The invention relates to a turbine engine module, in particular an aircraft turbine engine (10), comprising: - an annular casing (52) having an internal wall (53) forming a channel wall; and - a nozzle (32) surrounded by the casing and comprising an annular external platform (36) and an annular internal platform (37) between which stator blades (34) extend, the external platform having an external face (36b) that faces the internal wall of the casing and comprises an annular groove (60) oriented towards the outside and housing a sealing device (64), the sealing device coming into cylindrical contact with a track (66) of the internal wall (53) of the casing, the module being characterised in that the internal wall (53) of the casing comprises a thermal barrier (70) made of ceramic material directly above the track (66), the track being arranged between the thermal barrier and the sealing device.
The invention relates to a turbomachine (100) for a hybrid aircraft, the turbomachine comprising a gas generator (12) carried by a generator shaft (14), at least one free turbine (11) carried by a turbine shaft (13) and rotated by a gas flow generated by the gas generator (12), a main rotor (60), and at least one reversible electric machine (30), the turbine shaft (13) being a through-shaft and extending axially between a first end engaged with the electric machine (30) and a second end engaged with the main rotor (60).
F02C 3/10 - Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
F02C 3/14 - Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
3.
LUBRICATION AND COOLING OF EQUIPMENT OF AN AIRCRAFT TURBOMACHINE
The invention relates to an aircraft turbomachine (10) comprising: a gas generator (12) comprising an output shaft (26) as well as a first lubricating circuit (28); and equipment (14) coupled to the output shaft (26) and comprising a rotor (38) which is rotationally guided by at least one rolling bearing (40), the equipment (14) comprising a second lubricating circuit (46) which is independent of the first lubricating circuit (28) and which is configured to lubricate the rolling bearing (40), the equipment further comprising a system (50) for cooling the rolling bearing (40), the cooling system (50) being configured to circulate oil in the region of at least one ring (40b) of the rolling bearing, characterized in that the cooling system (50) is independent of the second lubricating circuit (46) and is connected to the first lubricating circuit (28).
A propulsive assembly (100) for a multi-engine hybrid aircraft, comprising a first and a second gas turbine (10, 20) each having a gas generator (12, 22) and a free turbine (11, 21), a main rotor (62) coupled to the free turbine (11, 21) via a first and a second main coupling means (51, 52), a first and a second reversible electric machine (30, 40) each coupled to the gas generator (12, 22) via a first deactivatable coupling means (31, 41), and each coupled to the main rotor (62) via a second deactivatable coupling means (32, 42), the first deactivatable coupling means (31, 41) being activated when the electric machines (30, 40) rotate in a first direction of rotation, and the second deactivatable coupling means (32, 42) being activated when the electric machines (30, 40) rotate in a second direction of rotation opposite to the first direction of rotation.
B64D 35/08 - Transmitting power from power plant to propellers or rotors; Arrangements of transmissions characterised by the transmission being driven by a plurality of power plants
B64D 27/24 - Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
F02C 7/36 - Power transmission between the different shafts of the gas-turbine plant, or between the gas-turbine plant and the power user
F01D 15/10 - Adaptations for driving, or combinations with, electric generators
5.
CIRCULAR MODULAR TRAY FOR THE ADDITIVE MANUFACTURING OF A PART WITH AN AXIS OF REVOLUTION ON A POWDER BED
A circular modular tray for the additive manufacturing of a part with an axis of revolution on a powder bed, characterised in that it consists of an assembly of modules that are concentrically coupled along a contiguous axis in a radial direction, the modules including an annular peripheral module and a circular central module.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
A gas turbomachine combustion chamber includes bridges extending side by side to connect in one piece a radially inner wall and a radially outer wall towards a free end of the radially inner wall. The bridges, inner wall, and outer wall have an additive layer structure.
Hybrid turbomachine comprising an electric generator, a gas generator equipped with an air inlet and with an exhaust and an acoustic monitoring system comprising a control unit and a plurality of loudspeakers.
Hybrid turbomachine comprising an electric generator, a gas generator equipped with an air inlet and with an exhaust and an acoustic monitoring system comprising a control unit and a plurality of loudspeakers.
At least a first loudspeaker is disposed on the electric generator, and/or at least a second loudspeaker is disposed on the air inlet of the gas generator, and/or at least a third loudspeaker is disposed on the exhaust of the gas generator.
Hybrid turbomachine comprising an electric generator, a gas generator equipped with an air inlet and with an exhaust and an acoustic monitoring system comprising a control unit and a plurality of loudspeakers.
At least a first loudspeaker is disposed on the electric generator, and/or at least a second loudspeaker is disposed on the air inlet of the gas generator, and/or at least a third loudspeaker is disposed on the exhaust of the gas generator.
The control unit of the acoustic monitoring system is mounted on the electric generator and is configured to make an AC-DC electrical conversion of the electromotive force of the electric generator into an adjustable DC voltage intended to be distributed to loads or to energy storage means.
One aspect of the invention relates to a filtering device (10) for a turbomachine, the device comprising: - a filter support (14); - a removable filter (18) co-operating with the filter support; - a cover (12); - an indicator pin (16); the device comprising a plate (13) that is translatably movable relative to the cover and relative to the indicator pin, the plate being translatably movable between two positions: - a first position such that the plate bears against the removable filter and the indicator pin is in a retracted position; - a second position such that the plate is remote from the cover due to the absence of the removable filter and the indicator pin is in an extended position.
A propulsion unit with a propeller includes a nacelle; a propeller rotatably mounted in the nacelle by means of a hub. The propeller has blades mounted in a blade cuff that is pivotable about a pitch axis relative to the hub. Each blade is pivotable relative to the cuff about a folding axis. A folding device includes an actuator for folding the blades. The folding device includes a control member rotationally affixed to the blade cuff and driven by the actuator. A connecting rod is pivotably mounted, on the one hand, on a root of the associated blade and, on the other hand, on the movable control member.
A method for starting an aircraft engine in which the engine is coupled to a lubrication circuit including an oil pump system, the lubrication circuit being constructed and arranged to circulate oil in the engine, and in which an operating mode of the engine includes a stop mode and a standby mode, the starting method including, during a starting phase, measuring an oil temperature, the measurement being performed by a temperature detection device; depending on the temperature measured, compared to a threshold temperature, and depending on the operating mode of the engine, select a starting oil flow profile to be applied in said engine, the selection being performed by a calculator, and applying the selected starting oil flow profile by the oil pump system, the oil pump system being controlled by the calculator.
F16N 29/02 - Special means in lubricating arrangements or systems providing for the indication or detection of undesired conditions; Use of devices responsive to conditions in lubricating arrangements or systems for influencing the supply of lubricant
A propulsion unit with a propeller is provided, having a nacelle and a propeller rotatably mounted in the nacelle by a hub. The propeller includes blades mounted in a blade cuff pivotable about a pitch axis relative to the hub, each blade being pivotable relative to the cuff about a folding axis. The propulsion unit can further include a folding device that comprises an actuator for folding the blades. The folding device can include a control member rotationally affixed to the blade cuff and driven by the actuator, and a connecting rod pivotably mounted, on the one hand, on a root of the associated blade and, on the other hand, on the movable control member.
B64C 11/06 - Blade mountings for variable-pitch blades
B64C 27/28 - Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with forward-propulsion propellers pivotable to act as lifting rotors
B64C 29/02 - Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
The invention relates to a turboshaft engine (1) for an aircraft (2) comprising: - a gas generator (3) comprising a compressor (4), a combustion chamber (5) and an expansion turbine (6); - a power turbine (8) rotating a power take-off (9) by means of a reduction gear (10); - a heat exchanger (11) comprising a first circuit (12) and a second circuit (17); characterised in that the compressor (4) comprises a first shaft (22) rotated by a second shaft (23) of the expansion turbine (6) by means of a transmission mechanism (24), the transmission mechanism (24) and the reduction gear (10) forming part of a gearbox (25) which is arranged axially at a front end (20) of the turboshaft engine (1), such that the compressor (4) is arranged axially between the gearbox (25) and the power turbine (8). Drawing_references_to_be_translated
F02C 3/107 - Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with two or more rotors connected by power transmission
F02C 7/08 - Heating air supply before combustion, e.g. by exhaust gases
F02C 7/32 - Arrangement, mounting, or driving, of auxiliaries
F02C 7/36 - Power transmission between the different shafts of the gas-turbine plant, or between the gas-turbine plant and the power user
13.
DC-TO-DC CONVERTER FOR AN ELECTRICAL AIRCRAFT PROPULSION SYSTEM
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (France)
UNIVERSITE DE LORRAINE (France)
Inventor
Barraco, Thomas Michel André Gérard
Klonowski, Thomas
Pierfederici, Serge Lionel
Weber, Mathieu Robert
Abstract
The invention relates to a DC-to-DC converter (209) for an electrical aircraft propulsion system designed to be connected in series with an electrical energy storage unit of the electrical propulsion system. The DC-to-DC converter (209) comprises an inverter (401), a transformer (403) and a rectifier (405), and further comprises a current source (417) that is connected to the rectifier (405) and is configured to control the power passing through the DC-to-DC converter (209). The transformer (403) comprises a primary (403a) and two secondaries (403b, 403c), the two secondaries (403b, 403c) sharing a common terminal (407) designed to be connected to a high-voltage DC bus (207) of the electrical propulsion system (201) and two other terminals (409, 411) that are connected to the rectifier (405). The rectifier (405) comprises two arms comprising at least two transistors (415a, 415b, 415c, 415d) that are each in series and are connected, on the one hand, to the two other terminals (409, 411) of the transformer (403) and, on the other hand, to the current source (417).
H02M 3/335 - Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
B64D 27/24 - Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
H02M 7/219 - Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
Aircraft turbomachine including a centrifugal compressor, a combustion chamber, the combustion chamber being supplied by the compressor via a diffuser and via a straightener, and a heat exchanger, the exchanger including a first circuit, supplied with exhaust gas from the turbomachine, and a second circuit, which are connected by volutes on the one hand to an outlet of the diffuser and on the other hand to an inlet of the straightener, the volutes having reversed winding directions such that their connection ports to the exchanger are independent of one another and are substantially diametrically opposed, and such that the minimum cross section of each duct is situated at a larger cross section of the other duct.
F02C 3/10 - Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
F02C 7/08 - Heating air supply before combustion, e.g. by exhaust gases
An aircraft turbomachine having a centrifugal compressor, an annular combustion chamber, an annular casing extending around the chamber and delimiting an annular space (E) in which the chamber is situated, and a heat exchanger. The heat exchanger can include a first circuit supplied with exhaust gas from the turbomachine, and a second circuit connected by first and second volutes respectively to an outlet of the compressor and to the annular space. The first and second volutes can be positioned at an axial distance from one another, and the second volute is can be connected to the annular space by a straightener which is situated at least in part outside the casing and which is integrated into an annular connecting pipe which connects the second volute to this casing.
A hydraulic torque measurement device for an aircraft engine unit includes a hermetically sealed enclosure having a rigid wall and a deformable wall that define an internal volume. The device further includes at least one pressure measuring element capable of measuring the pressure prevailing in the internal volume. The hydraulic torque measuring device allows a service state in which the internal volume is filled exclusively with an incompressible liquid, and in which the deformable wall is configured to be subjected to a pressure force. In some embodiments, the hydraulic torque measurement device is suitable for use with a gearbox.
G01L 3/14 - Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
G01L 5/12 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring axial thrust in a rotary shaft, e.g. of propulsion plants
17.
AIRCRAFT TURBOMACHINE COMPRISING A DEVICE FOR INHIBITING THE ACCUMULATION OF COKE IN A DUCT
An aircraft turbomachine (10) having a gas generator (12) comprising, along a longitudinal axis (X), at least one compressor (14), a combustion chamber (16) and at least one turbine (18), the turbomachine (10) further having at least one duct (20) for supplying liquid to at least one member chosen from an oil jet (22) and a fuel injector (50), this duct (20) having rectilinear portions (21a, 21b) and bent portions (21c, 21d) and comprising at least one region in which the liquid is liable to coke, characterized in that it comprises at least one turbulence element (40-48) in the at least one region in the duct.
A method for quickly stopping the propulsion rotor of a helicopter after landing, comprising, following a request for quickly stopping the engine by a helicopter pilot, the following steps managed by the control unit of the turbomachine: Detecting the absence of the thermal stabilization phase of the gas generator of at least one turbomachine, controlling an extinction of the combustion chamber of the gas generator of at least one turbomachine, maintaining the rotation of the gas generator of which the combustion chamber is extinguished by means of said at least one electrical machine to ventilate the gas generator and stopping the main rotor of the helicopter by means of a mechanical brake.
F01D 21/12 - Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to temperature
METHOD FOR REGULATING THE SPEED OF ROTATION OF A PROPULSION DEVICE OF A HYBRID PROPULSION UNIT FOR AN AIRCRAFT, IN THE EVENT OF A FAILURE OF THE MAIN REGULATION SYSTEM OF THE HEAT ENGINE OF THE HYBRID PROPULSION UNIT
The invention relates to a method for regulating the speed of a propulsion device of a hybrid propulsion unit for an aircraft comprising: the propulsion device and an MGB; the heat engine and at least one electric motor, mounted in parallel on the MGB, the heat engine being provided with a fuel circuit; main and backup regulation systems for the heat engine, and a regulation system for the electric motor, each being capable of regulating the speed of the heat engine or the electric motor, respectively; and an aircraft control system, capable of sending a speed or power setpoint to each of the regulation means for the heat engine and the electric motor. The method comprises, when the main regulation system for the heat engine fails and is locked to a QCarbP* fuel flow command: - sending a speed setpoint NM2réf to the regulation system for the electric motor, the regulation system for the electric motor sending a power setpoint PM2* to the electric motor, whereby an instantaneous power PM2m of the electric motor is obtained; - simultaneously, sending a speed or power setpoint to the backup regulation system for the heat engine, the backup regulation system sending a fuel flow command QCarbAux* to the fuel circuit of the heat engine, which command is selected to vary the fuel flow QCarb injected into a combustion chamber of the heat engine according to whether the power PM1 of the heat engine is to be varied.
A pre-vaporisation tube for a turbine engine combustion chamber includes a main body defining a first inner duct configured to have an injector mounted therein. The tube includes a first end attached to a wall of the chamber, and at least two end pieces are arranged at a second end of the body and define second inner ducts. The end pieces include first portions and second portions, respectively. The second portions each include two coaxial cylindrical walls which are inner and outer coaxial cylindrical walls, respectively, and which define an annular cavity therebetween. The inner wall defines an inner passage and has first openings for fluid communication between the passage and the annular cavity.
F23R 3/32 - Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices being tubular
F23R 3/28 - Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
21.
METHOD FOR CHECKING THE MAXIMUM POWER AVAILABLE TO DIFFERENT MEMBERS OF A PROPULSION CHAIN OF AN AIRCRAFT
The invention relates to a method for checking the maximum power available to members of a propulsion system of an aircraft (1) comprising first members (M1.1, M2.1, D10, TG, BAT1) that are sized to compensate for the failure of second members of the propulsion system (M1.2, M2.2, D20, TG, BAT2) by delivering a maximum power to keep the aircraft in a safe operating range, the method comprising the following steps for each of the first members: - placing the first member in a state that is substantially equal to a maximum power state (PM); - adjusting the power delivered by the second member working in synergy with the first member so that the first member and the second member contribute to delivering the power required for the aircraft in the flight phase; - determining the power delivered by the first member placed in the maximum power state; - from the determined power, deducing information relating to the maximum power available to the first member.
The invention relates to a control device (30) for controlling an airflow guiding system (20), comprising: - at least one vane (21) that is rotatable on a shaft (21a) of the vane between a first angle and a second angle; - an actuator (31) comprising a body (32) inside which a piston (32a) is translatably mounted, the piston being rigidly connected to a drive rod (33); - a control rod (34) comprising a downstream end (34a) that is connected to the shaft (21a) of the vane, the actuator (31) being configured to drive the piston (32a) between a first end position (P1') and a second end position (P2') of a nominal operating range and the downstream end (34a) of the control rod (34) between a first end position (P1) and a second end position (P2) of a nominal operating range in which the vane (21) is movable between a first angle and a second angle, the device being characterised in that it comprises a drive mechanism (40) that connects an upstream end (33a) of the drive rod (33) to an upstream end (34b) of the control rod (34), which is opposite the downstream end (34a), and in that the drive mechanism (40) is configured so that, in the event of the control device failing, it places the downstream end (34a) of the control rod (34) in a safety position (PS) located between the first end position (P1) and a second end position (P2) of the nominal operating range and in which the vane (21) is oriented at a safety pitch angle between the first angle and the second angle.
The present invention relates to a metal powder for a powder bed additive manufacturing process, the metal powder comprising a nickel-based alloy comprising at least 0.05% carbon, at least 14.25% cobalt, at least 14% chromium, at least 4% aluminium, at least 3.9% molybdenum, at least 3% titanium, at most 0.5% iron, at least 0.012% boron, at most 0.060% zirconium, at most 0.150% manganese, at most 0.2% silicon, at most 0.1% copper, at most 0.5 ppm bismuth, at most 5 ppm silver, at most 5 ppm lead, at most 25 ppm sulphur, at most 200 ppm oxygen, and at most 60 ppm nitrogen.
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B33Y 70/00 - Materials specially adapted for additive manufacturing
B33Y 80/00 - Products made by additive manufacturing
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
C22C 19/05 - Alloys based on nickel or cobalt based on nickel with chromium
C22F 1/10 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
F01D 5/28 - Selecting particular materials; Measures against erosion or corrosion
24.
MODULAR TRAY FOR THE POWDER BED ADDITIVE MANUFACTURING OF A PART WITH AN AXIS OF REVOLUTION
A modular tray, for the additive manufacturing of a part with an axis of revolution on a powder bed, includes: a shaft-mounted circular module including a shaft provided with a circular tray at one of the ends thereof, the shaft and the circular tray being concentric; and a main support module including, in one face, a cavity configured for receiving the shaft-mounted circular module, the shaft being completely inserted in the cavity. The assembly of the shaft-mounted circular module and of the main support module define a planar top surface that is at least partly formed by the circular tray of the shaft-mounted circular module.
B22F 10/28 - Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
B22F 10/66 - Treatment of workpieces or articles after build-up by mechanical means
B22F 12/82 - Combination of additive manufacturing apparatus or devices with other processing apparatus or devices
B22F 10/64 - Treatment of workpieces or articles after build-up by thermal means
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
A turbomachine includes a compressor including variable-pitch stationary vanes each extending radially between a rotary hub and a stationary casing surrounding this rotary hub, each variable-pitch vane including a blade having a base spaced apart by a first radial gap from a stationary wall of the casing, and a tip spaced apart by a second radial gap from a rotary wall of the rotary hub. The stationary wall of the casing or the rotary wall of the rotary hub includes at the blade a shape treatment arranged to channel an air leak passing through the corresponding gap.
The invention relates to a system (1) for automatically validating the response compliance of a penetrant testing line by analysing a reference test specimen undergoing dye penetrant testing from said penetrant testing line, the system comprising a casing (2) surrounding all the elements of the system (1), a positioning base (3) for the reference test specimen undergoing dye penetrant testing, at least two ultraviolet lighting devices (4) positioned on either side of the positioning base (3) so as to be able to illuminate it with ultraviolet light, an electronic board, a motorised linear guide (6) controlled by the electronic board and suitable for being able to move the positioning base (3) and hold said base in position in the casing (2), and a monochrome camera (10) having a lens directed towards the positioning base (3).
A combustion assembly for a gas turbine includes a flame tube and a fuel supply including a flow rate limiter supplying an injector. The flow rate limiter and the fuel injector are formed in one piece.
A propulsion system for an aircraft includes a rotor and a nacelle fairing that extends around the rotor in relation to an axis. The nacelle fairing includes an upstream portion forming an inlet section of the nacelle fairing as well as a downstream portion, a downstream end of which forms an outlet section of the nacelle fairing. The downstream portion includes radially inner and outer walls, both of which are made of a deformable shape memory material. The wall has independently actuatable piston actuator mechanisms, each actuator mechanism being actuatable independently of the others and being designed to cooperate with means built into an inner surface of the wall to deform the wall in a radial direction in relation to the axis under the effect of a predetermined displacement command.
Turbomachine hollow blade (11) comprising at least one vane (14) having lateral walls (15) which are intended to guide a flow in a flow path around the vane and which are fixed to a first platform (12) at a first longitudinal end of the vane (14), the vane (14) further comprising an internal cavity between the lateral walls (15), which cavity is intended for passing a vane-cooling fluid, with a fluid inlet opening (19) opening through said first platform (12), characterized in that a gyroid surface network (18) fills at least part of the cavity, being arranged therein so as to guide the cooling fluid, and is in contact with at least part of the lateral walls (15).
F01D 9/06 - Fluid supply conduits to nozzles or the like
F01D 5/18 - Hollow blades; Heating, heat-insulating, or cooling means on blades
30.
ELECTROMECHANICAL INSTALLATION FOR AN AIRCRAFT WITH A TURBOGENERATOR, METHOD FOR EMERGENCY SHUTDOWN OF AN AIRCRAFT TURBOGENERATOR AND CORRESPONDING COMPUTER PROGRAM
An aircraft with an electrical network including electrical subnetworks; a turbo generator including a gas turbine, an electricity generator with permanent magnets having phase groups respectively connected to the electrical subnetworks, and, for each phase group, an isolation device; and a control device designed to detect a short circuit in at least one of the phase groups, each phase group in which a short circuit is detected being described as defective and each other phase group being described as healthy and, in response to the detection of the short circuit, to disconnect this defective phase group from its associated electrical subnetwork and to command the shutdown of the gas turbine. The control device is also designed, in response to the detection of the short circuit, to keep each healthy phase group connected to its electrical subnetwork.
B64D 41/00 - Power installations for auxiliary purposes
H02H 7/06 - Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from norm for synchronous capacitors
31.
METHOD FOR THE QUANTITATIVE MEASUREMENT OF AN ELEMENT IN A SPECIMEN
The invention relates to a method for the quantitative measurement of an element (4) in a metal test specimen (1) which has received a thermochemical surface treatment, characterised in that the method comprises the following steps: • - a- making a cut in the test specimen; • - b- taking a photograph, using an optical microscope, of said cut on a surface S with magnification; • - c- calculating the ratio of the surfaces s occupied by the element with respect to the surface S in the photograph by means of an image-processing tool; and • - d- obtaining the content of the element in the surface S of the test specimen. A profile of the content of undesirable elements can thus be obtained without the subjective aspect of human checking, which profile is representative of a content obtained by acquiring diffraction of X-rays produced using a synchrotron.
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (France)
SAFRAN HELICOPTER ENGINES (France)
UNIVERSITE DE TOULOUSE III - PAUL SABATIER (France)
Inventor
Richard, Stéphane, Raphaël, Yves
Viguier, Christophe, Nicolas, Henri
Marragou, Sylvain
Schuller, Thierry
Abstract
The invention relates to a dihydrogen injection device (2) having a longitudinal axis (X), intended to be mounted on an annular base of an annular combustion chamber (4) of a turbomachine, comprising an inner channel (6) for circulating dihydrogen, and an annular outer channel (8) for circulating a mixture at least comprising air, the inner channel (6) and the annular outer channel (8) being coaxial, an inner swirler (14) being provided in the inner channel (6) and an outer swirler (28) being provided in the annular outer channel (8), a downstream end (16) of the inner channel (6) being arranged upstream, at a distance r, from a downstream end (24) of the annular outer channel (8). Such combustion of dihydrogen makes it possible to eliminate carbon-containing polluting emissions such as carbon monoxide, unburned hydrocarbons or fine particles and smoke particles.
F23R 3/28 - Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
F23D 14/24 - Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion
The present invention relates to a rotor (1) for an electric motor of an aircraft, the rotor (1) comprising a shaft (2) made of a first material and a conductor assembly (4) made of a second material that differs from the first material, the rotor (1) being characterized in that the shaft (2) has a shoulder portion (6) having at least one longitudinal slot (25) and in that the conductor assembly (4) is a single-piece structure comprising at least one conducting bar (28) intended to be positioned in the at least one slot (25) and including a skin (29) intended to be fastened onto the shoulder portion.
H02K 15/00 - Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
H02K 17/16 - Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
H02K 17/18 - Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having double-cage or multiple-cage rotors
H02K 15/02 - Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
H02K 1/02 - DYNAMO-ELECTRIC MACHINES - Details of the magnetic circuit characterised by the magnetic material
34.
TURBOMACHINE ELEMENT COMPRISING AT LEAST ONE BLADE OBTAINED BY ADDITIVE MANUFACTURING
The present invention relates to a turbomachine element (1), comprising at least one blade (2) obtained by additive manufacturing, the blade (2) having a skin (4) and an internal lattice (6) allowing air circulation in the blade (2) and having an additive manufacturing support function for the skin (4).
The present invention relates to a rotor (1) of an aircraft electric motor comprising a shaft (2) made of a first material and a skin (4) made of a second material different from the first material, the rotor (1) being characterized in that the shaft (2) has a shoulder portion (6) to which the skin (4) is attached at the shoulder portion (6), the rotor (1) having an interpenetration layer of the first material and of the second material, the interpenetration layer comprising an alloy of the first material and of the second material.
H02K 15/00 - Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
H02K 17/16 - Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
H02K 15/02 - Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
H02K 1/02 - DYNAMO-ELECTRIC MACHINES - Details of the magnetic circuit characterised by the magnetic material
36.
METHOD FOR TRAINING TO COPE WITH A FAULT AFFECTING ONE POWERTRAIN OF A HYBRID PROPULSION SYSTEM
The invention relates to a method for training a pilot to cope with a fault affecting one powertrain of a hybrid propulsion system for an aircraft comprising, connected in parallel to a transmission unit, n powertrains (where n≥2), including a first and a second powertrain that are heterogeneous in nature. It involves, during a flight of the aircraft, simulating a fault affecting the first powertrain while, at the same time as performing the simulation, checking the status of the n powertrains of the propulsion system. If a fault affecting one of the n powertrains is detected, the simulation is halted and the instantaneous power delivered by at least one of either the first or the second powertrain is increased so that the sum of the instantaneous powers delivered by the n powertrains is ≥ a minimum total instantaneous power required for the aircraft to continue its flight.
G09B 9/44 - Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer providing simulation in a real aircraft flying through the atmosphere without restriction of its path
G09B 9/46 - Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer the aircraft being a helicopter
G09B 9/08 - Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
A fuel supply circuit of an aircraft engine includes a centrifugal pump mechanically coupled with an engine shaft delivering mechanical power. The circuit further includes at least one electromagnetic pump including at least one stator delimiting an annular internal volume in which is present a rotor able to drive a fluid, a plurality of magnets annularly distributed on the rotor and at least a plurality of coils annularly distributed inside the stator face-to-face with the magnets. The rotor is connected to the engine shaft by a one-way clutching element.
The invention relates to a sensor (1) for determining a liquid level (NE) for an aircraft tank (100), the determining sensor (1) comprising a closure device (2) for closing a port (101) of the tank (100) and a measuring device (3), removably mounted on the closure device (2), comprising a liquid line (20) configured to convey liquid from the port (100) of the tank (100), and a member (21) for automatically sealing the liquid line (20) if the measuring device (3) is not mounted on the closure device (2), the measuring device (3) comprising at least one pressure measuring member (30) configured to measure a pressure difference between the liquid pressure (P1) in the liquid line (20) and a reference pressure (P2) in order to deduce the liquid level (NE) thereof.
G01F 23/16 - Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid
G01F 22/02 - Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for involving measurement of pressure
G01F 23/00 - Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
The invention relates to a rotor blade (10) for a turbomachine, in particular of an aircraft, comprising an airfoil (12) comprising a pressure face (15) and a suction face (17) extending from a leading edge (14) to a trailing edge (16), the airfoil (12) comprising an axis of elongation extending substantially along the leading (14) and trailing (16) edges, the airfoil (12) comprising a radially firmer end for connection to a rotor and a free radially outer end. According to the invention, the airfoil (10) further comprises at least one series of fins (24) situated on said free end, each of these fins (24) comprising a pressure face (26) situated on the suction face (17) side of the airfoil (12), and a suction face (28) situated on the pressure face (15) side of the airfoil (12).
The invention relates to a turboprop (10) comprising a propeller (12), a propeller shaft (13) carrying the propeller (12), the propeller being a variable-pitch propeller having a propeller pitch, a rotating electric machine (19) having at least a first configuration in which it is mechanically coupled to the propeller shaft (13) and at least one oil pump (21, 21B) configured to supply a hydraulic circuit for adjusting the pitch of the propeller (12). The oil pump is configured to be electrically operated. The invention further relates to an aircraft comprising such a turboprop (10) and to the methods for controlling such a turboprop (10) and such an aircraft.
A propeller (2) for an aircraft propulsion assembly (1) extending longitudinally along an axis X, the propeller (2) comprising a propeller cone (21), blades (22), a guide member (4) extending longitudinally along the axis X and rotating as one with the propeller cone (21), the guide member (4) being mounted outside the propeller cone (21) in such a way as to form between them a guide path (V), the guide member (4) having an upstream opening (41) configured to convey a flow of air in the guide path (V) and a downstream opening (42) in such a way as to remove the flow of air downstream, the guide member (4) having through-orifices (40) through which extend the blades (22) of the propeller (2) and compressor vanes (5), which rotate as one with with the propeller cone (21) and which are positioned in the guide path (V) in such a way as to generate an accelerated air flow.
The invention relates to a device (136) for controlling a power-transfer system (124) for the transfer of power between a high-pressure shaft (108) and a low-pressure shaft (116) of a turbomachine (104) of an aircraft (102), comprising: - a fatigue analysis module (142) analysing the fatigue of the turbomachine (104) and designed to determine, from between two indicators (D1, D2) respectively measuring two fatigues of the turbomachine (104), which is the one that is the most advanced, which is to say which is the one at risk of being first to reach a respective upper limit (D1max, D2max); and - a control module (140) controlling the power transfer system (124) and designed to slow the fatigue measured by the more advanced indicator (D1, D2).
F02C 7/36 - Power transmission between the different shafts of the gas-turbine plant, or between the gas-turbine plant and the power user
F02C 9/28 - Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
F02C 9/56 - Control of fuel supply conjointly with another control of the plant with power transmission control
F02C 3/113 - Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with two or more rotors connected by power transmission with variable power transmission between rotors
43.
TURBOGENERATOR FOR AIRCRAFT, COMPRISING AN IMPROVED OIL SYSTEM
Turbogenerator (1) for an aircraft (2) comprising:—a turboshaft engine (3); —an electric generator (4) comprising a rotor (5) driven mechanically by the turboshaft engine (3) and a stator (6) supported by a housing (7) of the electric generator (4); characterized in that the turbogenerator (1) comprises a static separator (8) for separating an air/oil mixture coming from the turboshaft engine (3), the static separator (8) being positioned around the housing (7) of the electric generator (4).
A method for manufacturing a blade with a first portion and a second portion, the method includes forming the first portion that includes forming a model of the first portion from removable material, forming a first shell mould from the model of the first portion, and forming the single-crystal or columnar first portion m a first metal alloy in the first shell mould from a single-crystal seed, and forming the second portion in which the second portion is formed on the first portion, and in which the first portion and the second portion are made from different materials, the second portion being polycrystalline and formed from a second metal alloy. The blade includes a single-crystal or columnar first portion made from a first metal alloy and a polycrystalline second portion made from the second metal alloy different from the first metal alloy.
Rolling bearing with three contact points, wherein the inner raceway, the third contact point being located in a sector of the outer raceway delimited by a proximal end of the outer raceway on the one hand, and by the rolling plane on the other hand, characterized in that the outer ring comprises a drain provided in the outer raceway, and opening from an outer surface of the outer ring, said drain opening eccentrically on the outer raceway with respect to the rolling plane, in a sector of the outer raceway delimited by the rolling plane on the one hand, and a distal end of the outer raceway on the other hand, the drain and the third contact point being disjoint.
F16C 33/66 - Special parts or details in view of lubrication
F16C 19/16 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
46.
FIRE SAFETY SYSTEM FOR A TURBOMACHINE COMPRISING MEANS FOR MAINTAINING A COOLING AIR SPEED AND CORRESPONDING TURBOMACHINE
The invention relates to a fire safety system (30) for a turbomachine (1), such as an aeroplane turbofan or a turboprop engine, the turbomachine comprising at least one turbine (3) having a turbine disc (5) and an annular cavity (16) which is arranged upstream of the disc (5), the disc (5) comprising an internal bore (7) and the fire safety system (30) comprising a cooling device (14) intended to supply the cavity (16) with cooling air via injection means (17). According to the invention, the fire safety system (30) comprises means configured such that, on the one hand, the annular cavity is divided into a first cavity and a second cavity and, on the other hand, a cooling air speed is maintained at the outlet of the injection means (16) and the cooling air in the first cavity is guided to the internal bore (7) of the turbine disc (5). Said means comprise a diffuser (52) co-operating with the injection means (17) and an annular cover intended to co-operate with the diffuser (52) and to cover first attachment members (27) arranged in the cavity (16), the diffuser (52) and the cover (40) being configured such that the cooling air at the outlet of the diffuser (52) is at least partially guided by a radially outer surface (40a) of the cover (40).
F01D 5/08 - Heating, heat-insulating, or cooling means
F01D 21/14 - Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to other specific conditions
A hybrid propulsion chain for an aircraft, the hybrid propulsion chain comprising a plurality of propulsion rotors connected to an electrical distribution module by a plurality of electrical connections, the electrical distribution module being connected, on the one hand, to a non-propulsion turbine engine via an electrical generation system and, on the other hand, to an electric battery, each propulsion rotor comprising a stator member and at least one rotor shaft which is configured to be rotated with respect to the stator member when the stator member is electrically powered, the hybrid propulsion chain comprising an auxiliary mechanical drive system mechanically connected to the non-propulsion turbine engine, the auxiliary mechanical drive system comprising a plurality of mechanical connections for mechanically rotating at least one rotor shaft of each propulsion rotor.
B64D 27/24 - Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
B64D 35/04 - Transmitting power from power plant to propellers or rotors; Arrangements of transmissions characterised by the transmission driving a plurality of propellers or rotors
H02K 7/18 - Structural association of electric generators with mechanical driving motors, e.g.with turbines
48.
Device for supplying fuel to a combustion chamber of a gas generator
A device for supplying fuel to a combustion chamber of a gas generator includes an injection wheel (14) for injecting fuel into the combustion chamber (18),—a fuel supply rail (20) including an internal fuel circuit (30) with a fuel outlet means (32) supplying fuel to an annular spray chamber (24) formed between the rail (28, 44, 48, 52, 56) and the injection wheel (14),—at least one dynamic annular seal (26) adapted to provide a seal between an annular face (34) of the fuel supply rail (28, 44, 48, 52, 56) and the injection wheel (14), wherein the internal fuel circuit (30) of the fuel supply rail includes an annular fuel flow part arranged radially at the dynamic annular seal (26).
A system (11) for balancing at least one parameter to be balanced of an electric motor of a propulsion system (1), in particular of an aircraft, includes at least two electric motors (3, 4) and a propulsion member (2) driven in rotation by said electric motors. The balancing system is configured to calculate a correction of the speed setpoint (Corr_Cons_VI, Corr_Cons_V2) as a function of a correction factor (F1, F2) of the speed setpoint depending on a parameter (P1, P2) of the associated electric motor that is intended to be balanced and on a speed setpoint (Cons_VH) of the propulsion member (2).
B64D 31/12 - Initiating means actuated automatically for equalising or synchronising power plants
H02P 5/50 - Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another by comparing electrical values representing the speeds
B64D 27/24 - Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
B64D 35/08 - Transmitting power from power plant to propellers or rotors; Arrangements of transmissions characterised by the transmission being driven by a plurality of power plants
50.
AIRCRAFT PROPULSION SYSTEM WITH START-UP CONTROL DEVICE
The invention relates to a system (100) which comprises: a gas turbine (102) designed so that a combustion chamber (110) can be ignited in a first ignition range of rotational speeds of a compressor shaft (112); and a control device (106) designed to control an electric starter (114) to accelerate the compressor shaft (112), and, when the compressor shaft (112) is accelerated, to control an attempt to ignite the combustion chamber (110). The gas turbine (102) is designed so that the combustion chamber (110) can be ignited in a second ignition range which is higher than the first ignition range, but not between these two ignition ranges, and the ignition attempt is carried out in the second ignition range.
A rotor wheel (10) for an aircraft turbine engine, said wheel comprising: - a disc (12) having a main axis (A) and provided with cells (14) at its outer periphery, the cells extending along the axis and each comprising a bottom (14a) and two side flanks (14b), - vanes (22) mounted in the cells (14) of the disc (12), each of said vanes comprising a blade (24) connected by a platform (26) to a root (28) which is configured to be interlockingly mounted in one of the cells (14), the root (28) of each of the vanes (22) comprising, at its radially inner end, a lobe (30) with a first axial end which comprises a circumferential notch (32) and a second axial end, opposite the first end, which comprises a radially inward facing stop (33) configured to axially bear on a first face (12b) of the disc (12), and - a split annular ring (34) engaged in the notches (32) of the vanes (22) and axially clamped against a second face (12a) of the disc, the second face (12a) being opposite the first face (12b), the lobe (30) of the root (28) of each of the vanes (22) comprising, between the first and second ends, a radially inward facing projecting bulb (42) configured to radially bear on the surface of the bottom (14a) of the corresponding cell (14).
A propulsion system (1) for a helicopter, comprising a turboshaft engine (2) with a linked turbine and an electric machine (3) capable of operating as an electric motor, the turboshaft engine (2) and the electric machine (3) being capable of driving in rotation at least one main rotor (5) intended to be coupled to a rotating wing (6) characterised in that it comprises means of coupling and decoupling (14) in rotation between a rotor (3a) of the electric machine (3) and a rotor (2a) of the turboshaft engine (2), the means of coupling and decoupling (14) being capable of allowing the rotor (2a) of the turboshaft engine (2) to be driven in rotation with the aid of the electric machine (3), in a first state of the propulsion system (1), and capable of allowing the rotor (2a) of the turboshaft engine (2) and the rotor (3a) of the electric machine (3) to be decoupled in rotation, in a second state of the propulsion system (1).
B64D 35/08 - Transmitting power from power plant to propellers or rotors; Arrangements of transmissions characterised by the transmission being driven by a plurality of power plants
The invention relates to a turbomachine comprising a rotary body comprising a motor shaft supplying mechanical power, and at least one magnetic drive pump comprising at least: one stator (110) delimiting an annular inner space and comprising a first and a second flange (1110, 1120), a rotor (120) arranged in the inner space between the first and second flanges and capable of driving fluid, the rotor being able to rotate about an axis of rotation (A), a pair of magnets (1241, 1242) having opposite polarities coaxially arranged on the rotor with the axis of rotation, a magnet (1116) arranged on the first flange (1110) in order to co-operate with one of the magnets of the pair of magnets of the rotor, a magnetic means (130) for rotating the rotor arranged on the second flange (1120), the second flange being non-magnetic.
A turbomachine comprises a rotating spool comprising a drive shaft delivering mechanical power. The turbomachine comprises an electromagnetic pump mechanically decoupled from the drive shaft. The electromagnetic pump comprises at least one stator delimiting an annular internal volume in which is present a rotor able to drive a fluid, a plurality of magnets distributed annularly on the rotor and at least one plurality of coils distributed annularly inside the rotor. The coils of the plurality of coils face magnets along an axial direction.
F04C 2/10 - Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
F04C 15/00 - Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups
F04C 7/00 - Rotary-piston machines or pumps with fluid ring or the like
F02C 7/32 - Arrangement, mounting, or driving, of auxiliaries
55.
DEVICE FOR GUIDING A MAIN AIR FLOW FOR AN AIRCRAFT TURBINE ENGINE
A device (110) for guiding a main air flow (F1) for an aircraft turbine engine (22), said device comprising: a first air flowing pipe (112) of a main air flow (F1), said first pipe having a main axis (A), - a plurality of ejectors (114) of a secondary air flow (F2) located within the first pipe (112) and configured to eject a secondary air flow (F2) and force the flow of the main air flow (F1) into said first pipe (112), the ejectors (114) being distributed around the main axis (A), and - a second air flowing pipe (116) located at the outlet of the ejectors (114) and comprising one end (116a) which is connected to one end (112a) of the first pipe (112), characterised in that the second pipe (116) comprises a narrow end (134).
F02C 7/052 - Air intakes for gas-turbine plants or jet-propulsion plants having provisions for obviating the penetration of damaging objects or particles with dust-separation devices
F04F 5/16 - Jet pumps, i.e. devices in which fluid flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
The invention relates to a transmission device (1) for hybrid aircraft comprising a turboshaft engine having a gas generator (12), a free turbine (14), and a main rotor (52), the device comprising a first reversible electric motor (30) coupled to a shaft (16) of the free turbine (14) via a first disengageable coupling means (32), and to the main rotor (52), and a second reversible electric motor (40) coupled to a shaft (18) of the gas generator (12) via a second disengageable coupling means (44), and coupled to the main rotor (52) via a third disengageable coupling means (42), the second disengageable coupling means (44) being operable when the second electric motor (40) rotates in a first direction of rotation, and the third disengageable coupling means (42) being operable when the second electric motor (40) rotates in a second direction of rotation opposite to the first direction of rotation.
B64D 27/10 - Aircraft characterised by the type or position of power plant of gas-turbine type
B60K 6/50 - Architecture of the driveline characterised by arrangement or kind of transmission units
F01D 15/10 - Adaptations for driving, or combinations with, electric generators
F02C 7/32 - Arrangement, mounting, or driving, of auxiliaries
B64D 35/02 - Transmitting power from power plant to propellers or rotors; Arrangements of transmissions characterised by the type of power plant
B64D 35/08 - Transmitting power from power plant to propellers or rotors; Arrangements of transmissions characterised by the transmission being driven by a plurality of power plants
The system comprises: - a fuel tank; - a suction pipe that is connected to the tank and is located higher than the tank; - an electric pump (36); - a supply pump configured to be mechanically driven by an accessory gear box and be connected, at the outlet, to a fuel supply circuit for the engine; and - an air evacuation drain (26). The electric pump (36) is in communication with the suction pipe independently of the supply pump, and with the drain. The supply pump is in communication with the suction pipe independently of the electric pump.
A blade for a turbine engine includes an aerodynamic airfoil extending radially outwards, a blade tip, a blade root, and a platform connected to the root by an upper end. A maximum radial distance between the blade tip and the platform defines a maximum extent of the bearing surface of the airfoil. The blade is partially covered by a protective strip to combat oxidation and corrosion. The strip extends between a lower limit situated on at least one portion of the platform and an upper limit situated on the blade root. The blade tip is not covered by the protective strip.
The present invention relates to a device (1) for controlling an electric aircraft-propelling assembly, said propelling assembly comprising a propeller (3) and at least one electric motor (4) that is powered by an electric supply voltage and that delivers a torque and a rotation speed to drive the propeller (3). The control device (1) comprises at least a unit (11) for measuring an electric supply voltage, and a control unit (12) suitable for making a signal delivered to the electric motor vary as a function of said electric supply voltage, with a view to making the rotation speed of the propeller vary.
The invention relates to a turbomachine comprising a gas generator (13) equipped with a first shaft (18), an accessories box (14), at least one reversible electrical machine (11) coupled with the accessories box (14), a free turbine (12) equipped with a second shaft (17) and driven in rotation by a gas flow from the gas generator (13), and at least one accessory (15, 16) coupled to the accessories box (14). The turbomachine (10) comprises a first mechanical coupling means (20) configured to mechanically couple the first mechanical shaft (18) to the accessories box (14) in a first configuration and to mechanically uncouple said first mechanical shaft (18) from the accessories box (14) in a second configuration, and a second mechanical coupling means (25) configured to mechanically couple the second mechanical shaft (17) to the accessories box (14) in a first configuration and to mechanically uncouple said second mechanical shaft (17) from the accessories box (14) in a second configuration, the electrical machine (11) being sized to drive the gas generator and the at least one accessory when the turbomachine is started.
F02C 3/10 - Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
F02C 6/20 - Adaptations of gas-turbine plants for driving vehicles
Disclosed is a movable vane (1) for a wheel (2) of an aircraft turbine engine, the vane (1) comprising a blade (4) delimited by an outer heel (8) comprising a first seal (14), the vane (1) comprising an internal circuit (16) suitable for receiving a first minor gas flow (f1), this circuit (16) comprising a supply cavity (17) opening at the root (9) via at least one inlet opening (18), characterised in that the circuit (16) comprises at least two channels (19) connected with the supply cavity (17) and each opening on an outer surface of the first seal (14) via a discharge opening such that a gas jet (J) of the first minor gas flow (f1) is capable of being discharged from each discharge opening, each channel (19) being oriented such that the corresponding gas jet (J) is capable of being projected towards a second minor gas flow (f2) escaping between the heel (8) and a directly adjacent member (22).
F01D 5/22 - Blade-to-blade connections, e.g. by shrouding
F01D 11/12 - Preventing or minimising internal leakage of working fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible, deformable or resiliently biased part
F01D 11/00 - Preventing or minimising internal leakage of working fluid, e.g. between stages
62.
CONSTANT-VOLUME COMBUSTION SYSTEM WITH SYNCHRONIZED INJECTION
A constant volume combustion system for a turbomachine comprises a plurality of combustion chambers distributed annularly about an axis, each combustion chamber comprising an inlet orifice and an outlet orifice, a selective shut-off element movable in rotation relative to the combustion chambers, the selective shut-off element comprising a shroud facing the inlet and outlet orifices of the combustion chambers. The shroud including on a first annular portion at least one intake aperture intended to cooperate with the inlet orifice of each combustion chamber during the rotation of the selective shut-off element and on a second annular portion at least one exhaust aperture intended to cooperate with the outlet orifice of each combustion chamber during the rotation of the selective shut-off element. Each combustion chamber comprises a fuel injection device whose opening and closing are synchronized by the shut-off element.
F02C 5/12 - Gas-turbine plants characterised by the working fluid being generated by intermittent combustion the combustion chambers having inlet or outlet valves, e.g. Holzwarth gas-turbine plants
F02C 3/04 - Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
63.
COMBAT AIRCRAFT WITH ELECTRICAL WEAPON SYSTEM WITH OPTIMIZED POWER MANAGEMENT
A fixed-wing combat aircraft (10) comprising an electrical power source (20), a propulsion system (30), a low-power non-propulsion assembly (40) comprising a flight control system, a high-power non-propulsion assembly (50) comprising an electrical weapon system (52), and a management unit (60) configured to selectively establish on command multiple operating modes comprising: a flight mode, in which the management unit distributes the electrical power supplied by the electrical power source to the propulsion system and to the low-power non-propulsion assembly, and an attack mode, in which the management unit limits the electrical power supplied by the electrical power source to the propulsion system and to the low-power non-propulsion assembly to the power required to allow the aircraft to glide, and reserves a majority of the available electrical power for the high-power non-propulsion assembly.
B64D 7/00 - Arrangement of military equipment, e.g. armaments, armament accessories, or military shielding, in aircraft; Adaptations of armament mountings for aircraft
F41H 13/00 - Means of attack or defence not otherwise provided for
64.
SYSTEM FOR PUMPING AND METERING A FLUID FOR A TURBINE ENGINE AND METHOD FOR CONTROLLING SUCH A SYSTEM
The invention relates to a system (400) for pumping and metering a fluid (10) for a turbine engine, which system comprises at least one pump (412, 414) for the fluid and an electronic computer (430) configured to determine the flow rate of the fluid to be delivered to the turbine engine, the pumping and metering system being characterised in that it further comprises a first electric motor and a second electric motor, which are each configured to drive the at least one pump, and in that the electronic computer comprises a first control loop (432) for controlling at least the first electric motor and a second control loop (434) for controlling at least the second electric motor.
The present invention relates to a steel part for use in aeronautics, comprising a substrate, the substrate comprising at least carbon, cobalt, aluminium and nickel, and having an average atomic fraction of carbon between 0.09% and 0.17%, an average atomic fraction of cobalt between 15.5% and 18.5%, an average atomic fraction of aluminium less than 0.1%, an average atomic fraction of nickel between 7.2% and 9.8%, the part being case-hardened and also comprising a nitrided layer, the nitrided layer at least partially covering the substrate and having a thickness between 5 μm to 180 μm, preferably between 50 μm and 150 μm.
C21D 9/32 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
C22C 38/10 - Ferrous alloys, e.g. steel alloys containing cobalt
C22C 38/06 - Ferrous alloys, e.g. steel alloys containing aluminium
C23C 8/34 - Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
The invention relates to a cold expansion device (36) for work hardening a through bore (34) in a turbine engine part (32), comprising at least one chuck (38) supporting a burnisher (40) and a means (41) for pushing the chuck (38) in an axial direction, and is characterised in that it comprises at least: —a tubular guide (42) configured to guide the burnisher (40) to the bore (34), —a first magnetic attachment means (51) arranged at a free end (44) of the chuck (38), —the burnisher (40), comprising a work surface (46) and an end (48) comprising second magnetic attachment means (49) complementary to the first magnetic attachment means (51), and in that the axial pushing means (41) is configured to push the burnisher through the bore (34) until it emerges from stud bore.
B24B 39/02 - Burnishing machines or devices, i.e. requiring pressure members for compacting the surface zone; Accessories therefor designed for working internal surfaces of revolution
An aeronautical turbogenerator for hybrid electric propulsion includes a heat engine and an electrical generator coupled mechanically to the heat engine and including a rotor and a stator, the rotor extending in an axial direction and including a common magnetized rotor yoke comprising a plurality of permanent magnets defining at least three axially distributed movable annular rings, the stator including a magnetic stator yoke comprising a plurality of electrical windings defining axially and/or circumferentially distributed stationary sectors, at least two stationary sectors, one of which covers axially at least two movable annular rings, being arranged angularly so as not to mutually coincide and thus deliver at least two distinct and independent voltage levels.
H02K 7/18 - Structural association of electric generators with mechanical driving motors, e.g.with turbines
H02K 21/14 - Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
F02C 6/20 - Adaptations of gas-turbine plants for driving vehicles
B64D 27/02 - Aircraft characterised by the type or position of power plant
B64D 27/24 - Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
B64D 27/10 - Aircraft characterised by the type or position of power plant of gas-turbine type
68.
FUEL INJECTOR WITH A PURGE CIRCUIT FOR AN AIRCRAFT TURBINE ENGINE
A fuel injector for an aircraft turbine engine includes a tubular body having an axis of elongation. A first longitudinal end configured to be supplied with fuel and a second longitudinal end configured to eject a jet of fuel. The body further includes an integrated purge-air circuit that has an internal cavity which is connected to air inlet orifices situated on the body and to at least one air outlet situated at said second end. Air-flow disruptors are provided, projecting into said cavity.
A turbine (1) for a turbomachine of longitudinal axis (X), comprising: an alternating arrangement of annular rows of movable blades (64) and of fixed blades (65) and a radially inner annular cavity (68) formed radially inside the movable and fixed blades (64, 65), and a supply circuit (32) for supplying cooling air to the inner annular cavity (68), the downstream end of the supply circuit (32) comprising an inner annular row of orifices (81) and an outer annular row of orifices (82) opening into the radially inner annular cavity (68), the turbine further comprising means (85) for controlling the flow rate of supply air to the orifices of the inner and outer annular rows of orifices (81, 82).
Disclosed is a rotor (121) for a centrifugal breather for an air/oil mixture of a turbomachine, this rotor comprising: a hollow shaft (114) extending along an axis (X), a pinion (115) for rotating the hollow shaft (114), this pinion (115) extending around the axis (X) and being formed of a single part and in a first material with at least one first portion (114a) of the hollow shaft (114), and an annular structure (117) extending around the axis (X) and constrained to rotate with the shaft (114), this structure (117) being produced in a second material, different from the first material, characterised in that said structure (117) is made integral with the shaft (114) by additive manufacturing of this structure directly on at least one annular surface (122) of the pinion (115) which forms at least one annular support surface for this additive manufacturing.
F01M 11/08 - Separating lubricant from air or fuel-air mixture before entry into cylinder
B01D 39/20 - Other self-supporting filtering material of inorganic material, e.g. asbestos paper or metallic filtering material of non-woven wires
B01D 45/14 - Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by rotating vanes, discs, drums or brushes
B04B 5/08 - Centrifuges for separating predominantly gaseous mixtures
The invention relates to a ring (1) for a turbomachine turbine or a turboshaft engine turbine, intended to surround an impeller (2) of a turbine rotor, the said ring (1) extending circumferentially about an axis and comprising an annular and continuous support part (9), radially external, and a part (10) delimiting a circulation passage (6) of a gas flow, radially internal and comprising a plurality of angular segments (13) distributed over the periphery and situated adjacent to one another so as to form an annular part delimiting the passage (6), characterised in that circumferential clearances (j) are formed between the circumferential ends of the adjacent segments (13) located opposite each other, each segment (13) being connected to the support part (9) by means of a connecting zone (14), an annular channel (15) for the circulation of cooling fluid being delimited radially between the outer support part (9) and the inner part (10) delimiting the passage.
F01D 11/04 - Preventing or minimising internal leakage of working fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
72.
COMPONENT FOR A TURBOMACHINE CENTRIFUGAL DEGASSER WITH ADAPTED LONGITUDINAL WALLS
A component for a centrifugal degasser for an air/oil mixture of a turbomachine is disclosed. The degasser rotates about an axis of symmetry, forming an annular chamber for centrifugal separation of the mixture. The chamber forms a fluid passage duct, one inlet of which is oriented axially for supplying the chamber with the mixture, and a first outlet of which is oriented radially inwards for discharging the deoiled air separated from the mixture. The chamber also includes at least one second oil outlet oriented radially outwards and intended to discharge the oil separated from the mixture to the outside of the degasser. The chamber has longitudinal walls passing radially therethrough, at least one of the surfaces of the longitudinal walls having surface structures and/or corrugations arranged to form obstacles to a flow of the mixture along the surface of the longitudinal walls.
B01D 45/14 - Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by rotating vanes, discs, drums or brushes
A method for manufacturing a flame tube for a turbomachine, the flame tube extending about an axis and comprising an annular radially internal wall and an annular radially external wall, connected to each other by an end wall or head wall, the internal wall, the external wall and the end wall defining an internal volume, at least one part of the said end wall forming a double wall comprising a first part and a second part connected to each other and spaced apart from each other so as to delimit a flow channel for a flow of cooling air opening into the said internal volume, the said flow channel comprising at least one air-inlet opening, the first and second parts of the double wall being connected by connecting zones or bridges extending into the flow channel for the cooling-air flow, the flame tube being manufactured by additive manufacturing.
The invention relates to a pre-vaporizing pipe (5) for a combustion chamber of a turbomachine, comprising a generally elongate main body (50), comprising a first end portion (51) delimiting an inlet duct (52) in which a fuel injector is to be mounted, the body (50) having an external surface (500) having a first length (L1) that extends from the portion (51) to at least one first fuel outlet end piece (53), and a second length (L2) that extends the first length (L1) from the end piece (53) and that extends from the end piece (53) to a second fuel outlet end piece (54). According to the invention, inside the body (50) there is a first channel (55) connecting the duct (52) to the end piece (53) and a second channel (56) which is distinct from the first channel (55) and which connects the duct (52) to the end piece (54).
F23R 3/32 - Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices being tubular
A turbine vane of a turbine engine is described. The turbine vane includes a blade and a root. The root includes a stilt having lateral flanks with a curvilinear profile. The stilt includes a frangible zone suitable for undergoing a breakage of the stilt if radial forces higher than a threshold are exerted on the vane, in particular centrifugal forces during an overspeed state of the turbine. The frangible zone includes at least one oblong frangibility recess formed on at least one of the lateral flanks of the stilt, the oblong recess extending in an axial direction of the stilt along a longitudinal axis parallel to or included in a minimum cross-sectional plane which contains a minimum cross-section of the stilt.
Ignition method for a continuous combustion engine comprising an electronic engine control member (7), a high-power housing (2), a spark plug ignition circuit and a solenoid fuel valve engaging with a starter, the method being implemented by the electronic engine control member (7) and comprising a pre-charging step (03) of pre-charging the high-power housing (2) prior to an engine-starting step (E3) initiated upon an instruction to start the engine (02), the pre-charging step (03) being controlled: - by switching on the electronic engine control member (7), - or by putting the engine in idle mode (OV).
A component (1, 2) for supporting at least one bearing (3) for a turbine engine (10) comprising: two coaxial walls, internal (4) and external (5) walls respectively, defining a gas flow vein (6) between them and interconnected by a row of arms (7); an external ferrule (50) comprising an internal peripheral edge (51) connected to the external wall (5) and an external peripheral edge (52) connected to an external mounting flange (53); an internal ferrule (40) comprising an external peripheral edge (41) connected to the internal wall (4) and an internal peripheral edge (42) comprising an internal mounting flange (43); at least one of the ferrules (4, 5), which at the peripheral edge (41, 51) thereof is connected to the corresponding wall (4, 5), having a general shape which is corrugated about an axis (X-X) of the component (1, 2).
Sealing ring (36, 38) for a wheel (26) of an aircraft turbomachine turbine, said ring comprising an annular body (51) extending around an axis of revolution (A) and comprising an outer surface (51a) and an inner surface (51b) which is coated with an annular layer (53) of an abradable material, the ring further comprising an annular wall (52) extending around the annular body and at a radial distance from said body, said annular wall comprising openings (54) through which cooling air flows by impact on the outer surface, characterised in that the body and the wall are integrally formed.
F01D 11/12 - Preventing or minimising internal leakage of working fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible, deformable or resiliently biased part
F01D 11/08 - Preventing or minimising internal leakage of working fluid, e.g. between stages for sealing space between rotor blade tips and stator
F01D 11/14 - Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
A double wall (2) for an aircraft gas turbine combustion chamber (1) comprising an internal wall (21) which is configured to be in contact with the combustion reaction, and an external wall (22) which is at a distance from the internal wall (21), comprising a plurality of openings (3) so as to allow the circulation of cooling air streams (F), outside the external wall (22), which cool the internal wall (21), the internal wall (21) being free of perforations so as to prevent any circulation of a cooling air stream (F) towards the centre of the combustion chamber (1). The double wall (2) is characterised in that the internal wall (21) comprises a plurality of members (4) projecting towards the external wall (22), each projecting member (4) comprising a foot portion (4a) and a cylindrical head portion (4b) with a circular cross-section, the head portion (4b) extending into an opening (3) with a circular cross-section so as to define a calibrated cross-sectional area between the projecting member (4) and the opening (3), through which area a cooling air stream (F) can flow.
The invention relates to an assembly (1) for transmitting and measuring a torque transmitted between a first member and a second member (16) of a turbomachine, comprising a pinion (2) which includes a first annular portion (5) and a second annular portion (6) joining together at a connecting portion (7) supporting a gear system (4) of the pinion (2), the first and second annular portions (5, 6) extending axially along an axis of rotation (X) of the pinion (2) in directions (D1, D2) opposite from the connecting portion (7), the rotation of at least one of the the annular portions (5, 6) being guided via a bearing (8, 9) for guiding the pinion (2), the pinion further comprising an axially extending power shaft (10), the power shaft (10) comprising a first area (11) rotatably coupled to the first annular portion (5) of the pinion (2), and a second area (12) intended to be rotatably coupled to the second member (16) of the turbomachine, the first area being axially spaced apart from the second area, and means for measuring the torsion of the power shaft (10) which are arranged in a third area of the power shaft (10) located between the first and second areas (11, 12), the measuring means comprising at least one tone wheel (20, 25) and acquisition means capable of engaging with the tone wheel (20, 25), characterised in that the measuring means comprise a first tone wheel (20) provided in the third area of the power shaft (10) and a second tone wheel (25) provided in the second annular portion (6) of the pinion (2) and located axially opposite the first tone wheel (20), the acquisition means being arranged axially opposite the first tone wheel (20) and the second tone wheel (25) and being configured to supply a signal representative of an angular variation between the first tone wheel (20) and the second tone wheel (25).
G01L 3/10 - Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
81.
TORQUE TRANSMISSION AND MEASUREMENT ASSEMBLY FOR A TURBOMACHINE
The invention relates to an assembly (1) for transmitting and measuring a torque transmitted between a first member and a second member (16) of a turbomachine, comprising a pinion (2) which includes a first annular portion (5) and a second annular portion (6) joining together at a connecting portion (7) supporting a gear system (4) of the pinion (2), the first and second annular portions (5, 6) extending axially along an axis of rotation (X) of the pinion (2) in directions (D1, D2) opposite from the connecting portion (7), the rotation of at least one of the the annular portions (5, 6) being guided via a bearing (8, 9) for guiding the pinion (2), the pinion further comprising an axially extending power shaft (10), the power shaft (10) comprising a first area (11) rotatably coupled to the first annular portion (5) of the pinion (2), and a second area (12) intended to be rotatably coupled to the second member (16) of the turbomachine, the first area being axially spaced apart from the second area, and means for measuring the torsion of the power shaft (10) which are arranged in a third area of the power shaft (10) located between the first and second areas (11, 12), the measuring means comprising at least one tone wheel (20, 25) and acquisition means capable of engaging with the tone wheel (20, 25), characterised in that the measuring means comprise a first tone wheel (20) provided in the third area of the power shaft (10) and a second tone wheel (25) provided in the second annular portion (6) of the pinion (2) and located axially opposite the first tone wheel (20), the acquisition means being arranged axially opposite the first tone wheel (20) and the second tone wheel (25) and being configured to supply a signal representative of an angular variation between the first tone wheel (20) and the second tone wheel (25).
G01L 3/10 - Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
A module for an aircraft turbine engine including at least one annular casing of an annular combustion chamber, at least one sealing ring for a turbine wheel, and at least one annular bearing support, wherein this module is made in one piece.
A hybrid propulsion installation for an aircraft, including an internal combustion engine having at least one combustion chamber; at least one electricity generator; an electrical propulsion system; electromechanical protection mechanism arranged between the or each electricity generator and the electrical propulsion system; wherein the installation also includes: an electronic computer configured to: receive at least one piece of information on a position of the electromechanical protection mechanism; receive at least one piece of information on a speed of rotation of a shaft of the internal combustion engine; and control the flow of fuel supplying the combustion chamber depending on the information received.
B60L 50/10 - Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
B64D 27/24 - Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
A propulsion assembly for aircraft includes a single-shaft engine turbomachine including a combustion chamber and a rotatably mounted shaft that turns at a turbomachine rating; an electrical generator coupled to the shaft; and a control system. The control system includes a fuel pump that brings fuel into the combustion chamber at a fuel flow rate which is a direct function of an ambient pressure and of the turbomachine rating, and power electronics that are coupled to the electrical generator and that control an electrical power drawn off the electrical generator so as to attain a target turbomachine rating.
A process for three-dimensional printing of a workpiece (10), comprising a succession of steps for producing a layer (18) of the workpiece (10) by means of a nozzle (28) which has an output cross-section along a path (32) of the nozzle (28), wherein, during at least one step for producing a layer (18), use is made of at least one nozzle (28), an output portion (42) of which has an output cross-section which is variable between a first maximum cross-section and a second minimum cross-section, and wherein the cross-section of at least one part of an output portion (42) of the nozzle is varied along at least one portion (32a, 32b) of the path (32).
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
An electrical energy supply network of an aircraft equipped with a plurality of electrical loads to be supplied includes at least two generators of a turbogenerator of the aircraft, each suitable for providing an electrical energy source, and at least one stator associated with a rectifier. The stators of the generators are mounted in parallel on at least two distribution buses designed to supply the plurality of electrical loads. The supply network also includes contactors suitable for electrically connecting or disconnecting the distribution buses from each other.
The present invention relates to a pinion for a gear train of an aircraft turbine engine, the pinion comprising: —a cylindrical body (2) extending along an axis and configured to engage with a shaft received in the cylindrical body, —a rim (4) concentric with the cylindrical body, —a web (3) defined axially by a front wall (32) and a rear wall (33) and extending radially from the cylindrical body to the rim, each of the front and rear walls having a density, the pinion comprising a cross-linked structure (5) around the cylindrical body between the front wall and the rear wall, the cross-linked structure comprising a unit cell repeated along three axes of a three-dimensional coordinate system, a density of the unit cell being strictly less than each of the densities of the front and rear walls.
A connection includes a widened reinforcement harness which comprises a reinforced harness, a non-deformable ferrule and a reinforcement portion which has a greater diameter than the reinforcement of the harness, the non-deformable ferrule being arranged around the harness with the reinforcement of the harness folded on the outer side of the non-deformable ferrule, a first end of the reinforcement portion being attached around the folded portion of the reinforcement of the harness, the connection further comprising an integrated coupling connector, a second end of the reinforcement portion of the widened reinforcement harness being attached to a section of the integrated coupling connector. This connection is particularly advantageous for the small harness, wherein the reinforcement of the harness has a diameter which is too small to surround the section of an integrated coupling connector.
Propulsion system for a helicopter, comprising a main engine, a main rotor, a main transmission gearbox comprising an outlet mechanically connected to the main rotor, a reducer mechanically coupled between the main engine and a first input in the main transmission gearbox, and an assistance device. The assistance device comprises a first electric machine mechanically coupled to the reducer and configured to function as an electric generator to extract energy produced by the main engine, and a second electric machine mechanically coupled to a second input in the main transmission gearbox, the second electric machine being supplied with electricity from the first electric machine and configured to function as an electric motor for delivering additional mechanical power to the main transmission gearbox.
A system monitors the health of a helicopter, and includes a device for determining a change of state of the engine and is configured to collect data measured by engine and external conditions sensors during a stable flight phase and to process the measured data.
B64F 5/60 - Testing or inspecting aircraft components or systems
B64D 45/00 - Aircraft indicators or protectors not otherwise provided for
B64D 43/00 - Arrangements or adaptations of instruments
F02C 9/28 - