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
B63C 9/01 - Air-sea rescue devices, i.e. equipment carried by, and capable of being dropped from, an aircraft
F41G 7/00 - Direction control systems for self-propelled missiles
G01S 3/02 - Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
G01S 17/88 - Lidar systems, specially adapted for specific applications
F42B 5/02 - Cartridges, i.e. cases with propellant charge and missile
G01S 3/78 - Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
F42B 12/58 - Cluster or cargo ammunition, i.e. projectiles containing one or more submissiles
F42B 10/14 - Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel
F42B 15/01 - Arrangements thereon for guidance or control
G01S 13/88 - Radar or analogous systems, specially adapted for specific applications
F41G 11/00 - WEAPON SIGHTS; AIMING - Details of sighting or aiming apparatus; Accessories
F42B 15/08 - Self-propelled projectiles or missiles, e.g. rockets; Guided missiles for carrying measuring instruments
G01S 13/76 - Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
A lockout system for a laser device of a type having a laser emitter operable to emit a laser beam at a plurality of intensity levels includes a lockout switch operable to be placed in either a first state or a second state, wherein the laser device is configured to prevent actuation of the laser emitter at an intensity level above a preselected threshold intensity level when the lockout switch is in the first state and to permit actuation of the laser emitter at an intensity level above the preselected threshold intensity level when the lockout switch is in the second state. A lockout key operable to transition the lockout switch between the first state and the second state. In a further aspect, a laser sight device incorporating the lockout system herein is provided.
A modular barrel system for firearm includes a first barrel segment and a second barrel segment. Each barrel segment comprises a tubular member having an axial bore, a proximal end, and a distal end. The proximal end of the first barrel segment has a first threaded element for removably attaching the first barrel segment to a firearm. The distal end of the first barrel segment has a second threaded element and the proximal end of the second barrel segment has a third threaded element which is complementary with the second threaded element, the third threaded element for removably attaching the second barrel segment to the first barrel segment. In a further aspect, method for the manufacture of a modular barrel system are provided.
A combined reflex and laser sighting device is provided. In one aspect, the reflex sight and one or more laser elements are coaligned, such that both the reflex sight and the laser sight can be sighted in or boresighted to a weapon together in a single operation. In another aspect, one or more laser elements are mounted within a laser bench and aligned with a reflex sight attached to the laser bench. In yet another aspect, a plurality of laser elements are provided within the laser bench and are coaligned with each other and the reflex sight. In another aspect, a mounting block with yielding vertical and horizontal webs is provided to allow windage and elevation adjustments to be made to the reflex sight and laser elements together. In still another aspect, an elevation macro-adjustment mechanism is provided to provide a simple adjustment that that realign the sight to a weapon to accommodate different shooting scenarios, such as different velocity rounds, different target distances, and elevational differences of the shooter's vantage point.
F41G 1/35 - Night sights, e.g. luminescent combined with light source, e.g. spot light for illuminating the target
B27B 5/20 - Saw benches with feedable circular saw blade, e.g. arranged on a carriage the saw blade being adjustable according to depth or angle of cut; Radial saws, i.e. sawing machines with a pivoted radial arm for guiding the movable carriage
F41G 11/00 - WEAPON SIGHTS; AIMING - Details of sighting or aiming apparatus; Accessories
F41G 1/30 - Reflecting sights specially adapted for smallarms or ordnance
F41G 1/36 - Night sights, e.g. luminescent combined with light source, e.g. spot light with infrared light source
B27B 5/36 - Mounting for swivelling or tilting the circular saw blade
B27B 7/00 - Sawing machines working with circular saw blades, specially designed for length sawing of trunks
A laser sighting system can be used in combination with a range finder for determining a distance to a target. An onboard ballistics computer processor in the laser sighting system calculates a trajectory and automatically rotates a pointing laser to the proper angle for causing the trajectory path of a fired projectile to intersect with the position of the target. The laser sighting system can also be used in a standalone mode wherein target distance information is input manually by the user.
A communication system includes a headset including a microphone and an audio speaker installed on the headset, the headset including an RF transceiver configured to perform wireless communication with a two-way radio having a push-to-talk communication channel. The RF transceiver is further configured to perform wireless communication with an information handling system. The headset includes processing electronics configured to process an input signal from the microphone and output a first processed signal to the RF transceiver and to process an input signal from the RF transceiver and output a second processed signal to the speaker. A remote control unit is configured to perform wireless communication with the headset, the remote control unit including a remote control unit interface disposed thereon for selectively configuring the headset to function as an audio interface for the push-to-talk communication channel and an audio interface for the information handling system.
Improved helmet mounting devices for an optical device are provided. The mounting devices herein include dual pivot axes providing multiple flip options for pivoting the viewing device and/or mount up and away from the user's line of sight. The dual pivot axes and multiple flip positions also allow the unit to be adapted for a variety of viewing devices.
A42B 1/24 - Hats; Caps; Hoods with means for attaching articles thereto, e.g. memorandum tablets or mirrors
A42B 3/04 - Parts, details or accessories of helmets
G02B 23/12 - Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices with means for image conversion or intensification
A dual purpose missile storage and launch tube device includes a tubular housing and a front cover removably covering a first end of the tubular housing, the first end defining an opening for firing a missile. A rear cover assembly removably covers a second end of the tubular housing opposite the first end. A safety mechanism is attached to the tubular housing and includes a sliding member extending through a longitudinal passageway formed in the safety mechanism. A forward portion of the sliding member engages the front cover. A rearward portion of the sliding member engages a fastener locking the rear cover assembly onto the tubular housing. The rearward portion of the sliding member is disengaged from the fastener when the front cover is removed from the first end of the tubular housing for unlocking the rear cover assembly from the tubular housing.
A system for mounting an accessory device on a firearm includes a longitudinally extending handguard affixed to the firearm. The handguard is configured to support the accessory device and includes an upper portion and a lower portion. At least one electrical connector is disposed on each of the upper portion and the lower portion. A power supply is supported on the handguard and circuitry is disposed between the upper portion and the lower portion. The circuitry electrically couples the power supply to the at least one electrical connector disposed on each of the upper portion and the lower portion. In a further aspect, a modular weapon system is provided.
A combined reflex and laser sighting device with co-aligned iron sights is provided. In one aspect, the laser elements are co-aligned with each other, the reflex sight is co-aligned with the laser elements, and the iron sights are then co-aligned with the reflex sight and lasers, such that both the reflex sight, laser sight, and iron sights can all be calibrated or boresighted to a weapon together in a single operation. In another aspect, one or more laser elements are mounted to a laser bench and aligned with a reflex sight and iron sights attached to the laser bench. In yet another aspect, a plurality of laser elements are provided on the laser bench and are co-aligned with each other, the reflex sight, and the iron sights. In yet another aspect, an elevation adjustment apparatus for a laser sight includes selectable primary and secondary adjustment assemblies.
A wearable illuminating and video recording device comprises a housing having a first port and a second port in a surface of the housing. A light source is disposed within the housing and is positioned to emit light through the first port. A camera is disposed within the housing to record images through the second port. A power supply is disposed within the housing for operation of the LED light source and the camera.
A powered accessory platform for a weapon includes a handguard assembly having an upper handguard portion and an opposed lower handguard portion. The upper handguard portion and the lower handguard portion cooperate to define a sleeve. The sleeve has a proximal end configured to attach to the weapon and a distal end opposite the proximal end. The sleeve is configured to surround at least a portion of the weapon when the proximal end is attached to the weapon. A flexible circuit within the sleeve includes one or more circuit elements disposed on a flexible circuit substrate. An accessory mounting rail is located on a top portion of the upper handguard portion, the mounting rail having at least one electrical connector thereon. A first accessory mounting pad is mechanically and electrically coupled to the accessory mounting rail. A power supply connector on the sleeve is configured to attach a power supply.
A modular grenade launcher system includes an upper chassis and lower chassis secured on opposite sides of a barrel of a weapon, such as a firearm. The chassis removably receives any of a plurality of interchangeable modules, including grenade launcher assemblies having different calibers. A separate modular and removable firing mechanism is provided, wherein multiple grenade launcher barrel assemblies can share a common firing mechanism. An accessory rail module is also provided to replace the grenade launcher barrel assembly and firing mechanism.
A combined reflex and laser sighting device is provided. In one aspect, the reflex sight and one or more laser elements are coaligned, such that both the reflex sight and the laser sight can be sighted in or boresighted to a weapon together in a single operation. In another aspect, one or more laser elements are mounted within a laser bench and aligned with a reflex sight attached to the laser bench. In yet another aspect, a plurality of laser elements are provided within the laser bench and are coaligned with each other and the reflex sight. In another aspect, a mounting block with yielding vertical and horizontal webs is provided to allow windage and elevation adjustments to be made to the reflex sight and laser elements together. In still another aspect, an elevation macro-adjustment mechanism is provided to provide a simple adjustment that that realign the sight to a weapon to accommodate different shooting scenarios, such as different velocity rounds, different target distances, and elevational differences of the shooter's vantage point.
In one aspect, a modular air sampling system includes a sensor module defining a nose, the sensor module including a sensor for sampling contaminants in the atmosphere. A processing and sending module includes processing electronics in communication with the sensor for receiving a signal from the sensor representative of sampled contaminants in the atmosphere. The processing and sending module further includes a radio frequency transmitter operably coupled to the processing electronics for transmitting a radio frequency signal representative of one or more contaminants sensed by the sensor. In another aspect, a modular air sampling system includes a sensor module containing the sensor, processing electronics, and radio frequency transmitter within the sensor module housing.
A laser sighting system can be used in combination with a range finder for determining a distance to a target. An onboard ballistics computer processor in the laser sighting system calculates a trajectory and automatically rotates a pointing laser to the proper angle for causing the trajectory path of a fired projectile to intersect with the position of the target. The laser sighting system can also be used in a standalone mode wherein target distance information is input manually by the user.
An integrated helmet and respirator system comprises a shell defining a helmet portion, the helmet portion being bounded by a peripheral edge. An annular shroud has an upper edge and a lower edge, the upper edge removably attached to the peripheral edge of the helmet portion and the lower edge attached to an annular frame member. A front portion of the annular shroud defines a visor. A one-way exhaust valve is received within an opening in the annular frame member. The one-way exhaust valve is configured to allow an exhalation gas exhaled by a user to exit an interior of the integrated helmet and respirator system and to prevent or minimize ambient air from entering the interior of the integrated helmet and respirator system. A neck dam extends downward from the frame and is configured to prevent or minimize ambient air from entering the interior of the integrated helmet and respirator system.
F41H 1/08 - Protection helmets of plastics; Plastic head-shields
A61J 7/00 - Devices for administering medicines orally, e.g. spoons; Pill counting devices; Arrangements for time indication or reminder for taking medicine
45.
Monocular/binocular bridge for viewing device and helmet mount employing same
An improved monocular/binocular bridge and helmet mounting device employing same for an optical device are provided. The mounting device herein includes a mount with a bridge attachment for providing multiple options for a monocular or binocular optical device and multiple options for moving the attached optical device to any of multiple stowed positions out of the user's line of sight when the optical device is not in use. The bridge attachment and multiple stow positions also allow the unit to be adapted for a variety of viewing devices.
A modular mounting system for a night vision device includes one or more night vision monoculars, each night vision monocular having an imaging tube, a housing, and a first mounting shoe at a first position on the housing. A power supply has a first fastener thereon. A helmet mount at a first location on a helmet has a second fastener thereon. A power supply interface is located at a second location on the helmet and a second mounting shoe is provided on the power supply interface. The first mounting shoe is interchangeably and removably attachable to the first fastener and the second fastener, and, the first fastener interchangeably and removably attachable to the first mounting shoe and the second mounting shoe. In a further aspect, a firearm rail interface is provided to allow the night vision monocular to alternatively be positioned on a firearm accessory rail.
G02B 23/12 - Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices with means for image conversion or intensification
47.
Combined laser range finder and sighting apparatus having dual function laser and method
A combined range finding and sighting apparatus for a weapon includes a housing therein supporting one or more laser emitters, an optical detector for detecting an optical signal reflected from the target, and a processor. The one or more laser emitters includes a first laser emitter operable in a first mode for emitting an optical signal toward the target a second mode for projecting a first beam onto the target. The processor is coupled to a computer readable memory encoded with executable instructions and is configured, upon execution of the executable instructions, to calculate a distance to the target based on a time of flight of the optical signal. In a further aspect, a method of using a combined range finding and sighting apparatus is provided.
In one aspect, a modular rocket system comprises a guidance module defining a nose, the guidance module including a guidance system for guiding the modular rocket system toward a target. A flight control module is removably attachable to the guidance module and includes a plurality of airfoils, the airfoils being moveable between a retracted state and an extended state. A munition module is removably attached to the flight control module and includes a hollow interior configured to carry a payload material. A rocket module is attached to the munition module and includes a rocket motor configured to propel the modular rocket system. In a further aspect, a modular rocket system having a plurality of interchangeable modules is provided.
In one aspect, an eye shield for a respirator mask of the type having a face piece adapted to fit over the face of a user is provided. The eye shield includes a visor assembly including a visor surrounded by a frame, the visor assembly configured to be removably mounted in an opening in the face piece. One or more fastener elements are provided on the frame for removably securing the visor assembly to the face piece. The visor is formed of a transparent material which filters electromagnetic energy emissions at one or more preselected wavelengths. In certain embodiments, one or more head up display assemblies are attached to the visor assembly for projecting a human viewable image to the visor.
A communication system includes a headset including a microphone and an audio speaker installed on the headset, the headset including an RF transceiver configured to perform wireless communication with a two-way radio having a push-to-talk communication channel. The RF transceiver is further configured to perform wireless communication with an information handling system. The headset includes processing electronics configured to process an input signal from the microphone and output a first processed signal to the RF transceiver and to process an input signal from the RF transceiver and output a second processed signal to the speaker. A remote control unit is configured to perform wireless communication with the headset, the remote control unit including a remote control unit interface disposed thereon for selectively configuring the headset to function as an audio interface for the push-to-talk communication channel and an audio interface for the information handling system.
A breathing apparatus is operable in self-contained and filtered modes of operation. In the self-contained mode of operation, a breathable gas is delivered to a user from a self-contained source of breathing gas. In a second, filtered mode of operation, a suction source draws ambient air through a filter removing contaminants and delivers filtered ambient air to the user. A method of delivering air to a subject is also provided.
In one aspect, a shroud assembly for headgear includes a frame formed of a polymer material having a shape that matches a contour of the headgear. An insert is formed of metal or metal alloy and is attached to a front side of the frame. The insert is configured for removable attachment to a mounting assembly. The frame includes first and second spaced flexible walls disposed on the front side of the frame on opposite sides of the insert. The first and second flexible walls are spaced a sufficient distance apart to provide an interference fit between the mounting assembly and the first and second flexible walls. In another embodiment, the shroud assembly further includes a friction pad disposed on a rear surface of the frame for increasing friction between the shroud assembly and the headgear. In another aspect, a method for attaching a mounting assembly to headgear is provided.
A video display system for a weapon includes a removably attachable optical range finder for calculating a distance to a selected target. The optical range finder includes an optical emitter for sending an optical signal to a target and an optical detector for detecting the signal reflected from the target. A fire control system is removably attachable to the weapon and associated with the optical range finder. The fire control system includes a ballistics computer for calculating a ballistics solution based on the distance to the target. A portable electronic device associated with the fire control system has a display screen and is removably attachable to the weapon. The portable electronic device includes a processor and a memory storing program instructions, the program instructions configured to display the ballistics solution in human viewable form on the display screen. In another aspect, a weapon video display housing configuration is provided.
A helmet mount for attaching a viewing device to a helmet includes a helmet interface assembly removably attachable to the helmet. A pivot arm is attached to the helmet interface assembly and is pivotal about a horizontal, transverse axis. A carriage member is carried on the pivot arm and slidable between the distal end and the proximal end of the pivot arm. The carriage member includes a bridge member integral therewith, the bridge member including a first fastener configured to removably attach a first viewing device and a second fastener configured to attach a second viewing device.
