An optical sight includes a housing and an optical element supported by the housing. The housing includes a first surface defining a cavity accessible from a first cavity side of the housing and a bottom side of the housing and an opening extending along a longitudinal axis of the housing. The first surface is configured such that the first cavity is inaccessible from above. The first cavity is configured to accommodate a first fastener such that a head of the first fastener is supported by the first surface and such that a shaft of the first fastener extends through the bottom side of the housing. The optical element is disposed within the opening of the housing.
An optical sight includes a lens assembly, a digital reticle display, a magnification adjuster, and a controller. The magnification adjuster is configured to be adjusted by a user. The controller is configured to display a reticle on the digital reticle display based on a real-time magnification, and is configured to determine the real-time magnification based on a position of the magnification adjuster.
G02B 23/10 - Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors reflecting into the field of view additional indications, e.g. from collimator
F41G 1/38 - Telescopic sights specially adapted for smallarms or ordnance; Supports or mountings therefor
G02B 15/10 - Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective by adding a part, e.g. close-up attachment
G02B 27/36 - Fiducial marks or measuring scales within the optical system adjustable
An optical sight includes a housing, an optical element, and a photo detector. The housing has a main body, a pair of upwardly extending posts, and a cross member extending between the pair of upwardly extending post. The optical element is supported by the housing and positioned between the pair of upwardly extending posts and between the main body and the cross member. The photo detector is positioned in the housing and configured to detect ambient light at a target object. A first post of the pair of upwardly extending posts and the cross member are joined at a shoulder of the housing. The photo detector is formed in the shoulder of the housing.
An optical sight includes a housing, an optical element supported by the housing, a light source configured to provide a reticle on the optical element, and a light source adjuster configured to change a position of the reticle relative to the optical element. The light source is mounted on an adjustment plate. The light source adjuster includes an adjustment screw, an adjuster block configured to threadably receive the adjustment screw, and a biasing mechanism configured to apply a force to retain the adjuster block in an adjustment position. The adjuster block is directly engaged with the adjustment plate. Rotation of the adjustment screw moves the adjuster block, and movement of the adjuster block moves the adjustment plate.
An optical sight includes a housing, an optical element supported by the housing, a sensor positioned in the housing, a light source configured to selectively illuminate a reticle on the optical element, and a controller configured to control illumination of the reticle based on an output from the sensor. The sensor is configured to detect ambient light at a target object. The controller is configured to control the light source to constantly illuminate the reticle based on a first output from the sensor and illuminate the reticle in pulses based on a second output from the sensor. The first output is different from the second output.
An optical sight configured to be mounted to a weapon includes a lens assembly, a display, and a controller. The display is configured to display a target animal through the lens assembly. The controller is configured to determine a range from the optical sight to the target animal and display the range on the display. The controller is configured to determine an animal type, a known animal dimension, and a display area for the target animal, where the display area for the target animal is a percentage of the display occupied by the target image. The controller is configured to determine the range from the known animal dimension and the display area for the animal.
An optic for a firearm includes a housing, an optics train, an adjustment ring, and a detector. The optics train is disposed within the housing and along a longitudinal axis of the housing. The adjustment ring is supported by the housing and configured to adjust a magnification of the optics train. The detector is engaged with the adjustment ring and configured to convert rotation of the adjustment ring into a digital magnification.
F41G 1/38 - Telescopic sights specially adapted for smallarms or ordnance; Supports or mountings therefor
G02B 7/09 - Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
G02B 23/16 - Housings; Caps; Mountings; Supports, e.g. with counterweight
A sight for a firearm includes a housing, a tritium light source, a light transmission rod, and a retainer. The housing is configured to be mounted to a firearm. The tritium light source is supported within the housing. The light transmission rod is disposed in a cavity of the housing and positioned adjacent the tritium light source. The light transmission rod is configured to collect and transmit both an ambient light and a light from the tritium light source. The retainer is removably engaged with the housing and fixes the light transmission rod within the cavity. Removal of the retainer provides access for replacement of the light transmission rod.
A retainer system is provided for tethering a cap to a body on an optic, where the cap and body define an inner cavity. The retainer system includes a lanyard and an inner attachment. The lanyard is fixed on a first end to a surface of the cap facing the inner cavity. The inner attachment is fixed on a first end to a second end of the lanyard and is fixed on a second end to an inside wall of the body facing the inner cavity. When the cap is closed on the body, the lanyard and inner attachment are contained completely within the inner cavity.
A powered mount for a firearm includes a housing for receiving a battery. The housing has a first surface engaging a firearm and a second surface engaging an external device. A positive contact sub-assembly contacts a positive terminal of the battery. A negative contact cooperates with the positive contact sub-assembly to sandwich the battery in the housing. A power output transfers electrical current from the battery to the external device.
A powered mount for a firearm includes a housing for receiving a battery. The housing has a first surface engaging a firearm and a second surface engaging an external device. A positive contact sub-assembly contacts a positive terminal of the battery. A negative contact cooperates with the positive contact sub-assembly to sandwich the battery in the housing. A power output transfers electrical current from the battery to the external device.
An optical sight includes a housing, a relay assembly, and a biasing element. The relay assembly has at least one optical element, a main tube, a track tube with at least one track, and a reticle assembly. The track tube is selectively rotatable relative to and about the main tube to adjust an axial position of the at least one optical element within the main tube along an axis that is substantially parallel to a longitudinal axis of the main tube. The reticle assembly further includes at least one optical element. The biasing element includes a mounting strap that is fixed to an inner surface of the housing and a spring having an engagement surface that contacts the relay assembly and exerts a force on the relay assembly. The engagement surface is on a radially inner side of the spring opposite a radially outer side facing the mounting strap.
F41G 1/38 - Telescopic sights specially adapted for smallarms or ordnance; Supports or mountings therefor
G02B 7/10 - Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
G02B 15/163 - Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
An optical sight is provided and includes a housing having a first bearing surface integrally formed therewith and a relay assembly having at least one optical element, a main tube, and a track tube having at least one track. The track tube is selectively rotatable relative to and about the main tube to adjust an axial position of the at least one optical element within the main tube along an axis that is substantially parallel to a longitudinal axis of the main tube. The main tube includes a spherical surface that is in contact with the first bearing surface of the housing to define a pivot point of the main tube within the housing.
An adjustment turret for an optical sight is provided and may include a housing and an adjustment member rotatably supported by the housing and operable to adjust a characteristic of the optical sight when moved relative to the housing. The adjustment turret may additionally include a cap extending from the housing and movable between an engaged state fixing the cap for rotation with the adjustment member and a disengaged state permitting relative rotation between the cap and the adjustment member. The cap may be moveable from the disengaged state to the engaged state in a direction away from the housing.
An optical sight is provided and may include a housing and a wedged, doublet objective lens supported by the housing. The wedged, doublet objective lens may include a first lens having a first amount of wedge and a second lens having a second amount of wedge different than the first amount of wedge.
F41G 1/38 - Telescopic sights specially adapted for smallarms or ordnance; Supports or mountings therefor
F41G 1/34 - Night sights, e.g. luminescent combined with light source, e.g. spot light
F41G 1/30 - Reflecting sights specially adapted for smallarms or ordnance
G02B 23/10 - Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors reflecting into the field of view additional indications, e.g. from collimator
A sighting system for a firearm is provided and may include a rear-sight assembly having a rear surface opposing a shooter, a pair of rear-aiming points, and a U-shaped opening disposed between the pair of rear-aiming points. The rear surface may be formed at an angle relative to a top surface of the firearm such that a bottom portion of the rear surface disposed proximate to the top surface of the firearm is farther away from a shooter than a top portion of the rear surface. The sighting system may also include a front-sight assembly including a housing having a front-aiming point, a brightly colored material surrounding the front-aiming point, and a top coat extending over the brightly colored material and the front-aiming point.
A sight assembly for a firearm is provided and may include a main body attached to the firearm and a pair of projections defining a first surface opposing a shooter and a second surface formed on an opposite side of the projections than the first surface. The first surface may be formed at an angle relative to a top surface of the firearm such that a bottom portion of the first surface disposed proximate to the top surface of the firearm is farther away from a shooter than a top portion of the first surface. The sight assembly may further include a U-shaped opening disposed between the pair of projections and in communication with a passage defined by the pair of projections, whereby the passage widens along a length of the pair of projections in a direction extending from the first surface to the second surface.
A sight assembly for a shotgun is provided and may include a housing. A light-collecting fiber may be supported by the housing and may extend along a longitudinal axis of the housing. A lens may be supported by the housing and may receive light from the fiber to display an aiming point. The lens may be spaced apart and separated from a distal end of the fiber by a predetermined distance.
An optical sight is provided and may include a housing having a base, a first post extending from the base, and a second post extending from the base. The optical sight may additionally include an optical element supported by the housing between the first post and the second post, a reticle displayed on the optical element, and an illumination system generating the reticle. A first actuation member may be disposed on one of the first post and the second post and may selectively control an intensity of the reticle by controlling an output of the illumination system.
