Stratasys, Inc.

United States of America

Back to Profile

1-100 of 491 for Stratasys, Inc. Sort by
Query
Patent
United States - USPTO
Aggregations Reset Report
Date
New (last 4 weeks) 3
2024 November 3
2024 October 1
2024 September 3
2024 August 1
See more
IPC Class
B33Y 10/00 - Processes of additive manufacturing 221
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor 174
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes 134
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM] 116
B29C 67/00 - Shaping techniques not covered by groups , or 116
See more
Status
Pending 55
Registered / In Force 436
Found results for  patents
  1     2     3     ...     5        Next Page

1.

3D PRINTER STATUS AND HEALTH MONITORING WITH ILLUMINATED STATUS DISPLAY INDICATOR

      
Application Number 18322201
Status Pending
Filing Date 2023-05-23
First Publication Date 2024-11-28
Owner Stratasys, Inc. (USA)
Inventor
  • Schiel, Colin
  • Johnson, Brett
  • Michalkiewicz, Ross

Abstract

A 3D printer includes a chamber configured to receive extruded material to print a part and a tool chamber above the chamber, the tool chamber comprising a viewing window and a tool rack. The 3D printer includes a plurality of print heads, each of the plurality of print heads residing in a docked position on the tool rack and when not in use. Each of the plurality of print heads comprising a illuminated status indicator configured to emit a plurality of signals indicative of a status or error of the print head or a status of the 3D printer, wherein the illuminated status indicator faces the viewing window and a plurality of sensors located on the print head or in the 3D printer and configured to detect a status of the print head or other printer components or an error in the print head or other printer components.

IPC Classes  ?

  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

2.

METHOD OF ANALYZING AND UTILIZING SURFACE TOPOLOGY FOR TARGETED LOCAL THERMAL MANAGEMENT IN ADDITIVE MANUFACTURING SYSTEMS

      
Application Number 18772872
Status Pending
Filing Date 2024-07-15
First Publication Date 2024-11-07
Owner Stratasys, Inc. (USA)
Inventor
  • Nixon, Jason Robert
  • Newell, Clint
  • Diekmann, Timothy

Abstract

A method for 3D printing a part with an additive manufacturing system includes printing a first portion of a part in a layerwise manner and analyzing a topology of the first portion of the part. The method includes determining a tool path for printing a second portion of the part on a surface of the first portion of the part, and pre-heating the first portion of the part along the tool path as a function of the topological analysis of the first portion of the part. The method includes printing the second portion of the part along the tool path.

IPC Classes  ?

  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/209 - Heads; Nozzles
  • B29C 64/268 - Arrangements for irradiation using electron beams [EB]
  • B29C 64/314 - Preparation
  • B29C 64/336 - Feeding of two or more materials
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 40/10 - Pre-treatment
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

3.

NETWORKED THREE-DIMENSIONAL PRINTING

      
Application Number 18775296
Status Pending
Filing Date 2024-07-17
First Publication Date 2024-11-07
Owner Stratasys, Inc. (USA)
Inventor Pettis, Nathaniel B.

Abstract

Three-dimensional fabrication resources are improved by adding networking capabilities to three-dimensional printers and providing a variety of tools for networked use of three-dimensional printers. Web-based servers or the like can provide a single point of access for remote users to manage access to distributed content on one hand, and to manage use of distributed fabrication resources on the other.

IPC Classes  ?

  • G06F 3/12 - Digital output to print unit
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B33Y 40/10 - Pre-treatment
  • B33Y 50/00 - Data acquisition or data processing for additive manufacturing
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 70/00 - Materials specially adapted for additive manufacturing

4.

PRINT ACCURACY SCORE BASED ON 3D METROLOGY DATA

      
Application Number 18307455
Status Pending
Filing Date 2023-04-26
First Publication Date 2024-10-31
Owner Stratasys, Inc. (USA)
Inventor
  • Page, James S.
  • Semerjian, Benjamin

Abstract

A method includes determining a plurality of distances between a representation of the part that is based on three-dimensional metrology data and a three-dimensional model of the part and applying each distance to a function to produce a plurality of function results. A single score is formed from the plurality of function results. The single score is displayed and at least one of the following is performed: comparing the single score to a single score of another part to determine whether changes made to a manufacturing process result in more accurate parts; determining whether the part is constructed accurately enough to warrant constructing additional copies of the part; or using the single score to determine whether the part is constructed accurately enough to warrant physical inspection.

IPC Classes  ?

  • G05B 19/4099 - Surface or curve machining, making 3D objects, e.g. desktop manufacturing

5.

3D PRINTER WITH HEAD CARRIAGE WITH FILAMENT CUTTER AND REMOVABLE PRINT HEAD

      
Application Number 18646331
Status Pending
Filing Date 2024-04-25
First Publication Date 2024-10-31
Owner Stratasys, Inc. (USA)
Inventor
  • Michalkiewicz, Ross
  • Yang, Dang
  • Schiel, Colin
  • Chapman, Jeff Lee

Abstract

An extrusion-based 3D printer configured to print 3D parts in a layer-by-layer manner includes a platen configured to accept and support extruded material, at least one print head configured to extrude material to print a 3D part and a gantry configured to move the at least one print head as the material is extruded. The 3D printer includes at least one head carriage configured to engage the at least one print head. The at least one carriage is configured to engage and retain the at least one print head, where a filament cutter positioned above the at least one print head. The filament cutter includes a blade configured to be moved by the user, such that the blade is positionable between a non-cutting position where filament can be fed to the at least one print head and a cutting position wherein the filament is cut above the print head.

IPC Classes  ?

  • B29C 64/209 - Heads; Nozzles
  • B29C 64/25 - Housings, e.g. machine housings
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor

6.

THERMAL CONTROL IN A STEREOLITHOGRAPHIC 3D PRINTER

      
Application Number 18738271
Status Pending
Filing Date 2024-06-10
First Publication Date 2024-10-03
Owner Stratasys, Inc. (USA)
Inventor Batchelder, J. Samuel

Abstract

A method for printing a 3D part in a layer-wise manner includes providing a pool of polymerizable liquid in a vessel over a build window and positioning a downward-facing build platform in the pool, thereby defining a build region above the build window. The method includes selectively curing a volume of polymerizable liquid in the build region by imparting electromagnetic radiation through the build window to form a printed layer of the part adhered to the build platform and actively cooling the build window to remove energy imparted by the electromagnetic radiation and the polymerization reaction of the polymerizable liquid such that the printed layer is between about 1° C. and about 30°° C. below an average part temperature prior to raising the print layer and printing the next layer.

IPC Classes  ?

  • B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
  • B29C 64/188 - Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
  • B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor

7.

METHOD FOR CONTROLLING DIMENSIONAL TOLERANCES, SURFACE QUALITY, AND PRINT TIME IN 3D-PRINTED PARTS

      
Application Number 18670397
Status Pending
Filing Date 2024-05-21
First Publication Date 2024-09-19
Owner Stratasys, Inc. (USA)
Inventor Ong, Joel

Abstract

A method for generating print images for additive manufacturing includes: accessing a part model; accessing a set of dimensional tolerances for the part model; and segmenting the part model into a set of model layers. The method also includes, and, for each model layer: detecting an edge in the model layer; assigning a dimensional tolerance to the edge; defining an outer exposure shell inset from the edge by an erosion distance inversely proportional to a width of the dimensional tolerance; defining an inner exposure shell inset from the outer exposure shell and scheduled for exposure separately from the outer exposure shell; defining an a outer exposure energy proportional to the width of the dimensional tolerance and assigned to the outer exposure shell; and defining an inner exposure energy greater than the outer exposure energy and assigned to the inner exposure shell.

IPC Classes  ?

  • G05B 19/4093 - Numerical control (NC), i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
  • B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • G06T 7/11 - Region-based segmentation
  • G06T 7/13 - Edge detection
  • G06T 7/62 - Analysis of geometric attributes of area, perimeter, diameter or volume
  • G06T 7/73 - Determining position or orientation of objects or cameras using feature-based methods
  • G06T 19/20 - Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts

8.

BIODEGRADABLE AND/OR COMPOSTABLE BIOBASED POWDERS FOR ADDITIVE MANUFACTURING, AND METHODS FOR THE USE THEREOF

      
Application Number 18568336
Status Pending
Filing Date 2022-06-08
First Publication Date 2024-09-05
Owner Stratasys, Inc. (USA)
Inventor
  • Derks, Franciscus Johannes Marie
  • Witters, Stijn
  • Friederichs, Joseph Petronella
  • De Groot, Ruud

Abstract

The present invention is directed to certain biodegradable and/or compostable biobased particulate compositions for additive manufacturing, such as those including a polyhydroxyalkanoate (PHA) powder, wherein the particulate composition and/or the PHA powder possesses (a) a free bulk density, as determined by ASTM D1895-96, of greater than 0.30 g/mL, and (b) a sinterability region of greater than 15 degrees Celsius. Also, the invention is directed to certain methods of manufacturing such biodegradable and/or compostable biobased particulate compositions useful as powdered build material for additive manufacturing processes. In addition, the present invention is directed to additive manufacturing processes utilizing the biodegradable and/or compostable biobased particulate compositions elsewhere described, along with the articles printed therefrom.

IPC Classes  ?

  • C09D 167/04 - Polyesters derived from hydroxy carboxylic acids, e.g. lactones
  • B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
  • B29C 64/314 - Preparation
  • B29K 67/00 - Use of polyesters as moulding material
  • B29K 105/00 - Condition, form or state of moulded material
  • B29K 105/16 - Fillers
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 40/10 - Pre-treatment
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • C08G 63/06 - Polyesters derived from hydroxy carboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxy carboxylic acids
  • C08K 3/04 - Carbon
  • C08K 3/36 - Silica
  • C09D 5/03 - Powdery paints
  • C09D 7/61 - Additives non-macromolecular inorganic

9.

NOVEL URETHANE ACRYLATE COMPOSITION

      
Application Number 18574350
Status Pending
Filing Date 2022-06-21
First Publication Date 2024-09-05
Owner Stratasys, Inc. (USA)
Inventor Chen, Liang

Abstract

Provided is a photopolymerizable composition comprising a blend of: a) from 40 wt. % to 70 wt. % of at least one urethane component; b) from 25 wt. % to 70 wt % of at least one monofunctional reactive diluent; c) from 0.1 wt. % to 5 wt. % of at least one initiator; and d) from 2 wt. % to 10 wt % of an amine-functional (meth)acrylate monomer of formula (I), C═C—CO—O—R1—NR2R3 (I); e) optionally, at least one multiple-functional reactive diluent; f) optionally, from 0.001 wt. % to 1 wt. % of an inhibitor, wherein the wt. % in all instances is based on total weight of the photopolymerizable composition, wherein at least one of R1, R2, and R3 is an alkyl group, and wherein the amine-functional (meth)acrylate monomer is not an amide. Also provided is a process of producing a photopolymerizable composition, the process comprising blending the ingredients of the prior sentence. Further provided is a process of producing a three-dimensional object, the process comprising the steps of: A) depositing the photopolymerizable composition according to the first sentence atop a carrier to obtain a layer of a construction material joined to the carrier which corresponds to a first selected cross section of the precursor; B) depositing additional photopolymerizable composition atop a previously applied layer of the construction material to obtain a further layer of the construction material which corresponds to a further selected cross section of the precursor and which is joined to the previously applied layer, C) repeating step B) until the precursor is formed, wherein the depositing of the photopolymerizable composition at least in step B) comprises introducing energy to a selected region of the photopolymerizable composition corresponding to the respectively selected cross section of the object.

IPC Classes  ?

  • C09D 175/16 - Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • C08F 283/00 - Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass
  • C08F 290/06 - Polymers provided for in subclass
  • C08G 18/10 - Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
  • C08G 18/44 - Polycarbonates
  • C08G 18/75 - Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic

10.

NOVEL DUAL CURE 3D PRINTING RESINS

      
Application Number 18574354
Status Pending
Filing Date 2022-06-21
First Publication Date 2024-08-22
Owner STRATASYS INC. (USA)
Inventor Chen, Liang

Abstract

Provided is a composition comprising: A) an aliphatic polyurethane which comprises a reaction product of a first aliphatic polyisocyanate, a first polyol, and a thiol, optionally in the presence of a catalyst, and B) a urethane (meth)acrylate prepolymer, optionally a reactive diluent, and a photoinitiator, wherein the urethane (meth)acrylate prepolymer comprises a reaction product of a second aliphatic polyisocyanate, a second polyol and an acrylate, wherein the reactive diluent comprises a (meth)acrylate monomer, wherein the first aliphatic polyisocyanate and second aliphatic polyisocyanate may be identical or different, and wherein the first polyol and the second polyol may be identical or different. Also provided is a process comprising combining: A) a polyurethane which comprises a reaction product of a first aliphatic polyisocyanate, a first polyol, and a thiol, optionally in the presence of a catalyst, and B) a urethane (meth)acrylate prepolymer, a reactive diluent, and a photoinitiator, wherein the urethane (meth)acrylate prepolymer comprises a reaction product of a second aliphatic polyisocyanate, a second polyol and an acrylate, wherein the reactive diluent comprises a (meth)acrylate monomer, wherein the first aliphatic polyisocyanate and second aliphatic polyisocyanate may be identical or different, and wherein the first polyol and the second polyol may be identical or different. The compositions of the invention may find use in 3D printing applications.

IPC Classes  ?

  • C09D 175/14 - Polyurethanes having carbon-to-carbon unsaturated bonds
  • B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
  • B29K 33/00 - Use of polymers of unsaturated acids or derivatives thereof, as moulding material 
  • B29K 75/00 - Use of polyureas or polyurethanes as moulding material
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing

11.

PHOTO- AND THERMALLY CURABLE RESIN USEFUL FOR ADDITIVE MANUFACTURING

      
Application Number 18561725
Status Pending
Filing Date 2022-05-16
First Publication Date 2024-07-18
Owner Stratasys, Inc. (USA)
Inventor
  • Fischer, Anne
  • Büsgen, Thomas
  • Achten, Dirk

Abstract

A resin comprises: A) a (meth)acrylate-functional compound; B) a polyisocyanate; C) a radical starter and D) a catalyst. The compound A) has an equivalent molecular weight with respect to (meth)acrylate C═C double bonds of ≥500 g/mol and an average number of (meth)acrylate groups per molecule of ≥1.8 to ≤2.2, the polyisocyanate B) has an average NCO group functionality of ≥2 and an equivalent molecular weight with respect to NCO groups of ≤300 g/mol, the catalyst D) is an isocyanate trimerization catalyst and the resin is free from NCO-reactive compounds or, if NCO-reactive compounds are present in the resin, the molar ratio of NCO groups to NCO-reactive groups is ≥5:1. A resin comprises: A) a (meth)acrylate-functional compound; B) a polyisocyanate; C) a radical starter and D) a catalyst. The compound A) has an equivalent molecular weight with respect to (meth)acrylate C═C double bonds of ≥500 g/mol and an average number of (meth)acrylate groups per molecule of ≥1.8 to ≤2.2, the polyisocyanate B) has an average NCO group functionality of ≥2 and an equivalent molecular weight with respect to NCO groups of ≤300 g/mol, the catalyst D) is an isocyanate trimerization catalyst and the resin is free from NCO-reactive compounds or, if NCO-reactive compounds are present in the resin, the molar ratio of NCO groups to NCO-reactive groups is ≥5:1. Such resins may form hybrid polymer networks.

IPC Classes  ?

  • C08G 18/48 - Polyethers
  • C08G 18/24 - Catalysts containing metal compounds of tin
  • C08G 18/42 - Polycondensates having carboxylic or carbonic ester groups in the main chain
  • C09D 7/40 - Additives
  • C09D 175/14 - Polyurethanes having carbon-to-carbon unsaturated bonds

12.

METHOD FOR PRODUCING AN AT LEAST PARTIALLY COATED OBJECT

      
Application Number 18288285
Status Pending
Filing Date 2022-04-25
First Publication Date 2024-06-27
Owner STRATASYS, INC. (USA)
Inventor
  • Lin, Fei
  • Wang, Yifang
  • Qiao, Jie
  • Zhang, Chenxi

Abstract

The present invention relates to a method for producing an at least partially coated object and to an at least partially coated object obtained by the method. The method comprises bringing the object completely or partly into contact with a treating agent; leaving the object at 10° C.-30° C. and 100 mbar-800 mbar for 3-10 minutes; and heat-treating the object at a temperature of 70° C.-90° C. after returning to normal pressure; wherein the object is produced from a construction material by means of an additive manufacturing method, and the construction material comprises a thermoplastic polyurethane; and wherein the treating agent comprises an aqueous polyurethane dispersion and a water-dispersible polyisocyanate, and the viscosity of the treating agent is 100 mPas-550 mPa·s, measured under the condition of spindle L 2/30 rpm according to standard DIN 53019; and wherein the amount of the solid constituent of the aqueous polyurethane dispersion is 36% by weight to 70% by weight, and the amount of the solid constituent of the water-dispersible polyisocyanate is 4% by weight to 8% by weight, relative to the total weight of the treating agent, wherein the terms “normal pressure” and “solid constituent” are defined as specified in the description. The at least partially coated object of the present invention has good mechanical properties and good surface effect.

IPC Classes  ?

  • B29C 64/30 - Auxiliary operations or equipment
  • B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
  • B29C 64/268 - Arrangements for irradiation using electron beams [EB]
  • B29K 75/00 - Use of polyureas or polyurethanes as moulding material
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing

13.

WATER DISPERSIBLE SULFONATED THERMOPLASTIC COPOLYMER FOR USE IN ADDITIVE MANUFACTURING

      
Application Number 18583995
Status Pending
Filing Date 2024-02-22
First Publication Date 2024-06-13
Owner Stratasys, Inc. (USA)
Inventor Priedeman, Jr., William R.

Abstract

A sulfonated water-dispersible thermoplastic copolymer material for use as a support material in an additive manufacturing process is made by a method comprising providing a selected thermoplastic copolymer having an acid or an anhydride group; esterifying the acid group of the selected thermoplastic copolymer with a hydroxyl-functionalized sulfonate salt, or amidizing the acid group of the selected thermoplastic copolymer with an amine sulfonate salt, or imidizing the anhydride group of the selected thermoplastic copolymer with an amine sulfonate salt. The esterification, the amidization or the imidization results in a sulfonated water thermoplastic dispersible copolymer having a glass transition temperature suitable to provide an effective support during the additive manufacturing process and wherein the sulfonated water-dispersible thermoplastic copolymer will disperse in tap water in less than 1 hour.

IPC Classes  ?

  • C09D 11/107 - Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
  • B29K 33/00 - Use of polymers of unsaturated acids or derivatives thereof, as moulding material 
  • B29K 105/00 - Condition, form or state of moulded material
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • C09D 11/54 - Inks based on two liquids, one liquid being the ink, the other liquid being a reaction solution, a fixer or a treatment solution for the ink

14.

SYSTEM FOR TRAY CLEANING AND RESIN COLLECTION IN AN ADDITIVE MANUFACTURING PROCESS

      
Application Number 18213133
Status Pending
Filing Date 2023-06-22
First Publication Date 2024-05-23
Owner Stratasys, Inc. (USA)
Inventor
  • Mandelbaum, Dylan
  • Paton, John
  • Jeong, Richard Juneyoung
  • Johnson, Brett

Abstract

One variation of a system includes a chassis: defining a set of platform mounts defining a pivot axis; and a slot arranged between the set of platform mounts and configured to transiently retain a filter receptacle below the pivot axis. The system further includes a tray platform: pivotably coupled to the set of platform mounts; defining a tray-receiving section configured to receive a tray defining a fluid release point and configured to retain a volume of resin; and defining a set of supports arranged about the tray-receiving section and configured to locate the fluid release point at the fixed pivot location. The system further includes a tray lock coupled to the platform and configured to transiently generate a magnetic field to draw the tray against the tray-receiving section and cooperate with the set of tray supports to constrain the fluid release point to the fixed pivot location.

IPC Classes  ?

15.

COMPOSITIONS AND ARTICLES FOR ADDITIVE FABRICATION AND METHODS OF USING THE SAME IN PARTICLE IMAGE VELOCIMETRY TESTING

      
Application Number 18391760
Status Pending
Filing Date 2023-12-21
First Publication Date 2024-05-16
Owner Stratasys, Inc. (USA)
Inventor
  • Ren, Kangtai
  • Papachristopoulos, Robin

Abstract

Radiation curable compositions for additive fabrication processes, the components cured therefrom, and their use in particle image velocimetry testing methods are described and claimed herein. Such compositions include compounds which induce free-radical polymerization, optionally compounds which induce cationic polymerization, a filler constituent, and a light absorbing component, wherein the compositions are configured to possess certain absorbance coefficients at wavelengths commonly utilized in particle image velocimetry testing. In another embodiment, the compositions include a fluorantimony-modified compound. Such compositions may be used in particle imaging velocimetry testing methods, wherein the test object utilized is created via additive fabrication and is of a substantially homogeneous construction.

IPC Classes  ?

  • B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
  • B33Y 70/10 - Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
  • C08F 220/18 - Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
  • C09B 11/24 - Phthaleins containing amino groups
  • G01P 5/20 - Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken by the fluid to traverse a fixed distance using particles entrained by a fluid stream

16.

TIP CALIBRATION IN AN ADDITIVE MANUFACTURING SYSTEM

      
Application Number 18422424
Status Pending
Filing Date 2024-01-25
First Publication Date 2024-05-16
Owner Stratasys, Inc. (USA)
Inventor
  • Bosveld, Michael
  • Paul, Thomas Peter

Abstract

A method for calibrating a 3D printer includes the steps of providing information obtained in a factory calibration indicating a center of an inner diameter of a tip orifice in a metal extrusion nozzle and a center of a tip surface for the nozzle and inductively sensing the nozzle with an eddy current sensor when secured to a print head on a gantry or robotic arm of the 3D printer to identify a sensed location of the center of the tip surface of the nozzle. The method includes determining a location of the center of the inner diameter of the tip orifice on the nozzle on the print head and utilizing the provided information to locate the center of the inner diameter of the tip orifice.

IPC Classes  ?

  • B29C 64/386 - Data acquisition or data processing for additive manufacturing
  • B29C 64/209 - Heads; Nozzles
  • G01B 7/02 - Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width, or thickness
  • G01B 11/12 - Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters
  • G01B 11/27 - Measuring arrangements characterised by the use of optical techniques for testing the alignment of axes for testing the alignment of axes

17.

DETECTION AND USE OF PRINTER CONFIGURATION INFORMATION

      
Application Number 18540535
Status Pending
Filing Date 2023-12-14
First Publication Date 2024-05-02
Owner Stratasys, Inc. (USA)
Inventor
  • Leonard, Alison N.
  • Sadusk, Joseph

Abstract

The hardware and software properties of a three-dimensional printer can be queried and applied to select suitable directly printable models for the printer, or to identify situations where a new machine-ready model must be generated. The properties may be any properties relevant to fabrication including, e.g., physical properties of the printer, printer firmware, user settings, hardware configurations, and so forth. A printer may respond to configuration queries with a dictionary of capabilities or properties, and this dictionary may be used to select suitable models, or determine when a new model must be created. Similarly, when a printable model is sent to the printer, metadata for the printable model may be compared to printer properties in the dictionary to ensure that the model can be fabricated by the printer.

IPC Classes  ?

  • G06F 30/00 - Computer-aided design [CAD]
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • G05B 15/02 - Systems controlled by a computer electric

18.

LIQUID, HYBRID UV/VIS RADIATION CURABLE RESIN COMPOSITIONS FOR ADDITIVE FABRICATION

      
Application Number 18517323
Status Pending
Filing Date 2023-11-22
First Publication Date 2024-03-21
Owner STRATASYS, INC. (USA)
Inventor Lee, Tai Yeon

Abstract

Liquid radiation curable compositions are disclosed which are suitable for hybrid (i.e. cationic and free-radical) polymerization when processed via additive fabrication equipment utilizing sources of actinic radiation with peak spectral intensities in the UV/vis region. According to one aspect, the compositions possess a first photoinitiator that is an iodonium salt of a non-fluorinated borate anion. According to another aspect, the composition is substantially devoid of a Norrish Type I and/or Type II photoinitiator. Also disclosed are methods of creating three-dimensional parts via additive fabrication processes utilizing sources of actinic radiation with peak spectral intensities in the UV/vis region employing liquid radiation curable compositions suitable for hybrid polymerization, and the parts cured therefrom.

IPC Classes  ?

  • C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
  • B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
  • C08F 222/10 - Esters
  • C08G 59/24 - Di-epoxy compounds carbocyclic
  • C08K 5/03 - Halogenated hydrocarbons aromatic
  • C08K 5/55 - Boron-containing compounds

19.

METHOD FOR POLYMERIZING SUPERFICIAL FEATURES IN 3D-PRINTED PARTS

      
Application Number 18513329
Status Pending
Filing Date 2023-11-17
First Publication Date 2024-03-14
Owner Stratasys, Inc. (USA)
Inventor
  • Ong, Joel
  • Prucha, Christopher
  • Ling, Marshall
  • Cheung, Elton

Abstract

A method includes: accessing a part model comprising a three-dimensional representation of a part; accessing a material profile relating exposure energy and three-dimensional polymerization geometry of a material selected for the part; segmenting the part model into a set of model layers; detecting a first upward-facing surface in the part model; defining a first model volume in a first model layer, adjacent the first upward-facing surface, and fully contained within the part model; based on the material profile, calculating a first exposure energy predicted to yield a first three-dimensional polymerization geometry approximating a first contour of the first upward-facing surface when projected onto the material during a build; populating a first print image with the first exposure energy in a first image area corresponding to the first model volume in the first model layer; and storing the first print image in a print file for the part.

IPC Classes  ?

  • G06F 30/17 - Mechanical parametric or variational design
  • B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

20.

METHOD OF PRINTING A MULTI-MATERIAL 3D PART AND PURGE TOWER

      
Application Number 18462783
Status Pending
Filing Date 2023-09-07
First Publication Date 2024-03-14
Owner Stratasys, Inc. (USA)
Inventor
  • Gregg, Aaron Daniel
  • Kooiman, Keith Wade
  • Nelson, Karl Anthony
  • Leavitt, Paul Joseph
  • Studanski, Thomas James
  • Jayanti, Subramaniam

Abstract

A method of printing a multi-material part in a layer-wise manner with an extrusion-based 3D printer includes providing a sliced digital model of a multi-material part and determining a number of materials in each of the slices of the digital mode. The method includes utilizing a digital model of a purge tower having N subdivisions having a closed geometry, wherein N is the number of print heads needed to print the part that is greater than or equal to three, each adjacent subdivision contact one another along an interface and assigning each print head to one subdivision and to tool paths forming the one subdivision in each layer. The method includes reassigning the assigned subdivision within the purge tower of an inactive print head in a layer to a print head that is active in the layer of the multi-material part.

IPC Classes  ?

  • B29C 64/386 - Data acquisition or data processing for additive manufacturing
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/336 - Feeding of two or more materials
  • B29C 64/35 - Cleaning
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B33Y 50/00 - Data acquisition or data processing for additive manufacturing

21.

STABILIZED MATRIX-FILLED LIQUID RADIATION CURABLE RESIN COMPOSITIONS FOR ADDITIVE FABRICATION

      
Application Number 18385951
Status Pending
Filing Date 2023-11-01
First Publication Date 2024-03-07
Owner STRATASYS, INC. (USA)
Inventor
  • He, Mingbo
  • Rundlett, Beth

Abstract

Matrix-filled liquid radiation curable resin compositions for additive fabrication are described and claimed. Such resins include a cationically polymerizable component that is an aliphatic epoxide, a multifunctional (meth)acrylate component, a cationic photoinitiator, a free-radical photo initiator, and a matrix of inorganic fillers, wherein the matrix further constitutes prescribed ratios of at least one microparticle constituent and at least one nanoparticle constituent. Also described and claimed is a process for using the matrix-filled liquid radiation curable resins for additive fabrication to create three dimensional parts, and the three-dimensional parts made from the liquid radiation curable resins for additive fabrication.

IPC Classes  ?

  • C08K 3/36 - Silica
  • B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
  • B33Y 70/10 - Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
  • C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
  • C08L 33/10 - Homopolymers or copolymers of methacrylic acid esters
  • G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
  • G03F 7/004 - Photosensitive materials
  • G03F 7/027 - Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
  • G03F 7/038 - Macromolecular compounds which are rendered insoluble or differentially wettable

22.

PHOTO-CURABLE COMPOSITIONS

      
Application Number 17896240
Status Pending
Filing Date 2022-08-26
First Publication Date 2024-02-29
Owner STRATASYS INC. (USA)
Inventor Chen, Liang

Abstract

A photo-curable composition can include a photo-curable resin and a photoinitiator. The photo-curable composition can typically include a (meth)acrylate-terminated prepolymer, a second prepolymer, and a reactive diluent.

IPC Classes  ?

  • C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
  • B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
  • C08F 220/20 - Esters of polyhydric alcohols or phenols
  • C08F 283/00 - Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass
  • C08G 18/12 - Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
  • C08G 18/22 - Catalysts containing metal compounds
  • C08G 18/48 - Polyethers
  • C08G 18/67 - Unsaturated compounds having active hydrogen
  • C08L 75/16 - Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds

23.

LOCAL Z PRINT HEAD POSITIONING SYSTEM IN A 3D PRINTER

      
Application Number 18355905
Status Pending
Filing Date 2023-07-20
First Publication Date 2024-02-29
Owner Stratasys, Inc. (USA)
Inventor
  • Leavitt, Paul Joseph
  • Mcdonough, Thomas Joseph
  • Davis, Zachary James

Abstract

A 3D printer includes a gantry configured to move in a plane substantially parallel to a x-y build plane and a print head configured to extrude molten material to print a 3D part in a layer-by-layer process. The 3D printer includes a platen configured to support the part being printed in the layer by layer process and positionable with a primary Z positioner along a z-axis substantially normal to the x-y build plane. The 3D printer includes a local Z positioner moved by the gantry, the local Z positioner comprising a linear motor configured to move the print head in the z-direction and having an operable range of motion extending from a nominal build position at which a nozzle of the print head is positioned in the x-y build plane to a raised position above the x-y build plane.

IPC Classes  ?

  • B29C 64/232 - Driving means for motion along the axis orthogonal to the plane of a layer
  • B29C 64/209 - Heads; Nozzles
  • B29C 64/236 - Driving means for motion in a direction within the plane of a layer
  • B29C 64/245 - Platforms or substrates

24.

Nozzle

      
Application Number 29736865
Grant Number D1014586
Status In Force
Filing Date 2020-06-03
First Publication Date 2024-02-13
Grant Date 2024-02-13
Owner Stratasys, Inc. (USA)
Inventor
  • Leavitt, Paul
  • Gregg, Aaron
  • Krall, Ben
  • Migliori, Bryan
  • Flannigan, James

25.

3D printer

      
Application Number 29756538
Grant Number D1013745
Status In Force
Filing Date 2020-10-29
First Publication Date 2024-02-06
Grant Date 2024-02-06
Owner Stratasys, Inc. (USA)
Inventor Johnson, Brett

26.

PULVERULENT THERMOPLASTIC POLYMER BLENDS

      
Application Number 18485238
Status Pending
Filing Date 2023-10-11
First Publication Date 2024-02-01
Owner Stratasys, Inc. (USA)
Inventor
  • Chen, Liang
  • Xu, Chen
  • Vescio, Leslie J.
  • Lawrey, Bruce D.

Abstract

The present disclosure is directed to pulverulent thermoplastic polymer blends comminuted to a particle size of less than 300 μm. The pulverulent thermoplastic polymer blends can include a first thermoplastic polyurethane and a second thermoplastic polyurethane at a weight ratio of from about 90:10 to about 30:70 first thermoplastic polyurethane to second thermoplastic polyurethane. The first thermoplastic polyurethane can include a reaction product of a first reaction mixture consisting of or consisting essentially of an aliphatic diisocyanate having a number average molecular weight of from 140 g/mol to 170 g/mol and an aliphatic diol having a number average molecular weight of from 62 g/mol to 120 g/mol. The second thermoplastic polyurethane can include a reaction product of a second reaction mixture comprising a polyisocyanate, an isocyanate-reactive component having a number average molecular weight of from 500 g/mol to 10,000 g/mol, and a chain extender having a number average molecular weight of from 60 g/mol to 450 g/mol.

IPC Classes  ?

27.

PART QUALITY MONITORING IN A STEREOLITHOGRAPHIC ADDITIVE MANUFACTURING SYSTEM

      
Application Number 18470680
Status Pending
Filing Date 2023-09-20
First Publication Date 2024-01-25
Owner Stratasys, Inc. (USA)
Inventor Batchelder, J. Samuel

Abstract

A method for 3D printing a part in a layer-wise manner includes providing a pool of polymerizable liquid in a vessel over a build window and positioning a downward-facing build platform in the pool, thereby defining a build region above the build window. The method includes selectively curing a volume of polymerizable liquid in the build region by imparting electromagnetic radiation through the build window to form a printed layer of the part adhered to the build platform and scanning at least a portion of the build window with monochromatic, polarized light along a plane of incidence. The method includes measuring a change in intensity and polarity of the light to obtain information about the printed layer. The method includes raising the build platform to a height of a next layer to be printed and modifying the electromagnetic energy imparted into the next layer based upon the obtained information to print a next layer. The imparting, scanning, measuring, raising and modifying steps are repeated until the part is printed.

IPC Classes  ?

  • B29C 64/386 - Data acquisition or data processing for additive manufacturing
  • B33Y 10/00 - Processes of additive manufacturing
  • G01N 21/21 - Polarisation-affecting properties
  • B33Y 50/00 - Data acquisition or data processing for additive manufacturing
  • B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask

28.

TETHERED SPOOL ASSEMBLY AND METHODS OF USE THEREOF

      
Application Number 17859446
Status Pending
Filing Date 2022-07-07
First Publication Date 2024-01-11
Owner Stratasys, Inc. (USA)
Inventor
  • Anderson, Patrick
  • Yang, Dang
  • Michalkiewicz, Ross

Abstract

A consumable assembly for a 3D printer includes a spool carrying wound filament. The spool is configured to be installed into a spool cabinet to maintain the filament in a controlled environment. A filament key fob that carries a spool chip programmed with identification data for the consumable assembly is tethered to the spool. The filament key fob is configured to be received in a dock of the 3D printer outside of a controlled environment of a chamber of the spool cabinet while remaining tethered to the spool installed in the chamber of the spool cabinet.

IPC Classes  ?

  • B29C 64/255 - Enclosures for the building material, e.g. powder containers
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B29C 64/321 - Feeding
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B65H 75/18 - Constructional details
  • B65H 57/18 - Guides for filamentary materials; Supports therefor mounted to facilitate unwinding of material from packages

29.

3D PRINTER PROVIDING SPOOL CHIP DOCK OUTSIDE OF SPOOL CABINET ENVIRONMENT AND METHODS OF USE THEREOF

      
Application Number 17859465
Status Pending
Filing Date 2022-07-07
First Publication Date 2024-01-11
Owner Stratasys, Inc. (USA)
Inventor
  • Anderson, Patrick
  • Yang, Dang
  • Michalkiewicz, Ross

Abstract

A consumable assembly for a 3D printer includes a spool carrying wound filament. A 3D printer includes a print head configured to receive filament material and a spool cabinet configured to have a filament spool positioned therein to provide a controlled environment for filament on the filament spool. A dock of the 3D printer is located outside of a chamber of the spool cabinet and is configured to receive a filament key fob, including a spool chip, of the filament spool to maintain the spool chip outside of the controlled environment of the chamber.

IPC Classes  ?

  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/209 - Heads; Nozzles
  • B29C 64/255 - Enclosures for the building material, e.g. powder containers
  • B29C 64/25 - Housings, e.g. machine housings
  • B29C 64/321 - Feeding
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor

30.

Method for controlling dimensional tolerances, surface quality, and print time in 3D-printed parts

      
Application Number 18227243
Grant Number 12019425
Status In Force
Filing Date 2023-07-27
First Publication Date 2024-01-04
Grant Date 2024-06-25
Owner Stratasys, Inc. (USA)
Inventor Ong, Joel

Abstract

A method for generating print images for additive manufacturing includes: accessing a part model; accessing a set of dimensional tolerances for the part model; and segmenting the part model into a set of model layers. The method also includes, and, for each model layer: detecting an edge in the model layer; assigning a dimensional tolerance to the edge; defining an outer exposure shell inset from the edge by an erosion distance inversely proportional to a width of the dimensional tolerance; defining an inner exposure shell inset from the outer exposure shell and scheduled for exposure separately from the outer exposure shell; defining an a outer exposure energy proportional to the width of the dimensional tolerance and assigned to the outer exposure shell; and defining an inner exposure energy greater than the outer exposure energy and assigned to the inner exposure shell.

IPC Classes  ?

  • G05B 19/4093 - Numerical control (NC), i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • G06T 7/11 - Region-based segmentation
  • G06T 7/13 - Edge detection
  • G06T 7/62 - Analysis of geometric attributes of area, perimeter, diameter or volume
  • G06T 7/73 - Determining position or orientation of objects or cameras using feature-based methods
  • G06T 19/20 - Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
  • B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

31.

USE OF AN ELASTIC POLYMER FOR PRODUCTION OF A POROUS BODY IN AN ADDITIVE MANUFACTURING METHOD

      
Application Number 18456640
Status Pending
Filing Date 2023-08-28
First Publication Date 2023-12-21
Owner STRATASYS INC. (USA)
Inventor
  • Achten, Dirk
  • Busgen, Thomas
  • Degiorgio, Nicolas
  • Akbas, Levent
  • Wagner, Roland
  • Reichert, Peter
  • Hattig, Jurgen

Abstract

It is a feature of a use of an elastic polymer for production of a porous body (in an additive manufacturing method that the porous body comprises a three-dimensional network of node points joined to one another by struts, and a void volume present between the struts, where the struts have an average length of ≥200 μm to ≤50 mm and the struts (100) have an average thickness of ≥100 μm to ≤5 mm. The polymer here is an elastomer selected from the following group: thermoset polyurethane elastomers (PUR), thermoplastic copolyamides (TPA), thermoplastic copolyesters (TPC), thermoplastic olefin-based elastomers (TPO), styrene block copolymers (TPS), thermoplastic urethane-based elastomers (TPU), crosslinked thermoplastic olefin-based elastomers (TPV), thermoplastic polyvinyl chloride-based elastomers (PVC), thermoplastic silicone-based elastomers and a combination of at least two of these elastomers.

IPC Classes  ?

  • B29C 64/141 - Processes of additive manufacturing using only solid materials
  • A47C 23/00 - Spring mattresses with rigid frame or forming part of the bedstead, e.g. box springs; Divan bases; Slatted bed bases
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 80/00 - Products made by additive manufacturing
  • C08G 18/08 - Processes

32.

(METH)ACRYLATE-FUNCTIONAL RADIATION CURABLE COMPOSITIONS FOR ADDITIVE FABRICATION

      
Application Number 18034458
Status Pending
Filing Date 2021-10-27
First Publication Date 2023-12-21
Owner STRATASYS, INC. (USA)
Inventor Sudhanva, Govindarajan

Abstract

Described herein are thermoset compositions and kits of compositions suitable for use in additive fabrication processes including specified concentrations of reactive compounds including urethane-(meth)acrylate compounds, monofunctional diluent monomers, and methacrylate-functional compounds having 1.5 polymerizable groups or more. Also described and claimed are methods of creating three-dimensional parts via additive fabrication processes utilizing the compositions elsewhere herein described and claimed, as well as the articles cured therefrom.

IPC Classes  ?

  • C09D 175/14 - Polyurethanes having carbon-to-carbon unsaturated bonds
  • C09D 7/63 - Additives non-macromolecular organic
  • C08G 18/12 - Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
  • C08G 18/04 - Polymeric products of isocyanates or isothiocyanates with vinyl compounds

33.

UNSUPPORTED PART WITH A ROBOTIC ADDITIVE MANUFACTURING SYSTEM

      
Application Number 18164732
Status Pending
Filing Date 2023-02-06
First Publication Date 2023-11-30
Owner Stratasys, Inc. (USA)
Inventor Newell, Clint

Abstract

A method of printing a hollow part with a robotic additive manufacturing system includes extruding thermoplastic material onto a build platform movable in at least two degrees of freedom in a helical pattern along a continuous 3D tool path with an extruder mounted on a robotic arm, to thereby print a hollow member having a length and a diameter. The method includes orienting the hollow member during printing by moving the build platform based on a geometry of the hollow member wherein the movement of the build platform and the movement of the robotic arm are synchronized to print the part without support structures.

IPC Classes  ?

  • B29C 64/379 - Handling of additively manufactured objects, e.g. using robots
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B29C 64/295 - Heating elements
  • B29C 64/209 - Heads; Nozzles
  • B25J 9/04 - Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian co-ordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical co-ordinate type or polar co-ordinate type
  • B29C 64/227 - Driving means
  • B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
  • G06F 30/00 - Computer-aided design [CAD]
  • B29C 64/241 - Driving means for rotary motion
  • B33Y 40/10 - Pre-treatment
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • B29C 64/245 - Platforms or substrates
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/30 - Auxiliary operations or equipment

34.

3D PRINTER WITH INCREASED UNIFORMITY OF BUILD CHAMBER TEMPERATURE

      
Application Number 17825290
Status Pending
Filing Date 2022-05-26
First Publication Date 2023-11-30
Owner Stratasys, Inc. (USA)
Inventor
  • Migliori, Bryan Daniel
  • Neal, Kyra Elizabeth
  • Braton, Benjamin L.

Abstract

An extrusion-based 3D printer configured to print 3D parts in a layer-by-layer manner includes a heated build chamber, a build platen within the chamber and at least one print head configured to extrude material onto the build platen or previously extruded material wherein the at least one print head is configured to move in a print plane. The 3D printer includes at least one air intake and exhaust system that includes ductwork having an inlet configured to intake air from the build chamber and an outlet configured to exhaust air into the build chamber proximate the build plane, a fan proximate the inlet and configured to draw air into the ductwork through the inlet and propel the air towards the outlet, a heater proximate the outlet, the heater configured to heat the air as the air passes the heater and a perforated diffuser plate between the fan and the heater.

IPC Classes  ?

  • B29C 64/364 - Conditioning of environment
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B29C 64/295 - Heating elements

35.

METHODS AND COMPOSITIONS FOR FORMING THREE-DIMENSIONAL OBJECTS BY ADDITIVE FABRICATION

      
Application Number 18359767
Status Pending
Filing Date 2023-07-26
First Publication Date 2023-11-23
Owner Stratasys, Inc. (USA)
Inventor
  • Jansen, Johan Franz Gradus Antonius
  • Van Benthem, Rudolfus Antonius Theodorus Maria
  • Buijsen, Paulus Franciscus Anna
  • Derks, Franciscus Johannes Marie
  • Pepels, Mark Petrus Franciscus
  • Buckmann, Alfred Jean Paul

Abstract

A method of forming a three-dimensional object comprises the steps of forming a layer of a particulate composition, selectively depositing a liquid composition onto the layer of the particulate composition in accordance with computer data corresponding to the shape of at least a portion of a three-dimensional object, and repeating the steps a plurality of times to form a three-dimensional object. The particulate composition comprises a plurality of first particles that comprise a resin component comprising a first resin, the first resin comprising a first resin polymerizable group. Either or both of the particulate composition and the liquid composition comprise an initiator capable of initiating polymerization of at least the first resin. At least the first resin undergoes melting and polymerization in a plurality of the locations where the liquid composition has been selectively deposited.

IPC Classes  ?

  • B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
  • C08F 290/06 - Polymers provided for in subclass
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • B33Y 10/00 - Processes of additive manufacturing
  • C08G 18/75 - Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
  • C08G 18/22 - Catalysts containing metal compounds
  • C08G 18/73 - Polyisocyanates or polyisothiocyanates acyclic
  • C08G 18/80 - Masked polyisocyanates
  • C08G 18/32 - Polyhydroxy compounds; Polyamines; Hydroxy amines
  • C08G 18/42 - Polycondensates having carboxylic or carbonic ester groups in the main chain
  • C08G 18/67 - Unsaturated compounds having active hydrogen
  • C08F 220/18 - Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • C08F 216/12 - Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical by an ether radical
  • C08K 5/14 - Peroxides
  • C08K 5/17 - Amines; Quaternary ammonium compounds
  • C08L 67/06 - Unsaturated polyesters
  • C08L 75/14 - Polyurethanes having carbon-to-carbon unsaturated bonds
  • B29C 64/291 - Arrangements for irradiation for operating globally, e.g. together with selectively applied activators or inhibitors
  • C08K 3/013 - Fillers, pigments or reinforcing additives
  • C08F 2/48 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
  • C08L 75/02 - Polyureas

36.

METHOD FOR BUILD SEPARATION FROM A CURING INTERFACE IN AN ADDITIVE MANUFACTURING PROCESS

      
Application Number 18133453
Status Pending
Filing Date 2023-04-11
First Publication Date 2023-11-09
Owner Stratasys, Inc. (USA)
Inventor
  • Prucha, Christopher
  • Ong, Joel

Abstract

A layer-by layer method for additive manufacturing that includes: photocuring a first volume of resin to form a layer of a build at an upper surface of a separation membrane laminated over a build window; injecting a fluid into an interstitial region between the separation membrane and the build window; retracting the build from the build window; evacuating the fluid from the interstitial region; and photocuring a second volume of liquid resin to form a subsequent layer of the build between an upper surface of a separation membrane and the previous layer of the build.

IPC Classes  ?

  • B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
  • B29C 64/245 - Platforms or substrates
  • B29C 64/364 - Conditioning of environment
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B29C 64/227 - Driving means
  • B29C 64/232 - Driving means for motion along the axis orthogonal to the plane of a layer
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

37.

WATER DISPERSIBLE POLYMER FOR USE IN ADDITIVE MANUFACTURING

      
Application Number 18307354
Status Pending
Filing Date 2023-04-26
First Publication Date 2023-08-24
Owner Stratasys, Inc. (USA)
Inventor Priedeman, Jr., William R.

Abstract

A water dispersible sulfo-polyamide is configured as a filament for use as an extrudable support material in the additive manufacture of a part comprising a non water dispersible polymer. The water dispersible sulfo-polyamide is a reaction product of a sulfo monomer, the water dispersible sulfo-polymer being dispersible in water resulting in separation of the water dispersible polymer from the part comprising the non water dispersible polymer.

IPC Classes  ?

  • C08G 63/688 - Polyesters containing atoms other than carbon, hydrogen, and oxygen containing sulfur
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • C08J 5/00 - Manufacture of articles or shaped materials containing macromolecular substances
  • C08J 11/06 - Recovery or working-up of waste materials of polymers without chemical reactions
  • G03G 9/087 - Binders for toner particles
  • B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • G03G 15/22 - Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups
  • G03G 15/16 - Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern
  • B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
  • C08G 18/38 - Low-molecular-weight compounds having hetero atoms other than oxygen
  • C08G 18/08 - Processes
  • C08G 69/42 - Polyamides containing atoms other than carbon, hydrogen, oxygen, and nitrogen

38.

Three-dimensional printer tool systems

      
Application Number 18308886
Grant Number 12049038
Status In Force
Filing Date 2023-04-28
First Publication Date 2023-08-24
Grant Date 2024-07-30
Owner Stratays, Inc. (USA)
Inventor
  • Schmehl, Peter Joseph
  • Kemperle, Aljosa
  • Schmehl, Stewart

Abstract

An extruder or other similar tool head of a three-dimensional printer is slidably mounted along a feedpath of build material so that the extruder can move into and out of contact with a build surface according to whether build material is being extruded. The extruder may be spring-biased against the forward feedpath so that the extruder remains above the build surface in the absence of applied forces, and then moves downward into a position for extrusion when build material is fed into the extruder. In another aspect, modular tool heads are disclosed that can be automatically coupled to and removed from the three-dimensional printer by a suitable robotics system. A tool crib may be provided to store multiple tool heads while not in use.

IPC Classes  ?

  • B29C 67/00 - Shaping techniques not covered by groups , or
  • B29C 35/08 - Heating or curing, e.g. crosslinking or vulcanising by wave energy or particle radiation
  • B29C 48/02 - Small extruding apparatus, e.g. handheld, toy or laboratory extruders
  • B29C 48/25 - Component parts, details or accessories; Auxiliary operations
  • B29C 48/285 - Feeding the extrusion material to the extruder
  • B29C 48/80 - Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
  • B29C 48/92 - Measuring, controlling or regulating
  • B29C 64/112 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/295 - Heating elements
  • B29C 64/30 - Auxiliary operations or equipment
  • B29C 64/35 - Cleaning
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B29L 9/00 - Layered products

39.

Induction sensing method for locating center of metallic nozzle tip

      
Application Number 17562354
Grant Number 11994412
Status In Force
Filing Date 2021-12-27
First Publication Date 2023-08-03
Grant Date 2024-05-28
Owner Stratasys, Inc. (USA)
Inventor
  • Bosveld, Michael
  • Paul, Thomas Peter

Abstract

An induction sensing method for identifying the center of a tip surface of a nozzle of print head of a 3D printer includes providing an eddy current sensor in a fixed position and providing a metal nozzle with a tip orifice in a main body and a tip surface about the tip orifice. The method includes moving the metal nozzle over the eddy current sensor in a predetermined motion path above the eddy current sensor while the eddy current sensor remains stationary and samples the magnitude of inductance in a generated inductive field, thereby generating a curve representing the inductive field. The method includes identifying a maximum amplitude of the curve to identify the center of the tip surface.

IPC Classes  ?

  • G01D 5/20 - Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
  • B22F 10/80 - Data acquisition or data processing
  • B22F 12/90 - Means for process control, e.g. cameras or sensors
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B33Y 50/00 - Data acquisition or data processing for additive manufacturing
  • G01B 11/00 - Measuring arrangements characterised by the use of optical techniques
  • G01D 21/00 - Measuring or testing not otherwise provided for
  • G02B 21/00 - Microscopes

40.

Method for polymerizing superficial features in 3D-printed parts

      
Application Number 18098586
Grant Number 11861271
Status In Force
Filing Date 2023-01-18
First Publication Date 2023-07-20
Grant Date 2024-01-02
Owner Stratasys, Inc. (USA)
Inventor
  • Ong, Joel
  • Prucha, Christopher
  • Ling, Marshall
  • Cheung, Elton

Abstract

A method includes: accessing a part model comprising a three-dimensional representation of a part; accessing a material profile relating exposure energy and three-dimensional polymerization geometry of a material selected for the part; segmenting the part model into a set of model layers; detecting a first upward-facing surface in the part model; defining a first model volume in a first model layer, adjacent the first upward-facing surface, and fully contained within the part model; based on the material profile, calculating a first exposure energy predicted to yield a first three-dimensional polymerization geometry approximating a first contour of the first upward-facing surface when projected onto the material during a build; populating a first print image with the first exposure energy in a first image area corresponding to the first model volume in the first model layer; and storing the first print image in a print file for the part.

IPC Classes  ?

  • G06F 30/17 - Mechanical parametric or variational design
  • G06F 113/10 - Additive manufacturing, e.g. 3D printing
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B22F 12/00 - Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
  • B33Y 10/00 - Processes of additive manufacturing
  • B28B 1/00 - Producing shaped articles from the material

41.

Detection and use of printer configuration information

      
Application Number 18148591
Grant Number 11886774
Status In Force
Filing Date 2022-12-30
First Publication Date 2023-07-13
Grant Date 2024-01-30
Owner Stratasys, Inc. (USA)
Inventor
  • Leonard, Alison N.
  • Sadusk, Joseph

Abstract

The hardware and software properties of a three-dimensional printer can be queried and applied to select suitable directly printable models for the printer, or to identify situations where a new machine-ready model must be generated. The properties may be any properties relevant to fabrication including, e.g., physical properties of the printer, printer firmware, user settings, hardware configurations, and so forth. A printer may respond to configuration queries with a dictionary of capabilities or properties, and this dictionary may be used to select suitable models, or determine when a new model must be created. Similarly, when a printable model is sent to the printer, metadata for the printable model may be compared to printer properties in the dictionary to ensure that the model can be fabricated by the printer.

IPC Classes  ?

  • G06F 30/00 - Computer-aided design [CAD]
  • G05B 15/02 - Systems controlled by a computer electric
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

42.

METHOD OF MOVING A PRINT HEAD BETWEEN A PLURALITY OF PARTITIONED CHAMBERS IN AN ADDITIVE MANUFACTURING SYSTEM

      
Application Number 18148614
Status Pending
Filing Date 2022-12-30
First Publication Date 2023-07-06
Owner Stratasys, Inc. (USA)
Inventor
  • Leavitt, Paul Joseph
  • Mcdonough, Thomas Joseph

Abstract

A method of moving a print head between a plurality of partitioned chambers in a 3D printer includes providing the 3D printer having a thermal barrier having an area defined by a length and width, wherein a print head nozzle can be positioned through the thermal barrier along the width or the length and at least two partitioned chambers below the area of the thermal barrier, wherein a first chamber comprises a printing chamber and a second chamber comprises a chamber providing another functionality. The method includes raising the print head in a z direction from the second chamber to above the thermal barrier and moving the print head in a x-y direction from above the second chamber over the partition to a location above the first chamber. The method also includes lowering the print head in the z direction and into the first chamber such that an extrusion port of a nozzle of the print head is proximate a x-y print plane.

IPC Classes  ?

  • B29C 64/209 - Heads; Nozzles
  • B29C 64/232 - Driving means for motion along the axis orthogonal to the plane of a layer
  • B29C 64/236 - Driving means for motion in a direction within the plane of a layer
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

43.

3D PRINTER WITH A PLURALITY OF PARTITIONED CHAMBERS

      
Application Number 18148621
Status Pending
Filing Date 2022-12-30
First Publication Date 2023-07-06
Owner Stratasys, Inc. (USA)
Inventor
  • Leavitt, Paul Joseph
  • Mcdonough, Thomas Joseph

Abstract

A 3D printer includes a gantry configured to move in a plane and in a direction substantially normal to the plane and at least one print head carried by the gantry, the at least on print head comprising an extrusion nozzle at a bottom end. The 3D printer includes a plurality of partitioned chambers accessible by the at least one print head, each of the partitioned chambers having an upper edge defining an opening into each of the plurality of chambers, and a platen within a first chamber of the plurality of chambers, the platen configured to receive material from the print head to print the 3D part. The at least one print head is configured to be moved between each of the plurality of partitioned chambers by raising the print head in the direction substantially normal to the plane such that the extrusion nozzle is above the upper edge of the plurality of chambers, moving the print head in the plane from a first location above the first chamber of the plurality of partitioned chambers to a second location above a second chamber of the plurality of partitioned chambers and lowering the at least one print head into the second chamber.

IPC Classes  ?

  • B29C 64/25 - Housings, e.g. machine housings
  • B29C 64/209 - Heads; Nozzles
  • B29C 64/245 - Platforms or substrates
  • B29C 64/236 - Driving means for motion in a direction within the plane of a layer
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor

44.

BRAIDED COMINGLED TOW FILAMENT FOR USE IN 3D PRINTING

      
Application Number 18178645
Status Pending
Filing Date 2023-03-06
First Publication Date 2023-06-29
Owner Stratsys, Inc. (USA)
Inventor Newell, Clint

Abstract

A feedstock configured for use in an extruder in an additive manufacturing system is configured as a braided comingled tow filament. A method of producing the braided comingled tow filament includes providing a bundle of comingled tow material having a fiber count ranging from about 1,000 fibers to about 25,000 fibers having thermoplastic fibers comingled therewith, wherein the tow material in the filament ranges from about 50 to 75 volume percent and the volume percent of the thermoplastic material ranges from about 25 volume percent to about 50 volume percent. The method includes dividing the length of comingled tow material into sections, twisting each section into a strand to form a plurality of strands of twisted tow material, and braiding together the strands.

IPC Classes  ?

  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/307 - Handling of material to be used in additive manufacturing
  • B33Y 10/00 - Processes of additive manufacturing
  • B29B 11/10 - Extrusion moulding
  • B33Y 70/10 - Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials

45.

Tip calibration in an additive manufacturing system

      
Application Number 17562377
Grant Number 11919242
Status In Force
Filing Date 2021-12-27
First Publication Date 2023-06-29
Grant Date 2024-03-05
Owner Stratasys, Inc. (USA)
Inventor
  • Bosveld, Michael
  • Paul, Thomas Peter

Abstract

A method for calibrating a 3D printer includes the steps of providing information obtained in a factory calibration indicating a center of an inner diameter of a tip orifice in a metal extrusion nozzle and a center of a tip surface for the nozzle and inductively sensing the nozzle with an eddy current sensor when secured to a print head on a gantry or robotic arm of the 3D printer to identify a sensed location of the center of the tip surface of the nozzle. The method includes determining a location of the center of the inner diameter of the tip orifice on the nozzle on the print head and utilizing the provided information to locate the center of the inner diameter of the tip orifice.

IPC Classes  ?

  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B29C 64/209 - Heads; Nozzles
  • B29C 64/386 - Data acquisition or data processing for additive manufacturing
  • G01B 7/02 - Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width, or thickness
  • G01B 11/12 - Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters
  • G01B 11/27 - Measuring arrangements characterised by the use of optical techniques for testing the alignment of axes for testing the alignment of axes
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

46.

METHOD AND SYSTEM FOR CLASSIFYING ADDITIVE MANUFACTURED OBJECTS

      
Application Number 17994888
Status Pending
Filing Date 2022-11-28
First Publication Date 2023-06-08
Owner Stratasys, Inc. (USA)
Inventor
  • Bosveld, Michael
  • Smithson, Charles Alan
  • Paul, Thomas Peter
  • Nixon, Jason Robert

Abstract

A method of additive manufacturing comprises operating an additive manufacturing system for fabricating a multiplicity of objects, while acquiring a set of images during fabrication of each of the objects. For each object, a respective set of images is analyzed to identify fabrication irregularities, and a fabrication score is generated based on the irregularities. The multiplicity of objects is clustered according to the fabrication scores into at least two clusters.

IPC Classes  ?

  • B07C 5/342 - Sorting according to other particular properties according to optical properties, e.g. colour
  • B29C 64/386 - Data acquisition or data processing for additive manufacturing
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]

47.

Low pull force filament delivery system

      
Application Number 17974802
Grant Number 11760020
Status In Force
Filing Date 2022-10-27
First Publication Date 2023-04-13
Grant Date 2023-09-19
Owner Stratasys, Inc. (USA)
Inventor
  • Smith, Cody
  • Herbst, Christopher
  • Michalkiewicz, Ross
  • Koop, Shawn Michael
  • Nadeau, Jordan

Abstract

A low pull force system for feeding a filament along a feed path from a source to a liquefier in a 3D printer includes a low compressive force loading drive for advancing filament from the source, a feed drive for advancing filament into the liquefier, and an in-line accumulator comprising a telescoping joint positioned in the feed path between the loading drive and the feed drive. When the telescoping joint is in a contracted position, the loading drive activates to feed filament into the feed path at a rate faster than a rate at which the feed drive advances filament into the liquefier, causing the telescoping joint to expand and accrue a slack of filament in the feed path. When the telescoping joint reaches an extended position, the loading drive deactivates while the feed drive continues to advance filament into the liquefier, and the slack of filament is consumed.

IPC Classes  ?

  • B29C 64/321 - Feeding
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/209 - Heads; Nozzles
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

48.

Thermosetting compositions and forming three-dimensional objects therefrom

      
Application Number 17937868
Grant Number 11926748
Status In Force
Filing Date 2022-10-04
First Publication Date 2023-04-06
Grant Date 2024-03-12
Owner STRATASYS, INC. (USA)
Inventor
  • Steeman, Paulus Antonius Maria
  • Driessen, Marco Marcus Matheus
  • Hensen, Guido Joseph Elisabeth

Abstract

Thermoset compositions and methods for forming three-dimensional articles via an additive fabrication process, and articles made therefrom are disclosed herein. In an embodiment, a composition comprises a first network-forming component comprising a first oligomer comprising a backbone and having at least 2 polymerizable groups, one or more first network monomers, and a first network initiator. The backbone of the first oligomer comprises a polyepoxide based on Bisphenol A, F, or S, a polyepoxide based on hydrogenated Bisphenol A, F, or S, a polycarbonate, or a polyimide. The composition may further comprise a second network-forming component.

IPC Classes  ?

  • C08F 2/46 - Polymerisation initiated by wave energy or particle radiation
  • B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
  • C08F 290/06 - Polymers provided for in subclass
  • C08G 61/04 - Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
  • C09D 11/101 - Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
  • C09D 11/102 - Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
  • C09D 11/104 - Polyesters
  • C09D 11/107 - Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
  • C09D 11/30 - Inkjet printing inks
  • B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
  • B33Y 70/10 - Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
  • G03F 7/038 - Macromolecular compounds which are rendered insoluble or differentially wettable

49.

Thermosetting compositions and forming three-dimensionalobjects therefrom

      
Application Number 17881097
Grant Number 11999861
Status In Force
Filing Date 2022-08-04
First Publication Date 2023-02-23
Grant Date 2024-06-04
Owner Stratasys, Inc. (USA)
Inventor
  • Steeman, Paulus Antonius Maria
  • Driessen, Marco Marcus Matheus

Abstract

Thermoset compositions and methods for forming three-dimensional articles via an additive fabrication process, and articles made therefrom are disclosed herein. In an embodiment, a composition comprises a first network-forming component comprising a TPA-based polyester comprising a backbone and having at least 2 polymerizable groups, one or more first network monomers, and a first network initiator. The backbone of the TPA-based polyester comprises the reaction product of a terephthalic acid and a polyol. The composition may further comprise a second network-forming component.

IPC Classes  ?

  • C09D 11/10 - Printing inks based on artificial resins
  • B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • C08F 290/06 - Polymers provided for in subclass
  • C09D 11/101 - Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
  • C09D 11/102 - Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
  • C09D 11/104 - Polyesters
  • C09D 11/107 - Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
  • C09D 11/30 - Inkjet printing inks
  • B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
  • B33Y 70/10 - Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
  • G03F 7/038 - Macromolecular compounds which are rendered insoluble or differentially wettable

50.

Method for regulating temperature at a resin interface in an additive manufacturing process

      
Application Number 17965685
Grant Number 11707891
Status In Force
Filing Date 2022-10-13
First Publication Date 2023-02-02
Grant Date 2023-07-25
Owner Stratasys, Inc. (USA)
Inventor
  • Ong, Joel
  • Prucha, Christopher
  • Benight, Stephanie
  • Buel, Bill

Abstract

A method for additive manufacturing includes: at a build tray arranged over a build window and containing a resin reservoir of a resin, heating the resin reservoir toward a target bulk resin temperature less than a heat deflection temperature of the resin in a photocured state; at a resin interface between a surface of the build window and the resin reservoir, heating an interface layer of the resin reservoir toward a target reaction temperature; and, in response to the resin reservoir exhibiting a first temperature proximal the target bulk resin temperature and to the interface layer exhibiting a second temperature proximal the target reaction temperature: at the resin interface, selectively photocuring a first volume of the resin to form a first layer of a build adhered to a build platform; and retracting the build platform away from the build window.

IPC Classes  ?

  • B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
  • B29C 64/295 - Heating elements
  • B29C 64/364 - Conditioning of environment
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 10/00 - Processes of additive manufacturing
  • B29C 64/255 - Enclosures for the building material, e.g. powder containers
  • B29C 64/232 - Driving means for motion along the axis orthogonal to the plane of a layer
  • B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor

51.

SYSTEM FOR WINDOW SEPARATION IN AN ADDITIVE MANUFACTURING PROCESS

      
Application Number 17965699
Status Pending
Filing Date 2022-10-13
First Publication Date 2023-02-02
Owner Stratasys, Inc. (USA)
Inventor
  • Prucha, Christopher
  • Ong, Joel
  • Paton, John

Abstract

An additive manufacturing system including a base assembly and a tray assembly. The base assembly includes a build window, substantially transparent to electromagnetic radiation; a projection system configured to project electromagnetic radiation toward an upper surface of the build window; and a tray seat arranged around a perimeter of the build window. The tray assembly is configured to engage with the base assembly in an engaged configuration and includes: a tray structure defining a registration feature configured to engage the tray seat to locate an aperture proximal to the upper surface of the build window in the engaged configuration; and a separation membrane that is configured to laminate across the upper surface of the build window in response to an evacuation of gas from an interstitial region and configured to separate from the build window in response to injection of gas into the interstitial region.

IPC Classes  ?

  • B29C 64/364 - Conditioning of environment
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B29C 64/245 - Platforms or substrates
  • B29C 64/25 - Housings, e.g. machine housings
  • B01D 71/32 - Polyalkenyl halides containing fluorine atoms
  • B29C 64/255 - Enclosures for the building material, e.g. powder containers
  • B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
  • B29C 64/379 - Handling of additively manufactured objects, e.g. using robots

52.

Multiple axis robotic additive manufacturing system and methods

      
Application Number 17962779
Grant Number 11642851
Status In Force
Filing Date 2022-10-10
First Publication Date 2023-02-02
Grant Date 2023-05-09
Owner Stratasys, Inc. (USA)
Inventor Newell, Clint

Abstract

A multiple axis robotic additive manufacturing system includes a robotic arm movable in six degrees of freedom. The system includes a build platform movable in at least two degrees of freedom and independent of the movement of the robotic arm to position the part being built to counteract effects of gravity based upon part geometry. The system includes an extruder mounted at an end of the robotic arm. The extruder is configured to extrude at least part material with a plurality of flow rates, wherein movement of the robotic arm and the build platform are synchronized with the flow rate of the extruded material to build the 3D part.

IPC Classes  ?

  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/245 - Platforms or substrates
  • B29C 64/227 - Driving means
  • B29C 64/379 - Handling of additively manufactured objects, e.g. using robots
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B29C 64/295 - Heating elements
  • B29C 64/209 - Heads; Nozzles
  • B25J 9/04 - Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian co-ordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical co-ordinate type or polar co-ordinate type
  • B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
  • G06F 30/00 - Computer-aided design [CAD]
  • B29C 64/241 - Driving means for rotary motion
  • B33Y 40/10 - Pre-treatment
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • B29C 64/30 - Auxiliary operations or equipment
  • G06F 119/18 - Manufacturability analysis or optimisation for manufacturability

53.

Local Z print head positioning system in a 3D printer

      
Application Number 17566081
Grant Number 11760015
Status In Force
Filing Date 2021-12-30
First Publication Date 2023-01-26
Grant Date 2023-09-19
Owner Stratasys, Inc. (USA)
Inventor
  • Leavitt, Paul Joseph
  • Mcdonough, Thomas Joseph
  • Davis, Zachary James

Abstract

A 3D printer includes a gantry configured to move in a plane substantially parallel to a x-y build plane and a print head configured to extrude molten material to print a 3D part in a layer-by-layer process. The 3D printer includes a platen configured to support the part being printed in the layer by layer process and positionable with a primary Z positioner along a z-axis substantially normal to the x-y build plane. The 3D printer includes a local Z positioner moved by the gantry, the local Z positioner comprising a linear motor configured to move the print head in the z-direction and having an operable range of motion extending from a nominal build position at which a nozzle of the print head is positioned in the x-y build plane to a raised position above the x-y build plane.

IPC Classes  ?

  • B29C 64/232 - Driving means for motion along the axis orthogonal to the plane of a layer
  • B29C 64/245 - Platforms or substrates
  • B29C 64/209 - Heads; Nozzles
  • B29C 64/236 - Driving means for motion in a direction within the plane of a layer
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B33Y 10/00 - Processes of additive manufacturing
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/364 - Conditioning of environment
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B29C 64/25 - Housings, e.g. machine housings
  • B29C 64/227 - Driving means
  • B29C 64/259 - Enclosures for the building material, e.g. powder containers interchangeable

54.

3D-printed parts

      
Application Number 17856860
Grant Number 11846927
Status In Force
Filing Date 2022-07-01
First Publication Date 2023-01-05
Grant Date 2023-12-19
Owner Stratasys, Inc. (USA)
Inventor Ong, Joel

Abstract

A method for generating print images for additive manufacturing includes: accessing a part model; accessing a set of dimensional tolerances for the part model; and segmenting the part model into a set of model layers. The method also includes, and, for each model layer: detecting an edge in the model layer; assigning a dimensional tolerance to the edge; defining an outer exposure shell inset from the edge by an erosion distance inversely proportional to a width of the dimensional tolerance; defining an inner exposure shell inset from the outer exposure shell and scheduled for exposure separately from the outer exposure shell; defining an a outer exposure energy proportional to the width of the dimensional tolerance and assigned to the outer exposure shell; and defining an inner exposure energy greater than the outer exposure energy and assigned to the inner exposure shell.

IPC Classes  ?

  • G05B 19/4093 - Numerical control (NC), i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
  • G06T 19/20 - Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
  • G06T 7/11 - Region-based segmentation
  • G06T 7/13 - Edge detection
  • G06T 7/73 - Determining position or orientation of objects or cameras using feature-based methods
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • G06T 7/62 - Analysis of geometric attributes of area, perimeter, diameter or volume
  • B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

55.

ADDITIVE MANUFACTURING PROCESS USING A BUILDING MATERIAL HAVING A HIGH HARD SEGMENT CONTENT

      
Application Number 17781113
Status Pending
Filing Date 2020-12-14
First Publication Date 2022-12-29
Owner STRATASYS INC. (USA)
Inventor
  • Achten, Dirk
  • Buesgen, Thomas
  • Matner, Mathias
  • Mettmann, Bettina
  • Garska, Bernd
  • Kessler, Michael
  • Reichert, Peter
  • Wagner, Roland
  • Prenveille, Thomas

Abstract

A method for producing an object comprises the step of producing the object by means of an additive manufacturing process from a construction material. The construction material comprises a first polyurethane polymer which has: a weight percentage ratio of O to N of ≥2 to ≤2.5, determined by elementary analysis; a weight percentage ratio of N to C of ≥0.1 to ≤0.25, determined by elementary analysis; a full-width at half maximum of the melting peak of ≤20 K, determined by dynamic differential scanning calorimetry DSC (2nd heating at heating rate 20 k/min); and a difference between the melting temperature and the recrystallisation temperature of ≥5 K and ≤100 K, determined by dynamic differential scanning calorimetry DSC (2nd heating) at a heating and cooling rate of 20 K/min.

IPC Classes  ?

  • C08G 18/66 - Compounds of groups , , or
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
  • B33Y 40/10 - Pre-treatment
  • B29C 64/314 - Preparation
  • C08G 18/75 - Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
  • C08G 18/73 - Polyisocyanates or polyisothiocyanates acyclic

56.

Urethane acrylate composition

      
Application Number 17359939
Grant Number 11891469
Status In Force
Filing Date 2021-06-28
First Publication Date 2022-12-29
Grant Date 2024-02-06
Owner STRATASYS, INC. (USA)
Inventor Chen, Liang

Abstract

Provided is a photopolymerizable composition comprising a blend of: a) from 40 wt. % to 70 wt. % of at least one urethane component; b) from 25 wt. % to 70 wt % of at least one monofunctional reactive diluent; c) from 0.1 wt. % to 5 wt. % of at least one initiator; and d) from 2 wt. % to 10 wt % of an amine-functional (meth)acrylate monomer. Also provided is a process of producing a photopolymerizable composition by blending these ingredients. Further provided is a process of producing a three-dimensional object, by depositing the photopolymerizable composition atop a carrier; depositing additional photopolymerizable composition atop a previously applied layer wherein the depositing of the photopolymerizable composition comprises introducing energy.

IPC Classes  ?

  • C08F 2/46 - Polymerisation initiated by wave energy or particle radiation
  • C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
  • C08G 61/04 - Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
  • C08F 283/00 - Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • B33Y 10/00 - Processes of additive manufacturing
  • B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
  • B29K 75/00 - Use of polyureas or polyurethanes as moulding material

57.

METHOD FOR MODIFYING A 3D PRINTED OBJECT

      
Application Number 17760816
Status Pending
Filing Date 2020-09-25
First Publication Date 2022-11-17
Owner STRATASYS INC. (USA)
Inventor
  • Mettmann, Bettina
  • Buesgen, Thomas
  • Kessler, Michael

Abstract

The invention relates to a method for modifying an object comprising the step of: I) providing an object which is made at least partially of a construction material comprising a thermoplastic polyurethane. The method also comprises the following steps: II) contacting, at least in part, the construction material, for a first predetermined period of time, with a first liquid comprising ≥80% by weight, based on the total weight of the first liquid, of a polar aprotic solvent; III) contacting, for a second predetermined period of time, the areas of the construction material that were in contact with the liquid in step II) with a second liquid comprising ≥80% by weight, based on the total weight of the second liquid, of a polar protic solvent. Preferably, the first liquid is DMSO or acetone and the second liquid is water.

IPC Classes  ?

  • B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
  • B29C 64/268 - Arrangements for irradiation using electron beams [EB]
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing

58.

FLAME RETARDANT POLYAMIDE-BASED 3D PRINTING EXTRUSION MATERIALS

      
Application Number 17639606
Status Pending
Filing Date 2020-09-03
First Publication Date 2022-10-20
Owner STRATASYS INC. (USA)
Inventor
  • Mccann, David
  • Marguier, Johanna
  • Hörold, Sebastian

Abstract

The present invention relates to a fire, smoke and toxicity retardant (FST) polyamide thermoplastic mass usable for 3D printing which comprises at least one non-halogenated organic flame retardant in combination with at least one particulate inorganic flame retardant. Moreover, the present invention refers to uses of such FST polyamide thermoplastic mass for 3D printing. The invention further relates to methods of preparing a three-dimensionally shaped product by means of 3D printing based on such FST polyamide thermoplastic mass.

IPC Classes  ?

  • C08K 5/5313 - Phosphinic compounds, e.g. R2=P(:O)OR'
  • C08K 3/32 - Phosphorus-containing compounds
  • C08K 7/14 - Glass
  • C08K 3/40 - Glass
  • C08K 3/22 - Oxides; Hydroxides of metals
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]

59.

Method for underwater processing of water-dispersible materials

      
Application Number 17717570
Grant Number 12157800
Status In Force
Filing Date 2022-04-11
First Publication Date 2022-10-13
Grant Date 2024-12-03
Owner Stratasys, Inc. (USA)
Inventor Priedeman, Jr., William R.

Abstract

A method of processing a water-dispersible, polymer-based material in a bath of a water-based solution includes providing a molten water-dispersible polymer material having monovalent cations. The water-dispersible polymer is introduced into a water bath comprising multivalent salt dissociated in the water bath into multivalent cations and anions. The water-dispersible polymer is retained within the water bath with the dissociated multivalent cations to quench the water-dispersible, polymer-based material while the monovalent cations proximate a surface of the water-dispersible polymer are exchanged with multivalent cations to form a barrier that temporarily resists dispersion of the water-dispersible, polymer-based material within the water bath. The method includes removing the water-dispersible polymer from water bath after the exchange step.

IPC Classes  ?

  • C08J 3/24 - Crosslinking, e.g. vulcanising, of macromolecules
  • B29C 48/05 - Filamentary, e.g. strands
  • B29C 48/80 - Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
  • B29C 48/88 - Thermal treatment of the stream of extruded material, e.g. cooling
  • B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
  • B29C 71/00 - After-treatment of articles without altering their shape; Apparatus therefor
  • B29K 81/00 - Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
  • C08J 3/07 - Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
  • C08J 3/12 - Powdering or granulating
  • C08J 3/14 - Powdering or granulating by precipitation from solutions

60.

Pulverulent thermoplastic polymer blends

      
Application Number 17220031
Grant Number 11820890
Status In Force
Filing Date 2021-04-01
First Publication Date 2022-10-06
Grant Date 2023-11-21
Owner STRATASYS INC (USA)
Inventor
  • Chen, Liang
  • Xu, Chen
  • Vescio, Leslie J.
  • Lawrey, Bruce D.

Abstract

The present disclosure is directed to pulverulent thermoplastic polymer blends comminuted to a particle size of less than 300 μm. The pulverulent thermoplastic polymer blends can include a first thermoplastic polyurethane and a second thermoplastic polyurethane at a weight ratio of from about 90:10 to about 30:70 first thermoplastic polyurethane to second thermoplastic polyurethane. The first thermoplastic polyurethane can include a reaction product of a first reaction mixture consisting of or consisting essentially of an aliphatic diisocyanate having a number average molecular weight of from 140 g/mol to 170 g/mol and an aliphatic diol having a number average molecular weight of from 62 g/mol to 120 g/mol. The second thermoplastic polyurethane can include a reaction product of a second reaction mixture comprising a polyisocyanate, an isocyanate-reactive component having a number average molecular weight of from 500 g/mol to 10,000 g/mol, and a chain extender having a number average molecular weight of from 60 g/mol to 450 g/mol.

IPC Classes  ?

61.

3D printer with self-supporting thermal isolator

      
Application Number 17221136
Grant Number 11858214
Status In Force
Filing Date 2021-04-02
First Publication Date 2022-10-06
Grant Date 2024-01-02
Owner Stratasys, Inc. (USA)
Inventor
  • Neal, Kyra Elizabeth
  • Schiel, Colin Adam
  • Anderson, Patrick Williams
  • Migliori, Bryan Daniel

Abstract

A build chamber for a 3D printer includes a heated build space in an interior of the build chamber and a thermal isolator configured to insulate 3D printer components from the heated build space. The thermal isolator includes a first baffle section and a second baffle section. Each of the first baffle section and the second baffle section includes an accordion-pleated panel having a length, a width, a first end and a second end, wherein the panel comprises a parallel alternating top folds and bottom folds along the width forming a series of pleats, and each pleat within the series being configured to expand and contract, and wherein the panel is constructed of a heat-resistant material. Each baffle section also includes support rods affixed to the accordion-pleated panel in parallel to the pleats and at intervals along the length of the panel, the support rods substantially spanning the width of the panel. Ends of the support rods rest on surfaces proximate a ceiling of the build chamber to support the first and second baffle sections wherein the support rods are configured to provide sufficient strength and rigidity to the panel to substantially prevent the panel from sagging or buckling as the panel is expanded and contracted along its length.

IPC Classes  ?

  • B29C 64/25 - Housings, e.g. machine housings
  • B29C 64/364 - Conditioning of environment
  • B29C 64/295 - Heating elements
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor

62.

SIMPLIFIED TUNING OF 3D PRINTERS

      
Application Number 17197609
Status Pending
Filing Date 2021-03-10
First Publication Date 2022-09-15
Owner Stratasys, Inc. (USA)
Inventor
  • Jaker, Vittorio Lorenzo
  • Fortgang, Joel
  • Riley, Timothy James

Abstract

A 3D printer includes a holding area holding material to be used to produce a part and at least one component for producing the part through layer-wise additive manufacturing. A data storage device in the 3D printer stores instructions for generating build parameter values, the instructions including empirically derived data, relationships, and/or equations. A processor in the 3D printer receives values for a public build parameter set and a category for the material wherein the category represents multiple different materials. The processor executes instructions to determine values for a private build parameter set that vary based on the properties of the material. The values for the private build parameter set are determined from the received values for the public build parameter set and the received category. The processor then uses the received values for the public build parameter set and the values for the private build parameter set to build the part.

IPC Classes  ?

  • G05B 19/4093 - Numerical control (NC), i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
  • B33Y 50/00 - Data acquisition or data processing for additive manufacturing

63.

Liquid, hybrid UV/vis radiation curable resin compositions for additive fabrication

      
Application Number 17637161
Grant Number 11866526
Status In Force
Filing Date 2020-08-31
First Publication Date 2022-09-08
Grant Date 2024-01-09
Owner STRATASYS, INC. (USA)
Inventor Lee, Tai Yeon

Abstract

Liquid radiation curable compositions are disclosed which are suitable for hybrid (i.e. cationic and free-radical) polymerization when processed via additive fabrication equipment utilizing sources of actinic radiation with peak spectral intensities in the UV/vis region. According to one aspect, the compositions possess a first photoinitiator that is an iodonium salt of a non-fluorinated borate anion. According to another aspect, the composition is substantially devoid of a Norrish Type I and/or Type II photoinitiator. Also disclosed are methods of creating three-dimensional parts via additive fabrication processes utilizing sources of actinic radiation with peak spectral intensities in the UV/vis region employing liquid radiation curable compositions suitable for hybrid polymerization, and the parts cured therefrom.

IPC Classes  ?

  • C08F 2/46 - Polymerisation initiated by wave energy or particle radiation
  • C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
  • C08G 61/04 - Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
  • B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
  • C08F 222/10 - Esters
  • C08G 59/24 - Di-epoxy compounds carbocyclic
  • C08K 5/03 - Halogenated hydrocarbons aromatic
  • C08K 5/55 - Boron-containing compounds
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • B33Y 80/00 - Products made by additive manufacturing

64.

Antimony-free radiation curable compositions for additive fabrication, and applications thereof in investment casting processes

      
Application Number 17694786
Grant Number 12071566
Status In Force
Filing Date 2022-03-15
First Publication Date 2022-07-21
Grant Date 2024-08-27
Owner STRATASYS INC. (USA)
Inventor
  • Lee, Tai Yeon
  • Scianna, Mike
  • Steeman, Paulus
  • Driessen, Marco
  • Jansen, Johan
  • Vaidya, Sainath

Abstract

Radiation curable compositions for additive fabrication are described and claimed. Such compositions are particularly suited for investment casting applications, and include a cationically polymerizable component, a radically polymerizable component, a certain type of prescribed antimony-free, sulfonium salt-based cationic photoinitiator, and a free-radical photoinitiator. In other embodiments, the composition may also include a photosensitizer and/or a UV/absorber. Also described and claimed is a method for using a liquid radiation curable resin for additive fabrication with a certain type of prescribed antimony-free, sulfonium salt-based cationic photoinitiator and a certain type of prescribed photosensitizer in an investment casting process.

IPC Classes  ?

  • C08F 2/46 - Polymerisation initiated by wave energy or particle radiation
  • B22C 9/04 - Use of lost patterns
  • B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
  • C08G 59/22 - Di-epoxy compounds
  • C08G 59/24 - Di-epoxy compounds carbocyclic
  • C08G 59/68 - Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups characterised by the catalysts used
  • C08G 61/04 - Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
  • C08G 65/18 - Oxetanes
  • C09D 7/63 - Additives non-macromolecular organic
  • C09D 163/00 - Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
  • B29K 105/00 - Condition, form or state of moulded material

65.

Expanding spinal fusion cage

      
Application Number 17144782
Grant Number 11944553
Status In Force
Filing Date 2021-01-08
First Publication Date 2022-07-14
Grant Date 2024-04-02
Owner
  • DePuy Synthes Products, Inc. (USA)
  • Stratasys, Inc. (USA)
Inventor
  • Hopson, Peyton
  • Serhan, Hassan
  • Buehlmann, Eric
  • Sommerich, Robert
  • Gamache, Thomas
  • Star, Cynthia
  • Reeves, Philip
  • Smith, Oliver
  • Hayden, David
  • Le Merlus, Loic

Abstract

Disclosed herein are expanding spinal fusion cage embodiments including an expandable cage assembly configured to expand from a collapsed state to an expanded state in an intervertebral space when inflated with a material. The assembly can include an inflatable section defining an interior volume configured to receive the material and expand the interior volume in response to a pressure from the received material to cause the expandable cage assembly to transition from the collapsed state to the expanded state, and a stabilization section configured to restrain the inflatable section during inflation.

IPC Classes  ?

66.

System for leveling heated platen in 3D printer

      
Application Number 17131332
Grant Number 11485079
Status In Force
Filing Date 2020-12-22
First Publication Date 2022-06-23
Grant Date 2022-11-01
Owner Stratasys, Inc. (USA)
Inventor
  • Durand, Josh
  • Chapman, Jeff Lee

Abstract

A z-lift and leveling assembly for leveling a platen in a heated chamber of a 3D printer includes first, second, third, and fourth z-actuators in a rectangular configuration. Each z-actuator includes a linear drive configured to supply motion in the z-direction and a mounting bracket secured to the linear drive and configured to move with the linear drive in the z-direction. The assembly includes a set of four pin couplings each associated with one of the first, second, third and fourth z-actuators. Each pin coupling includes a pivot block secured to the mounting bracket with a first pivot pin forming a first pin joint between the mounting bracket and the pivot block, where the pivot block is configured to move relative to the mounting bracket about a first pivot axis of the first pivot pin. The pivot block is secured to the platen or an arm of the platen with a second pivot pin forming a second pin joint such that the pivot block and the platen move relative to each other about a second pivot axis. As the mounting bracket is moved, the pivot block moves relative to the mounting bracket about the first pivot axis and the pivot block moves relative to the platen about the second pivot axis such that a z-position of the platen can be manipulated to and maintained in a substantially level configuration in the z-direction though the independent manipulation of the first, second, third and fourth z-actuators and wherein the substantially level configuration can be maintained when the platen is incremented in the z-direction during printing of a part.

IPC Classes  ?

  • B29C 64/232 - Driving means for motion along the axis orthogonal to the plane of a layer
  • B29C 64/209 - Heads; Nozzles
  • B29C 64/245 - Platforms or substrates
  • B29C 64/25 - Housings, e.g. machine housings
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B29C 64/236 - Driving means for motion in a direction within the plane of a layer
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor

67.

Three-dimensional printer tool systems

      
Application Number 17690334
Grant Number 11780156
Status In Force
Filing Date 2022-03-09
First Publication Date 2022-06-23
Grant Date 2023-10-10
Owner Stratasys, Inc. (USA)
Inventor
  • Schmehl, Peter Joseph
  • Kemperle, Aljosa
  • Schmehl, Stewart

Abstract

An extruder or other similar tool head of a three-dimensional printer is slidably mounted along a feedpath of build material so that the extruder can move into and out of contact with a build surface according to whether build material is being extruded. The extruder may be spring-biased against the forward feedpath so that the extruder remains above the build surface in the absence of applied forces, and then moves downward into a position for extrusion when build material is fed into the extruder. In another aspect, modular tool heads are disclosed that can be automatically coupled to and removed from the three-dimensional printer by a suitable robotics system. A tool crib may be provided to store multiple tool heads while not in use.

IPC Classes  ?

  • B29C 67/00 - Shaping techniques not covered by groups , or
  • B29C 64/112 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
  • B29C 48/02 - Small extruding apparatus, e.g. handheld, toy or laboratory extruders
  • B29C 48/92 - Measuring, controlling or regulating
  • B29C 48/25 - Component parts, details or accessories; Auxiliary operations
  • B29C 48/80 - Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
  • B29C 48/285 - Feeding the extrusion material to the extruder
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B29C 64/35 - Cleaning
  • B29C 64/295 - Heating elements
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/30 - Auxiliary operations or equipment
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B29L 9/00 - Layered products

68.

Stabilized matrix-filled liquid radiation curable resin compositions for additive fabrication

      
Application Number 17689253
Grant Number 11840618
Status In Force
Filing Date 2022-03-08
First Publication Date 2022-06-16
Grant Date 2023-12-12
Owner STRATASYS, INC. (USA)
Inventor
  • He, Mingbo
  • Rundlett, Beth

Abstract

Matrix-filled liquid radiation curable resin compositions for additive fabrication are described and claimed. Such resins include a cationically polymerizable component that is an aliphatic epoxide, a multifunctional (meth)acrylate component, a cationic photoinitiator, a free-radical photoinitiator, and a matrix of inorganic fillers, wherein the matrix further constitutes prescribed ratios of at least one microparticle constituent and at least one nanoparticle constituent. Also described and claimed is a process for using the matrix-filled liquid radiation curable resins for additive fabrication to create three dimensional parts, and the three-dimensional parts made from the liquid radiation curable resins for additive fabrication.

IPC Classes  ?

  • C08F 2/46 - Polymerisation initiated by wave energy or particle radiation
  • C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
  • C08G 61/04 - Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
  • C08K 3/36 - Silica
  • G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
  • G03F 7/004 - Photosensitive materials
  • G03F 7/038 - Macromolecular compounds which are rendered insoluble or differentially wettable
  • G03F 7/027 - Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
  • B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
  • B33Y 70/10 - Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
  • C08L 33/10 - Homopolymers or copolymers of methacrylic acid esters
  • C08F 222/10 - Esters
  • B29K 63/00 - Use of epoxy resins as moulding material
  • B29K 105/00 - Condition, form or state of moulded material
  • B29K 105/24 - Condition, form or state of moulded material cross-linked or vulcanised
  • B29K 509/02 - Ceramics

69.

Thermal control in a stereolithographic 3D printer

      
Application Number 17543369
Grant Number 12128608
Status In Force
Filing Date 2021-12-06
First Publication Date 2022-06-09
Grant Date 2024-10-29
Owner Stratasys, Inc. (USA)
Inventor Batchelder, J. Samuel

Abstract

A method for printing a 3D part in a layer-wise manner includes providing a pool of polymerizable liquid in a vessel over a build window and positioning a downward-facing build platform in the pool, thereby defining a build region above the build window. The method includes selectively curing a volume of polymerizable liquid in the build region by imparting electromagnetic radiation through the build window to form a printed layer of the part adhered to the build platform and actively cooling the build window to remove energy imparted by the electromagnetic radiation and the polymerization reaction of the polymerizable liquid such that the printed layer is between about 1° C. and about 30° C. below an average part temperature prior to raising the print layer and printing the next layer.

IPC Classes  ?

  • B29C 64/188 - Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
  • B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
  • B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor

70.

Part quality monitoring in a stereolithographic additive manufacturing system

      
Application Number 17543015
Grant Number 11794411
Status In Force
Filing Date 2021-12-06
First Publication Date 2022-06-09
Grant Date 2023-10-24
Owner Stratasys, Inc. (USA)
Inventor Batchelder, J. Samuel

Abstract

A method for 3D printing a part in a layer-wise manner includes providing a pool of polymerizable liquid in a vessel over a build window and positioning a downward-facing build platform in the pool, thereby defining a build region above the build window. The method includes selectively curing a volume of polymerizable liquid in the build region by imparting electromagnetic radiation through the build window to form a printed layer of the part adhered to the build platform and scanning at least a portion of the build window with monochromatic, polarized light along a plane of incidence. The method includes measuring a change in intensity and polarity of the light to obtain information about the printed layer. The method includes raising the build platform to a height of a next layer to be printed and modifying the electromagnetic energy imparted into the next layer based upon the obtained information to print a next layer. The imparting, scanning, measuring, raising and modifying steps are repeated until the part is printed.

IPC Classes  ?

  • B29C 64/386 - Data acquisition or data processing for additive manufacturing
  • B33Y 10/00 - Processes of additive manufacturing
  • G01N 21/21 - Polarisation-affecting properties
  • B33Y 50/00 - Data acquisition or data processing for additive manufacturing
  • B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • G01N 21/23 - Bi-refringence
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • G01N 21/84 - Systems specially adapted for particular applications

71.

RADIATION CURABLE COMPOSITIONS FOR ADDITIVE FABRICATION WITH IMPROVED TOUGHNESS AND HIGH TEMPERATURE RESISTANCE

      
Application Number 17580747
Status Pending
Filing Date 2022-01-21
First Publication Date 2022-05-05
Owner STRATASYS INC. (USA)
Inventor
  • Kwisnek, Luke
  • Seurer, Brad

Abstract

Radiation curable compositions for additive fabrication with improved toughness are described and claimed. Such resins include a rubber toughenable base resin package and a liquid, phase-separating toughening agent. The rubber toughenable base resin, which may possess a suitably high average molecular weight between crosslinks and may be a pre-reacted hydrophobic macromolecule, may further include a cationically polymerizable component, a radically polymerizable component, a cationic photoinitiator, a free radical photoinitiator, and customary additives. Also described and claimed are methods for forming a three-dimensional objects using such radiation curable compositions for additive fabrication with improved toughness, along with the three-dimensional parts created therefrom.

IPC Classes  ?

  • B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
  • G03F 7/027 - Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
  • G03F 7/105 - Photosensitive materials - characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
  • G03F 7/038 - Macromolecular compounds which are rendered insoluble or differentially wettable
  • G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B29C 64/277 - Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
  • B29C 64/268 - Arrangements for irradiation using electron beams [EB]
  • C08L 63/00 - Compositions of epoxy resins; Compositions of derivatives of epoxy resins
  • C08L 67/06 - Unsaturated polyesters
  • C08L 91/00 - Compositions of oils, fats or waxes; Compositions of derivatives thereof

72.

Method for regulating temperature at a resin interface in an additive manufacturing process

      
Application Number 17549315
Grant Number 11584081
Status In Force
Filing Date 2021-12-13
First Publication Date 2022-03-31
Grant Date 2023-02-21
Owner Stratasys, Inc. (USA)
Inventor
  • Ong, Joel
  • Prucha, Christopher
  • Benight, Stephanie
  • Buel, Bill

Abstract

A method for additive manufacturing includes: at a build tray arranged over a build window and containing a resin reservoir of a resin, heating the resin reservoir toward a target bulk resin temperature less than a heat deflection temperature of the resin in a photocured state; at a resin interface between a surface of the build window and the resin reservoir, heating an interface layer of the resin reservoir toward a target reaction temperature; and, in response to the resin reservoir exhibiting a first temperature proximal the target bulk resin temperature and to the interface layer exhibiting a second temperature proximal the target reaction temperature: at the resin interface, selectively photocuring a first volume of the resin to form a first layer of a build adhered to a build platform; and retracting the build platform away from the build window.

IPC Classes  ?

  • B29C 64/295 - Heating elements
  • B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
  • B29C 64/364 - Conditioning of environment
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 10/00 - Processes of additive manufacturing
  • B29C 64/255 - Enclosures for the building material, e.g. powder containers
  • B29C 64/232 - Driving means for motion along the axis orthogonal to the plane of a layer
  • B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor

73.

WATER DISPERSIBLE POLYMER FOR USE IN ADDITIVE MANUFACTURING

      
Application Number 17530145
Status Pending
Filing Date 2021-11-18
First Publication Date 2022-03-10
Owner Stratasys, Inc. (USA)
Inventor Priedeman, Jr., William R.

Abstract

A water dispersible sulfopolymer for use as a material in the layer-wise additive manufacture of a 3D part made of a non water dispersible polymer wherein the water dispersible polymer is a reaction product of a metal sulfo monomer, the water dispersible sulfo-polymer being dispersible in water resulting in separation of the water dispersible polymer from the 3D part made of the non water dispersible polymer.

IPC Classes  ?

  • C08G 63/688 - Polyesters containing atoms other than carbon, hydrogen, and oxygen containing sulfur
  • B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • C08G 18/08 - Processes
  • C08G 18/38 - Low-molecular-weight compounds having hetero atoms other than oxygen
  • C08G 69/42 - Polyamides containing atoms other than carbon, hydrogen, oxygen, and nitrogen
  • C08J 5/00 - Manufacture of articles or shaped materials containing macromolecular substances
  • C08J 11/06 - Recovery or working-up of waste materials of polymers without chemical reactions
  • G03G 9/087 - Binders for toner particles
  • G03G 15/16 - Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern
  • G03G 15/22 - Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]

74.

Method of analyzing and utilizing surface topology for targeted local thermal management in additive manufacturing systems

      
Application Number 17522475
Grant Number 12128631
Status In Force
Filing Date 2021-11-09
First Publication Date 2022-03-03
Grant Date 2024-10-29
Owner Stratasys, Inc. (USA)
Inventor
  • Nixon, Jason Robert
  • Newell, Clint
  • Diekmann, Timothy

Abstract

A method for 3D printing a part with an additive manufacturing system includes printing a first portion of a part in a layerwise manner and analyzing a topology of the first portion of the part. The method includes determining a tool path for printing a second portion of the part on a surface of the first portion of the part, and pre-heating the first portion of the part along the tool path as a function of the topological analysis of the first portion of the part. The method includes printing the second portion of the part along the tool path.

IPC Classes  ?

  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B29C 64/209 - Heads; Nozzles
  • B29C 64/268 - Arrangements for irradiation using electron beams [EB]
  • B29C 64/314 - Preparation
  • B29C 64/336 - Feeding of two or more materials
  • B33Y 40/10 - Pre-treatment
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B33Y 10/00 - Processes of additive manufacturing

75.

Tagged build material for three-dimensional printing

      
Application Number 17516974
Grant Number 11780143
Status In Force
Filing Date 2021-11-02
First Publication Date 2022-02-24
Grant Date 2023-10-10
Owner Stratasys, Inc. (USA)
Inventor
  • Douglas, Ariel
  • Steiner, Robert J.
  • Jennings, Aric Lynn
  • Buel, William B.
  • Moschella, Anthony D.

Abstract

A supply of build material such as a spool or cartridge is instrumented with a data tag that includes information about the build material. A three-dimensional printer, or a tag reader in communication therewith (directly or indirectly), can read the information from the tag for a determination as to how to use the build material during fabrication of a three-dimensional object.

IPC Classes  ?

  • B29C 67/00 - Shaping techniques not covered by groups , or
  • B29C 48/154 - Coating solid articles, i.e. non-hollow articles
  • B29C 64/209 - Heads; Nozzles
  • B29C 64/205 - Means for applying layers
  • B29C 48/92 - Measuring, controlling or regulating
  • B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/386 - Data acquisition or data processing for additive manufacturing
  • B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • B33Y 80/00 - Products made by additive manufacturing
  • B29C 48/02 - Small extruding apparatus, e.g. handheld, toy or laboratory extruders
  • B29C 48/265 - Support structures or bases for apparatus, e.g. frames
  • B29C 48/25 - Component parts, details or accessories; Auxiliary operations
  • B33Y 50/00 - Data acquisition or data processing for additive manufacturing
  • B33Y 10/00 - Processes of additive manufacturing
  • B29K 101/12 - Thermoplastic materials
  • B29K 105/00 - Condition, form or state of moulded material

76.

Method and system for interlayer feedback control and failure detection in an additive manufacturing process

      
Application Number 17518510
Grant Number 11590712
Status In Force
Filing Date 2021-11-03
First Publication Date 2022-02-24
Grant Date 2023-02-28
Owner Stratasys, Inc. (USA)
Inventor
  • Ong, Joel
  • Prucha, Christopher

Abstract

An additive manufacturing system configured to: during a first build cycle of an additive manufacturing process for manufacturing a first layer of a build, sampling a first set of sensor data streams via the sensor suite; calculate a first likelihood of failure of the build based on the first set of sensor data streams; in response to calculating the first likelihood of failure within a first likelihood range, flag the build to indicate the first likelihood of failure; and in response to calculating the first likelihood of failure within a second likelihood range greater than the first likelihood range, pause the additive manufacturing process, and notify an operator of the additive manufacturing system of the first likelihood of failure.

IPC Classes  ?

  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
  • B33Y 10/00 - Processes of additive manufacturing

77.

POLYESTER POWDERS AND THE USE THEREOF IN THREE-DIMENSIONAL PRINTING PROCESSES

      
Application Number 17278929
Status Pending
Filing Date 2019-10-28
First Publication Date 2022-02-17
Owner STRATASYS INC. (USA)
Inventor
  • Van Benthem, Rudolfus Antonius Theodorus Maria
  • Derks, Franciscus Johannes Marie
  • Witters, Stijn
  • Bogaerds, Adrianus Cornelis Bastiaan
  • Bergman, Franciscus Adrianus Cornelis

Abstract

The present invention is directed to polyester powders suitable for use in 3D printing processes, methods of using such polyester powders in 3D printing processes, and processes for the manufacturing thereof. The polyester powders prepared in accordance with the present invention are easily recycled after such polyester powders have been subjected to 3D printing conditions. In addition, the present invention is directed to recycling processes that recondition waste polyester powders into polyester powders suitable for 3D printing.

IPC Classes  ?

  • B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
  • B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 70/10 - Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
  • C08L 67/03 - Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
  • C08K 3/40 - Glass
  • B29B 9/02 - Making granules by dividing preformed material
  • C08G 63/183 - Terephthalic acids

78.

Multiple axis robotic additive manufacturing system and methods

      
Application Number 17509659
Grant Number 11498281
Status In Force
Filing Date 2021-10-25
First Publication Date 2022-02-10
Grant Date 2022-11-15
Owner Stratasys, Inc. (USA)
Inventor Newell, Clint

Abstract

A multiple axis robotic additive manufacturing system includes a robotic arm movable in six degrees of freedom. The system includes a build platform movable in at least two degrees of freedom and independent of the movement of the robotic arm to position the part being built to counteract effects of gravity based upon part geometry. The system includes an extruder mounted at an end of the robotic arm. The extruder is configured to extrude at least part material with a plurality of flow rates, wherein movement of the robotic arm and the build platform are synchronized with the flow rate of the extruded material to build the 3D part.

IPC Classes  ?

  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/245 - Platforms or substrates
  • B29C 64/227 - Driving means
  • B29C 64/379 - Handling of additively manufactured objects, e.g. using robots
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B29C 64/295 - Heating elements
  • B29C 64/209 - Heads; Nozzles
  • B25J 9/04 - Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian co-ordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical co-ordinate type or polar co-ordinate type
  • B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
  • G06F 30/00 - Computer-aided design [CAD]
  • B29C 64/241 - Driving means for rotary motion
  • B33Y 40/10 - Pre-treatment
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • B29C 64/30 - Auxiliary operations or equipment
  • G06F 119/18 - Manufacturability analysis or optimisation for manufacturability

79.

Compositions and articles for additive fabrication and methods of using the same

      
Application Number 17502631
Grant Number 11878459
Status In Force
Filing Date 2021-10-15
First Publication Date 2022-02-03
Grant Date 2024-01-23
Owner STRATASYS, INC. (USA)
Inventor
  • Ren, Kangtai
  • Papachristopoulos, Robin

Abstract

Radiation curable compositions for additive fabrication processes, the components cured therefrom, and their use in particle image velocimetry testing methods are described and claimed herein. Such compositions include compounds which induce free-radical polymerization, optionally compounds which induce cationic polymerization, a filler constituent, and a light absorbing component, wherein the compositions are configured to possess certain absorbance values at wavelengths commonly utilized in particle image velocimetry testing. In another embodiment, the compositions include a fluoroantimony-modified compound. Such compositions may be used in particle imaging velocimetry testing methods, wherein the test object utilized is created via additive fabrication and is of a substantially homogeneous construction.

IPC Classes  ?

  • C08F 2/46 - Polymerisation initiated by wave energy or particle radiation
  • C08F 2/50 - Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
  • C08G 61/04 - Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
  • B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
  • C09B 11/24 - Phthaleins containing amino groups
  • G01P 5/20 - Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken by the fluid to traverse a fixed distance using particles entrained by a fluid stream
  • C08F 220/18 - Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
  • B33Y 70/10 - Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
  • B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

80.

Powder coating method for manufacturing 3D-printed components having improved mechanical properties

      
Application Number 17297030
Grant Number 11390020
Status In Force
Filing Date 2019-12-19
First Publication Date 2022-01-27
Grant Date 2022-07-19
Owner STRATASYS INC. (USA)
Inventor
  • Achten, Dirk
  • Mettmann, Bettina
  • Buesgen, Thomas
  • Wagner, Roland
  • Wolf, Maximilian

Abstract

The invention relates to a method for producing an object from different powdered components by means of additive manufacturing, wherein a plurality of powdered components having different melting points are simultaneously placed in precise positions, and the powder coating (1) is subsequently thermally treated. The construction material is, for example, polyether ether ketone (PEEK), polyaryl ether ketone (PAEK), polyether ketone ketone (PEKK), polyether sulfone, polyimide, polyether imide, polyester, polyamides, polycarbonates, polyurethanes, polyvinyl chloride, polyoxymethylene, polyvinyl acetate, polyacrylates, polymethacrylates, polyethylene, polypropylene, polylactide, ABS (acrylonitrile butadiene styrene copolymers), PETG (glycol modified polyethylene terephthalate), polystyrene, or mixtures thereof. The supporting material is an inorganic salt of the alkali metals, an inorganic salt of the alkaline earth metals, or a mixture thereof.

IPC Classes  ?

  • B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
  • B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
  • B29C 64/336 - Feeding of two or more materials
  • B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B33Y 70/10 - Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials

81.

FILAMENT DRIVE MECHANISM FOR USE IN ADDITIVE MANUFACTURING SYSTEM AND METHOD OF PRINTING 3D PART

      
Application Number 17294116
Status Pending
Filing Date 2019-11-14
First Publication Date 2022-01-20
Owner STRATASYS, INC. (USA)
Inventor
  • Pekarna, Matt
  • Koop, Shawn
  • Schuller, Peter
  • Nadeau, Jordan
  • Alvig, David

Abstract

A filament drive mechanism for use with an additive manufacturing system includes at least first and second drives. Each drive includes a first rotatable shaft and a second rotatable shaft engaged with the first rotatable shaft in a counter rotational configuration. Each drive includes a pair of filament engagement elements, one on each rotatable shaft, and positioned on opposing sides of the filament path with a gap therebetween so as to engage a filament provided in the filament path. The drive mechanism includes a bridge follower configured to rotatably couple the first drive to the second drive wherein one of the shafts is a drive shaft configured to be driven by a motor at a rotational rate selected to advance the filament at a desired feed rate and to cause the other shafts to rotate at the same rotational rate, such that each pair of filament engagement teeth will engage a filament in the filament path and will coordinate to advance the filament while counter-rotating at the same rotational rate to drive the filament into a liquefier.

IPC Classes  ?

  • B29C 64/227 - Driving means
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/321 - Feeding
  • B65H 51/10 - Rollers, pulleys, capstans, or intermeshing rotary elements arranged to operate in groups or in co-operation with other elements with opposed coacting surfaces, e.g. providing nips

82.

Method for printing three-dimensional parts with cyrstallization kinetics control

      
Application Number 17474827
Grant Number 12064917
Status In Force
Filing Date 2021-09-14
First Publication Date 2022-01-20
Grant Date 2024-08-20
Owner Stratasys, Inc. (USA)
Inventor
  • Rodgers, Luke M. B.
  • Jaker, Vittorio L.

Abstract

A method for printing a three-dimensional part with an additive manufacturing system, which includes providing a part material that compositionally has one or more semi-crystalline polymers and one or more secondary materials that are configured to retard crystallization of the one or more semi-crystalline polymers, where the one or more secondary materials are substantially miscible with the one or more semi-crystalline polymers. The method also includes melting the part material in the additive manufacturing system, forming at least a portion of a layer of the three-dimensional part from the melted part material in a build environment, and maintaining the build environment at an annealing temperature that is between a glass transition temperature of the part material and a cold crystallization temperature of the part material.

IPC Classes  ?

  • B29C 41/02 - Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
  • B29B 13/02 - Conditioning or physical treatment of the material to be shaped by heating
  • B29C 64/00 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
  • B29C 64/112 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 71/00 - After-treatment of articles without altering their shape; Apparatus therefor
  • B29C 71/02 - Thermal after-treatment
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • G03G 15/22 - Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups
  • B29C 35/16 - Cooling
  • B29K 71/00 - Use of polyethers as moulding material
  • B29K 77/00 - Use of polyamides, e.g. polyesteramides, as moulding material
  • B29K 79/00 - Use of other polymers having nitrogen, with or without oxygen or carbon only, in the main chain, as moulding material
  • B29K 81/00 - Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
  • B29K 105/00 - Condition, form or state of moulded material

83.

Film areas functionalized by means of 3D printing for finishing workpiece surfaces

      
Application Number 17291669
Grant Number 12036737
Status In Force
Filing Date 2019-12-02
First Publication Date 2022-01-06
Grant Date 2024-07-16
Owner Stratasys, Inc. (USA)
Inventor
  • Achten, Dirk
  • Degiorgio, Nicolas
  • Kuenzel, Jonas
  • Birth, Jari
  • Buesgen, Thomas

Abstract

The present invention relates to a method for functionalizing a workpiece surface, comprising the following steps: a) providing a workpiece; b) providing a film; c) functionalizing at least one film side by the location-selective application of a functionalization composition comprising a polymer material onto part of the film side in one or more layers by means of a 3D printing process; d) creating an integrally bonded or interlocking connection between the workpiece surface and the film functionalized in step c) by bringing the film into contact with at least part of the workpiece surface, wherein the integrally bonded or interlocking connection to the workpiece surface is achieved with a functionalized film side. The invention further relates to workpieces having a surface functionalized according to the invention.

IPC Classes  ?

  • B29C 64/30 - Auxiliary operations or equipment
  • B29C 51/02 - Combined thermoforming and manufacture of the preform
  • B29C 51/14 - Shaping by thermoforming, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing

84.

Platen with grid assembly for 3D printing

      
Application Number 17112534
Grant Number 11904542
Status In Force
Filing Date 2020-12-04
First Publication Date 2022-01-06
Grant Date 2024-02-20
Owner Stratasys, Inc. (USA)
Inventor
  • Chapman, Jeff Lee
  • Skubic, Robert
  • Migliori, Bryan
  • Braton, Benjamin L
  • Anderson, Patrick W.
  • Durand, Josh
  • Schiel, Colin

Abstract

A platen assembly for use with an extrusion-based 3D printer includes a grid assembly comprising at least a 4×2 framework of interlocked perpendicular x direction beams and y direction beams, providing a substantially planar upper surface and a bottom surface. The platen assembly includes a platen comprising a thin metal sheet supported on the upper surface of the grid assembly and secured to the grid assembly such that the top surface provides a substantially flat build surface. The x direction beams, the y direction beams and the platen are constructed of substantially a same thermal expansion properties, and wherein the build surface of the platen has a build surface area of at least 400 square inches and maintains its flatness to within a flatness tolerance of 0.020 inches over a temperature range of at least 20 C-300 C.

IPC Classes  ?

  • B29C 64/245 - Platforms or substrates
  • B29C 64/232 - Driving means for motion along the axis orthogonal to the plane of a layer
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]

85.

Core-shell filament for use in extrusion-based additive manufacturing systems and method of printing parts

      
Application Number 17290852
Grant Number 11878461
Status In Force
Filing Date 2019-11-04
First Publication Date 2021-12-16
Grant Date 2024-01-23
Owner Stratasys, Inc. (USA)
Inventor
  • Swanson, William J.
  • Priedeman, Jr., William R.

Abstract

A filament for use in an extrusion-based additive manufacturing system includes an elastomeric core and a harder, non-elastomeric shell. The core compositionally comprising an elastomeric core material having a flexural modulus of less than 31,000 psi and a durometer of less than 80 Shore. The shell overlays the core portion and compositionally comprises a non-elastomeric thermoplastic shell material that is substantially miscible with the elastomeric core material, wherein the core material and the shell material have the same monomer chemistry. The non-elastomeric thermoplastic shell material has a flexural modulus that is greater than the flexural modulus of the elastomeric core material by at least a factor of five, wherein the shell provides sufficient strength or stiffness to the filament such that filament can be utilized as a feedstock in the extrusion-based additive manufacturing system.

IPC Classes  ?

  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • D01F 8/12 - Conjugated, i.e. bi- or multicomponent, man-made filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
  • D01F 8/14 - Conjugated, i.e. bi- or multicomponent, man-made filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 70/10 - Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
  • B29K 21/00 - Use of unspecified rubbers as moulding material
  • B29K 77/00 - Use of polyamides, e.g. polyesteramides, as moulding material

86.

Key for a filament feed tube

      
Application Number 29685739
Grant Number D0938258
Status In Force
Filing Date 2019-03-29
First Publication Date 2021-12-14
Grant Date 2021-12-14
Owner Stratasys, Inc. (USA)
Inventor Johnson, Brett

87.

Key for a filament feed tube

      
Application Number 29685740
Grant Number D0938259
Status In Force
Filing Date 2019-03-29
First Publication Date 2021-12-14
Grant Date 2021-12-14
Owner Stratasys, Inc. (USA)
Inventor Johnson, Brett

88.

ADDITIVE MANUFACTURING PROCESS USING A BUILDING MATERIAL THAT CONTAINS METAL-OXIDE COATED MICA

      
Application Number 17288347
Status Pending
Filing Date 2019-10-21
First Publication Date 2021-12-09
Owner STRATASYS INC. (USA)
Inventor
  • Wandner, Derk
  • Liu, Ting
  • Kuenzel, Jonas

Abstract

The present invention relates to a method of producing an article, comprising the step of producing the article by means of an additive manufacturing method from a build material comprising an aromatic polycarbonate and interference pigments and/or pearlescent pigments from the group of the metal oxide-coated micas. The invention likewise relates to an article obtainable by the method. The build material further comprises ≥0.05% by weight to ≤3% by weight of anhydride-modified α-olefin polymer.

IPC Classes  ?

  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • C08K 3/34 - Silicon-containing compounds
  • C08K 5/5313 - Phosphinic compounds, e.g. R2=P(:O)OR'
  • C08L 69/00 - Compositions of polycarbonates; Compositions of derivatives of polycarbonates
  • C08L 23/26 - Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment

89.

Method for build separation from a curing interface in an additive manufacturing process

      
Application Number 17404966
Grant Number 11660807
Status In Force
Filing Date 2021-08-17
First Publication Date 2021-12-02
Grant Date 2023-05-30
Owner Stratasys, Inc. (USA)
Inventor
  • Prucha, Christopher
  • Ong, Joel

Abstract

A layer-by layer method for additive manufacturing that includes: photocuring a first volume of resin to form a layer of a build at an upper surface of a separation membrane laminated over a build window; injecting a fluid into an interstitial region between the separation membrane and the build window; retracting the build from the build window; evacuating the fluid from the interstitial region; and photocuring a second volume of liquid resin to form a subsequent layer of the build between an upper surface of a separation membrane and the previous layer of the build.

IPC Classes  ?

  • B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
  • B29C 64/245 - Platforms or substrates
  • B29C 64/364 - Conditioning of environment
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B29C 64/227 - Driving means
  • B29C 64/232 - Driving means for motion along the axis orthogonal to the plane of a layer
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B29C 37/00 - Component parts, details, accessories or auxiliary operations, not covered by group or

90.

SYSTEM AND METHOD FOR 3D PRINTING WITH METAL FILAMENT MATERIALS

      
Application Number 17443597
Status Pending
Filing Date 2021-07-27
First Publication Date 2021-11-18
Owner Stratasys, Inc. (USA)
Inventor
  • Zinniel, Robert L.
  • Crump, S. Scott
  • Mannella, Dominic F.

Abstract

An additive manufacturing system configured to a 3D print using a metal wire material includes a drive mechanism configured to feed the metal feedstock into an inlet tube and a liquefier. The liquefier has a chamber configured to accept the metal feedstock from the inlet tube. The metal feed stock is heated in the chamber such that a melt pool is formed in the chamber. The liquefier has an extrusion tube in fluid communication with the chamber, the extrusion tube having a length (L) and a diameter (D) wherein the ratio of length to diameter (L/D) ranges from about 4:1 to about 20:1. The system has a platen with a surface configured to accept melted material from the liquefier, wherein the platen and the liquefier move in at least three dimensions relative to each other. The system includes a regulated source of pressurized inert gas flowably coupled to the liquefier and configured to place a controlled positive pressure onto the melt pool sufficient to overcome the resistance of the extrusion tube such that a part may be formed by the extrusion of the liquidus metal along toolpaths defined by the relative motion of the liquefier and the platen.

IPC Classes  ?

  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
  • B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B29C 64/295 - Heating elements
  • B21C 33/02 - Feeding extrusion presses with metal to be extruded the metal being in liquid form
  • B33Y 10/00 - Processes of additive manufacturing
  • B29C 48/92 - Measuring, controlling or regulating
  • B29C 64/20 - Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering - Details thereof or accessories therefor

91.

METHOD FOR PRODUCING AN ADDITIVELY MANUFACTURED AND TREATED OBJECT

      
Application Number 17286512
Status Pending
Filing Date 2019-11-07
First Publication Date 2021-11-18
Owner STRATASYS INC. (USA)
Inventor
  • Achten, Dirk
  • Stern, Frank-Stefan
  • Tomczyk, Christoph
  • Wagner, Roland
  • Mettmann, Bettina
  • Buesgen, Thomas
  • Degiorgio, Nicolas
  • Kuenzel, Jonas
  • Wolf, Maximilian

Abstract

The invention relates to a method for producing a treated object, comprising the steps: a) producing an object by means of additive manufacturing, the object being produced by the repeated arrangement, layer by layer, of at least one first material on a substrate spatially selectively in accordance with a cross-section of the object, the method comprising the additional method step: b) at least partially bringing the object, which is still on the substrate or has already been detached from the substrate and which has been produced by additive manufacturing, into contact with a liquid heated to ≥T or a powder bed of a second material heated to ≥T for a time ≥1 minute in order to obtain the treated object, T standing for a temperature of ≥25° C. The invention further relates to an object produced by a method of this type.

IPC Classes  ?

  • B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
  • B29C 64/188 - Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
  • B29C 64/35 - Cleaning
  • B29C 64/371 - Conditioning of environment using an environment other than air, e.g. inert gas
  • B29C 64/268 - Arrangements for irradiation using electron beams [EB]
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing

92.

System for window separation in an additive manufacturing process

      
Application Number 17388598
Grant Number 11878472
Status In Force
Filing Date 2021-07-29
First Publication Date 2021-11-18
Grant Date 2024-01-23
Owner Stratasys, Inc. (USA)
Inventor
  • Prucha, Christopher
  • Ong, Joel

Abstract

An additive manufacturing system including a base assembly and a tray assembly. The base assembly includes a build window, substantially transparent to electromagnetic radiation; a projection system configured to project electromagnetic radiation toward an upper surface of the build window; and a tray seat arranged around a perimeter of the build window. The tray assembly is configured to engage with the base assembly in an engaged configuration and includes: a tray structure defining a registration feature configured to engage the tray seat to locate an aperture proximal to the upper surface of the build window in the engaged configuration; and a separation membrane that is configured to laminate across the upper surface of the build window in response to an evacuation of gas from an interstitial region and configured to separate from the build window in response to injection of gas into the interstitial region.

IPC Classes  ?

  • B29C 64/364 - Conditioning of environment
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B29C 64/245 - Platforms or substrates
  • B29C 64/25 - Housings, e.g. machine housings
  • B01D 71/32 - Polyalkenyl halides containing fluorine atoms
  • B29C 64/255 - Enclosures for the building material, e.g. powder containers
  • B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
  • B29C 64/379 - Handling of additively manufactured objects, e.g. using robots

93.

Water dispersible sulfonated thermoplastic copolymer for use in additive manufacturing

      
Application Number 17283819
Grant Number 11939480
Status In Force
Filing Date 2019-10-10
First Publication Date 2021-11-11
Grant Date 2024-03-26
Owner Stratasys, Inc. (USA)
Inventor Priedeman, Jr., William R.

Abstract

A sulfonated water-dispersible thermoplastic copolymer material for use as a support material in an additive manufacturing process is made by a method comprising providing a selected thermoplastic copolymer having an acid or an anhydride group; esterifying the acid group of the selected thermoplastic copolymer with a hydroxyl-functionalized sulfonate salt, or amidizing the acid group of the selected thermoplastic copolymer with an amine sulfonate salt, or imidizing the anhydride group of the selected thermoplastic copolymer with an amine sulfonate salt. The esterification, the amidization or the imidization results in a sulfonated water thermoplastic dispersible copolymer having a glass transition temperature suitable to provide an effective support during the additive manufacturing process and wherein the sulfonated water-dispersible thermoplastic copolymer will disperse in tap water in less than 1 hour.

IPC Classes  ?

  • C09D 11/107 - Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
  • B29K 33/00 - Use of polymers of unsaturated acids or derivatives thereof, as moulding material 
  • B29K 105/00 - Condition, form or state of moulded material
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • C09D 11/54 - Inks based on two liquids, one liquid being the ink, the other liquid being a reaction solution, a fixer or a treatment solution for the ink

94.

Method of printing an unsupported part with a robotic additive manufacturing system

      
Application Number 17379499
Grant Number 11571858
Status In Force
Filing Date 2021-07-19
First Publication Date 2021-11-11
Grant Date 2023-02-07
Owner Stratasys, Inc. (USA)
Inventor Newell, Clint

Abstract

A method of printing a hollow part with a robotic additive manufacturing system includes extruding thermoplastic material onto a build platform movable in at least two degrees of freedom in a helical pattern along a continuous 3D tool path with an extruder mounted on a robotic arm, to thereby print a hollow member having a length and a diameter. The method includes orienting the hollow member during printing by moving the build platform based on a geometry of the hollow member wherein the movement of the build platform and the movement of the robotic arm are synchronized to print the part without support structures.

IPC Classes  ?

  • B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
  • B29C 64/245 - Platforms or substrates
  • B29C 64/227 - Driving means
  • B29C 64/379 - Handling of additively manufactured objects, e.g. using robots
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
  • B29C 64/295 - Heating elements
  • B29C 64/209 - Heads; Nozzles
  • B25J 9/04 - Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian co-ordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical co-ordinate type or polar co-ordinate type
  • B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
  • G06F 30/00 - Computer-aided design [CAD]
  • B29C 64/241 - Driving means for rotary motion
  • B33Y 40/10 - Pre-treatment
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • B29C 64/30 - Auxiliary operations or equipment
  • G06F 119/18 - Manufacturability analysis or optimisation for manufacturability

95.

3D-PRINTED ELASTIC PRODUCTS REINFORCED BY MEANS OF CONTINUOUS FIBRES AND HAVING ASYMMETRICAL ELASTIC PROPERTIES

      
Application Number 17273343
Status Pending
Filing Date 2019-09-10
First Publication Date 2021-10-21
Owner STRATASYS INC. (USA)
Inventor
  • Achten, Dirk
  • Degiorgio, Nicolas
  • Kuenzel, Jonas
  • Buesgen, Thomas

Abstract

The present invention relates to a fibre-reinforced 3D-printed elastic product (1, 3, 4, 7, 10, 12), wherein the product comprises a weight proportion of ≥50% of a polymer having a mean molecular weight of ≥5000 g/mol, measured by means of GPC, and a weight proportion of ≥0.5% and ≤20% of one or more fibres having an aspect ratio of ≥100 and a length of ≥3 cm and ≤1000 cm, the product being produced at least in part by means of an FFF (Fused Filament Fabrication) method, and the product having a tensile modulus of ≥1.5 GPa in the region of the fibre reinforcement and in the direction of the fibre symmetry axis. The product also has a tensile modulus, measured according to DIN EN ISO 527-1, of ≤1.2 GPa in the region of the fibre reinforcement and perpendicular to the fibre symmetry axis, and has a yield strength of ≥5%, measured according to DIN EN ISO 527-1, perpendicular to the fibre symmetry axis.

IPC Classes  ?

96.

Methods of post-processing photofabricated articles created via additive fabrication

      
Application Number 17052213
Grant Number 11590706
Status In Force
Filing Date 2019-05-03
First Publication Date 2021-10-21
Grant Date 2023-02-28
Owner STRATASYS INC. (USA)
Inventor
  • Dias, Aylvin Jorge Angelo Athanasius
  • Derks, Franciscus Johannes Marie

Abstract

Methods for post-processing photofabricated articles created via additive fabrication processes are described and claimed herein. Such methods include providing a photofabricated article, preferably an article that has been at least partially cured via cationic polymerization mechanisms, optionally, post-processing the photofabricated article, and base-washing the photofabricated article in an alkaline solution or dispersion to create a neutralized photofabricated article. In another embodiment, the methods include treating a photofabricated article having a residual acid or base species with a treatment composition in order to create a neutralized photofabricated article. Also described and claimed are the neutralized photofabricated articles created via the methods herein elsewhere described. Such articles are preferably biocompatible, especially as determined by their lack of cytotoxicity potential.

IPC Classes  ?

  • B29C 64/35 - Cleaning
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
  • B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing

97.

3D-printed orthodontic splint made of crosslinked polymers

      
Application Number 17274208
Grant Number 12070368
Status In Force
Filing Date 2019-09-18
First Publication Date 2021-10-14
Grant Date 2024-08-27
Owner Stratasys Inc. (USA)
Inventor
  • Achten, Dirk
  • Wagner, Roland
  • Tomczyk, Christoph
  • Buesgen, Thomas

Abstract

g, determined by means of dynamic-mechanical analysis at a frequency of 1/s DMA as peak tan δ, of ≥25° C. and ≤60° C., a modulus of elasticity, determined by means of dynamic-mechanical analysis as the storage modulus E′ at a frequency of 1/s at 35° C., of ≥500 MPa and ≤4000 MPa, and a loss factor tan δ, determined by means of dynamic-mechanical analysis at a frequency of 1/s at 35° C., of ≥0.08. The invention further relates to a process for producing such splints.

IPC Classes  ?

  • A61C 7/08 - Mouthpiece-type retainers
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • B33Y 80/00 - Products made by additive manufacturing
  • B33Y 10/00 - Processes of additive manufacturing

98.

Detection and use of printer configuration information

      
Application Number 17239885
Grant Number 11599685
Status In Force
Filing Date 2021-04-26
First Publication Date 2021-09-09
Grant Date 2023-03-07
Owner Stratasys, Inc. (USA)
Inventor
  • Leonard, Alison N.
  • Sadusk, Joseph

Abstract

The hardware and software properties of a three-dimensional printer can be queried and applied to select suitable directly printable models for the printer, or to identify situations where a new machine-ready model must be generated. The properties may be any properties relevant to fabrication including, e.g., physical properties of the printer, printer firmware, user settings, hardware configurations, and so forth. A printer may respond to configuration queries with a dictionary of capabilities or properties, and this dictionary may be used to select suitable models, or determine when a new model must be created. Similarly, when a printable model is sent to the printer, metadata for the printable model may be compared to printer properties in the dictionary to ensure that the model can be fabricated by the printer.

IPC Classes  ?

  • G06F 30/00 - Computer-aided design [CAD]
  • G05B 15/02 - Systems controlled by a computer electric
  • B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
  • B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

99.

Method for multivariate testing, development, and validation of a material for an additive manufacturing device

      
Application Number 17173174
Grant Number 12158432
Status In Force
Filing Date 2021-02-10
First Publication Date 2021-08-12
Grant Date 2024-12-03
Owner Stratasys, Inc. (USA)
Inventor
  • Ong, Joel
  • Prucha, Christopher
  • Kranz, Steve
  • González-Maldonado, Eduardo

Abstract

A method includes: accessing a first selection of a first test variable; based on the selection, photocuring a first test build by varying a value of the first test variable over a first set of test regions; accessing a first set of measurements of the first test build; calculating a target range of the first test variable based on the first set of measurements; accessing a second selection of a second test variable; based on the second selection, photocuring a second test build by varying a value of the second test variable over a second set of test regions while maintaining a target value of the first test variable within the target range of the first test variable; accessing a second set of measurements of the second test build; and calculating a second target range of the second test variable based on the second set of measurements.

IPC Classes  ?

  • G01N 21/88 - Investigating the presence of flaws, defects or contamination
  • B33Y 50/00 - Data acquisition or data processing for additive manufacturing

100.

METHOD OF TREATING A DISPERSION OF SULFOPOLYMER

      
Application Number 17234319
Status Pending
Filing Date 2021-04-19
First Publication Date 2021-08-05
Owner Stratasys, Inc. (USA)
Inventor Priedeman, Jr., William R.

Abstract

A method of recycling a water dispersible sulfonated polymer material used as a support structure in an additive manufacturing process includes providing a tap water bath and placing a printed part having an adhered support structure into the tap water bath, the support structure comprising a water-soluble sulfonated polymer material. The method includes dissolving the sulfonated polymer material in the water bath to thereby create a dispersion, and modifying the ionic strength of the dispersion by adding a multivalent metal salt to the dispersion at a concentration of between 1 gram/L and 30 grams/L, to precipitate the dissolved sulfonated polymer material from the water. The method includes recovering the precipitated sulfonated polymer material from the water, drying the recovered sulfonated polymer material and reforming the dried sulfonated polymer material into a form suitable for subsequent use as a consumable feedstock in an additive manufacturing process.

IPC Classes  ?

  • B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
  • B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing
  • B33Y 10/00 - Processes of additive manufacturing
  • C08J 11/08 - Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
  1     2     3     ...     5        Next Page