An improved weapon mount system for night vision system includes a cage-like structure receiving the body of a night vision system, such as a night vision monocular. A mounting shoe is attached to the base and cage halves secure the body of the night vision system. The mounting shoe of the present mount provides a lower profile than an integral mounting member on the night vision system that is used to attach the night vision system to a helmet/head worn mount. In one aspect, by lowering the weapon mounting height of the night vision device, the night vision system can be mounted at an appropriate height for use in front of an optical scope. In another aspect one aspect, lowering the weapon mounting height of the night vision device allows the night vision system to be mounted at an appropriate height for use on a helmet mounting system in a binocular system having a thermal camera or other type of viewing device.
F41G 1/38 - Telescopic sights specially adapted for smallarms or ordnance; Supports or mountings therefor
F41G 11/00 - WEAPON SIGHTS; AIMING - Details of sighting or aiming apparatus; Accessories
G02B 23/12 - Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices with means for image conversion or intensification
An improved monocular/binocular bridge and helmet mounting device employing same for an optical device are provided. The mounting device herein includes a mount with a bridge attachment for providing multiple options for a monocular or binocular viewing. An adjustment mechanism for adjusting the pupillary/interpupillary positioning of attached viewing device(s) moves the devices linearly from side-to-side. Multiple options are provided for moving attached devices to any of multiple stowed positions out of the user's line of sight when the optical device is not in use. The bridge attachment and multiple stow positions also allow the unit to be adapted for a variety of viewing devices. A mounting bracket on the viewing device allows the viewing device to be selectively attached to a helmet mount or firearm accessory mounting rail.
F41G 11/00 - WEAPON SIGHTS; AIMING - Details of sighting or aiming apparatus; Accessories
G02B 23/12 - Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices with means for image conversion or intensification
G02B 23/18 - Housings; Caps; Mountings; Supports, e.g. with counterweight for binocular arrangements
Helmet mounts for mounting an associated viewing device on a helmet, includes a first pivoting segment for attachment to the helmet and a second pivoting segment for attachment to the associated viewing device. The second pivoting segment is pivotable relative to the first pivoting segment for selectively supporting the associated viewing device in a first, operational position before the eyes of a user donning the helmet and a second, stowed position above a line of sight of a viewer donning the helmet. In one aspect, the first pivoting segment includes a vertical adjust mechanism having a base plate, a pair of guide rails attached to the base plate and defining a channel therebetween, a sliding plate slidably attached to the guide rails, and a clamping mechanism for selectively applying a clamping force to secure the sliding plate at a desired position relative to the base plate.
A42B 3/04 - Parts, details or accessories of helmets
G02B 23/12 - Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices with means for image conversion or intensification
Pivoting helmet mounts for an optical device are provided. In one aspect, a bayonet mount is provided for removably attaching a bayonet mounting base to a flush-mounting bracket on the helmet. Optionally, a lanyard for securing the optical device to the helmet is provided. In further aspects, the bayonet mount is omitted and the helmet mount is secured directly to the flush mount bracket.
An improved helmet construction and method having a circuit carried within an edge trim member received over the unfinished edge of the helmet shell. A plurality of electrical connectors are provided at different locations on the helmet for providing power, data transmission, and/or signal transmission to one or more accessory devices on the helmet.
An improved clamping device and method for a weapon accessory rail of a type having an elongate mounting structure of generally T-shaped cross-sectional shape, such as a Picatinny mounting rail, is provided.
A helmet- or head-mounted video recording system is provided for mounting on a piece of head gear such as a head-protective helmet. The system includes a camera module attachable to the head gear, including a first video camera integrated into the camera module for generating a video signal. A recording module is removably attachable to the head gear and is adapted to receive the video signal and store data representative of the video signal. A power supply module is removably attachable to the head gear and is electrically connectable to the camera module and the recording module.
An integrated accessory mounting and electrical interconnection device are provided which can be embedded or attached to the surface of a ballistic or non-ballistic helmet. The helmet system herein includes a flexible circuit substrate that may be embedded between a ballistic shell and an outer skin or shell. The helmet system and method allow a secure connection of helmet mounted accessories to the helmet without the need to penetrate any one or more layers of the ballistic shell with mounting hardware, fasteners, wiring vias, and so forth.
An improved monocular/binocular bridge and helmet mounting device employing same for an optical device are provided. The mounting device herein includes a mount with a bridge attachment for providing multiple options for a monocular or binocular optical device and multiple options for moving the attached optical device to any of multiple stowed positions out of the user's line of sight when the optical device is not in use. The bridge attachment and multiple stow positions also allow the unit to be adapted for a variety of viewing devices.
An improved modular video display system for a weapon having a video display module that can accommodate multiple camera inputs. The video display module contains a video control panel and human-viewable display screen, which enables the operator to switch between viewing and controlling a thermal sight and a left and right rotating camera. The video display module and cameras are powered by a power supply, which is electrically coupled to the weapons accessory devices, once each device is mounted on the modular rails. The cameras are connected to the video display module and the weapons operator may select either a thermal display using the thermal sight or an image display of the left or right using the left and right rotating camera. The control panel enables the operator to personalize the display screen in order to best suit their current situational needs with controls for camera select, reticle style, reticle color, reticle intensity, bore sight keys, black hot/white hot image select, digital zoom, and display brightness. In conjunction with the modular video display system additional accessory devices may be used, such as laser sights, spotting scopes, and handgrip units.
A personal hydration system resistant to environmental contamination is provided. In a further aspect, a method of delivering fluid to a user is provided.
A mounting device for mounting an associated optical device on an associated helmet includes a first pivot arm assembly removably attachable to the associated helmet. A second pivot arm assembly is pivotally attached to the first pivot arm assembly and is rotatable about a first horizontal axis. A optical device mounting arm assembly is rotatably attached to the second pivot arm assembly. The optical device mounting arm assembly rotatable about a first vertical axis relative to the second pivot arm assembly.
A breathing apparatus is operable in self-contained and filtered modes of operation. In the self-contained mode of operation, a breathable gas is delivered to a user from a self-contained source of breathing gas. In a second, filtered mode of operation, a suction source draws ambient air through a filter removing contaminants and delivers filtered ambient air to the user. A method of delivering air to a subject is also provided.
An integrated laser range finder and sighting assembly includes a range finder for determining a distance to a target and an onboard ballistics computer for calculating a trajectory and automatically rotating a pointing laser to the proper angle for aligning with the target for lobbing of a grenade.
An integrated laser range finder and sighting assembly includes a range finder for determining a distance to a target and an onboard ballistics computer for calculating a trajectory and automatically rotating a pointing laser to the proper angle for aligning with a target for firing the weapon.
A battery box apparatus includes a main body defining a battery cavity for removably receiving one or more batteries, the main body having a mounting shoe attached to a first side of the main body for removably mounting the battery box. The battery box also includes a cover movable between a closed position and an open position hingedly connected to the main body to selectively close the battery cavity when the cover is in the closed position and to provide access to the battery cavity when the cover is in the open position. A locking mechanism secures the cover in the closed position. The battery box also includes a flex circuit received within the battery cavity, the flex circuit comprising a circuit structure carried on a flexible substrate electrically coupling a plurality of terminals within the battery cavity to a plurality of electrical contacts on the mounting shoe.
An improved floating rail system for mounting accessories on a firearm having a barrel including a chassis and a clamp adapted to attach the chassis about the barrel of the firearm. A plurality of elongate accessory mounting rails are attached to the chassis and extend parallel to an axis of the barrel. The accessory mounting rails are supported in the chassis radially spread apart from the barrel.
An integrated laser range finder and sighting assembly includes a range finder for determining a distance to a target and an onboard ballistics computer for calculating a trajectory and automatically rotating a pointing laser to the proper angle for aligning with the target for lobbing of a grenade.
An improved helmet mounting device for an optical or other viewing device is provided. The helmet mount includes a mounting assembly removably attachable to the helmet and a pivoting assembly having a first end pivotally attached to the mounting assembly and a second end opposite the first end. A fore and aft adjustment assembly is attached to the second end of the pivoting assembly and a left and right adjustment assembly is rotatably attached to the fore and aft adjustment assembly. The left and right adjustment assembly is pivotal relative to the fore and aft adjustment assembly about a first generally vertical axis. An optical device mounting member is attached to the left and right adjustment assembly and the optical device mounting member is removably attachable to the optical device. The mounting assembly includes a vertical adjust mechanism which has a base plate, a pair of guide rails attached to the base plate and defining a channel therebetween, a sliding plate slidably attached to the guide rails, and a clamping mechanism for selectively applying a clamping force to secure the sliding plate at a desired position relative to said base plate. In further aspects, modular electrical connectors and a remote battery box for providing power to the optical device or other viewing device are provided.
Helmet mounts for mounting an associated viewing device on a helmet, includes a first pivoting segment for attachment to the helmet and a second pivoting segment for attachment to the associated viewing device. The second pivoting segment is pivotable relative to the first pivoting segment for selectively supporting the associated viewing device in a first, operational position before the eyes of a user donning the helmet and a second, stowed position above a line of sight of a viewer donning the helmet. In one aspect, the first pivoting segment includes a vertical adjust mechanism having a base plate, a pair of guide rails attached to the base plate and defining a channel therebetween, a sliding plate slidably attached to the guide rails, and a clamping mechanism for selectively applying a clamping force to secure the sliding plate at a desired position relative to the base plate.
An improved helmet mounting device for an optical device, such as a night vision device, is provided. The mounting device herein includes sliding carriage arms and a pivot member for pivoting the viewing device up and away from the user's line of sight. In the depicted preferred embodiments, an optional reinforced mounting fastener system is provided. In another aspect, a movable sensor element may provided on the helmet mount for controlling operation of an attached vision device. In still further embodiments, a breakaway mechanism is provided which allows the user to select between a rigid attachment between the helmet and the optical device and a breakaway attachment wherein the optical device will break away from the helmet when an applied force exceeds a threshold amount of force.
A breathing apparatus is operable in self-contained and filtered modes of operation. In the self-contained mode of operation, a breathable gas is delivered to a user from a self-contained source of breathing gas. In a second, filtered mode of operation, a suction source draws ambient air through a filter removing contaminants and delivers filtered ambient air to the user. A method of delivering air to a subject is also provided.
A helmet- or head-mounted video recording system is provided for mounting on a piece of head gear such as a head-protective helmet. The system includes a camera module attachable to the head gear, including a first video camera integrated into the camera module for generating a video signal. A recording module is removably attachable to the head gear and is adapted to receive the video signal and store data representative of the video signal. A power supply module is removably attachable to the head gear and is electrically connectable to the camera module and the recording module.
A breathing apparatus is operable in self-contained and filtered modes of operation. In the self-contained mode of operation, a breathable gas is delivered to a user from a self-contained source of breathing gas. In a second, filtered mode of operation, a suction source draws ambient air through a filter removing contaminants and delivers filtered ambient air to the user. A method of delivering air to a subject is also provided.
Pivoting helmet mounts for an optical device are provided. In one aspect, a breakaway connector which is selectively configurable between breakaway and nonbreakaway configurations is provided. In a further aspect, a strap mount system for securing the helmet mount to the helmet employs a rotating ratchet assembly to adjust tension in the strap. In another aspect, a helmet mount for an optical device comprises a track assembly attached to a helmet to allow stowing of the optical device in a further retracted position. The track mount system may further include electrical connectors for attaching a power supply and an electronic device. In another aspect, a mounting bracket allows helmet-mounted optics to be shared with a weapon accessory mount. In a further aspect, a optical sighting device for a weapon combines a reflex sight a night vision goggle to allow targeting at night or in other low-light conditions.
Pivoting helmet mounts for an optical device are provided. In one aspect, a breakaway connector which is selectively configurable between breakaway and nonbreakaway configurations is provided. In a further aspect, a strap mount system for securing the helmet mount to the helmet employs a rotating ratchet assembly to adjust tension in the strap. In another aspect, a helmet mount for an optical device comprises a track assembly attached to a helmet to allow stowing of the optical device in a further retracted position. The track mount system may further include electrical connectors for attaching a power supply and an electronic device. In another aspect, a mounting bracket allows helmet-mounted optics to be shared with a weapon accessory mount. In a further aspect, a optical sighting device for a weapon combines a reflex sight a night vision goggle to allow targeting at night or in other low-light conditions.
A handgrip apparatus for firearm includes a hollow housing defining a handgrip surface and forming an enclosure. A fastener is connected to the housing for removably attaching the handgrip apparatus to a fore-end portion of a firearm. A retractable leg assembly is movable between a retracted position and an extended position and includes a pair of pivoting legs usable as a bipod support when the leg assembly is in the extended position.