An adjustment turret for an optical sight includes a body, an adjustment shaft, a cap, and a locking pin. The body includes a cavity and an axial bore. The adjustment shaft threadably engages the axial bore for relative rotation therebetween. The cap is connected to the adjustment shaft for rotation with the adjustment shaft relative to the body and is axially movable relative to the body and the adjustment shaft between a first position and a second position. The locking pin is axially movable with the cap and is received in the cavity when the cap is in the first position to prevent relative rotation between the cap and the body and is removed from the cavity when the cap is in the second position to allow relative rotation between the cap and the body.
A sighting system for a firearm is provided and may include a rear-sight assembly having a rear surface opposing a shooter, a pair of rear-aiming points, and a U-shaped opening disposed between the pair of rear-aiming points. The rear surface may be formed at an angle relative to a top surface of the firearm such that a bottom portion of the rear surface disposed proximate to the top surface of the firearm is farther away from a shooter than a top portion of the rear surface. The sighting system may also include a front-sight assembly including a housing having a front-aiming point, a brightly colored material surrounding the front-aiming point, and a top coat extending over the brightly colored material and the front-aiming point.
An optical sight is provided and may include an optics train having at least one prism with a first surface, a display associated with the first surface to selectively supply the first surface with an image, and a processor in communication with the display to provide the display with the image. An infrared camera may be in communication with the processor and may provide the processor with thermal-energy data for use by the processor in generating the image.
An aiming system for use with a weapon is provided and may include a processor, at least one sensor in communication with the processor, and a memory in communication with the processor. The aiming system may also include a display in communication with the processor that displays a corrected-aiming point based on at least one simulated bullet trajectory and at least one simulated bullet impact location determined by the processor.
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
G06G 7/80 - Analogue computers for specific processes, systems, or devices, e.g. simulators for guiding missiles
An optical sight is provided and may include: a housing; at least one prism supported by the housing; an optical device disposed on the prism and including a longitudinal axis; and an illumination device associated with the optical device and operable to supply the prism with light via the optical device by supplying light to the optical device in a direction along the longitudinal axis.
An optical sight is provided and may include: a housing; at least one optic supported by the housing; an illumination device associated with the at least one optic and selectively supplying the at least one optic with light, the illumination device including a first fiber associated with a first light source; a coupler collecting light from the first fiber and supplying the at least one optic with light from the first light source; and an electroluminescent device associated with the at least one optic and selectively supplying the at least one optic with light separate from the coupler.
A sight mount is provided and may include a frame, a first bracket slidably supported by the frame, and an arm rotatably attached to the first bracket at a first pivot point and rotatably supported by the frame at a second pivot point. A first adjustment assembly may adjust a distance between the first pivot point and the second pivot point. A second adjustment assembly may include a rotatable wheel to pivot the arm about the second pivot in response to rotation of the wheel relative to the frame to move the first bracket relative to the frame.
A sight is provided and may include a housing having a first end, a second end, and an opening extending along a longitudinal axis between the first end and the second end. The sight may also include an optical fiber supported by the housing and a sighting pin having an aiming point extending into the opening of the housing and receiving light from the optical fiber to illuminate the aiming point. The sighting pin may include a longitudinal axis disposed substantially perpendicular to the longitudinal axis of the opening.
An optical sight is provided and may include an optical element, a reticle displayed on the optical element, and a housing. The housing may include a base, a first post extending from the base, a second post extending from the base, and a cross member extending between the first post and the second post to define an opening receiving the optical element therein. The first post and the second post may extend above the opening and away from the base a greater distance than a top surface of the cross member.
An optical sight is provided and may include an optical element, a reticle selectively displayed on the optical element, and a housing. The housing may include a base, a first post extending from the base, a second post extending from the base, and a cross member extending between the first post and the second post to define an opening receiving the optical element therein. The cross member may include a first surface opposing the optical element and a second surface disposed on an opposite side of the cross member than the first surface, whereby the second surface has a substantially concave shape.
An optical sight is provided and may include a housing, at least one optic supported by the housing, and an illumination device associated with the at least one optic that selectively supplies the at least one optic with light. The illumination device may include a first fiber associated with a first light source and a second fiber associated with a second light source. A coupler may join the first fiber and the second fiber and may supply the at least one optic with light from at least one of the first light source and the second light source.
An optical sight is provided and may include an optical element and a reticle displayed on the optical element. A housing of the optical sight may include a base, a first post extending from the base, a second post extending from the base, and a cross member extending between the first post and the second post to define an opening receiving the optical element therein. The first post and the second post may extend above the opening and away from the base a greater distance than a top surface of the cross member.
An optical sight is provided and may include a housing, at least one optic supported by the housing, and a fiber supported by the housing and selectively supplying light to the at least one optic. A sleeve may be supported by the housing and may include an opening that selectively exposes the fiber to vary an amount of light supplied to the at least one optic and a cover extending over the opening and movable with the sleeve relative to the fiber.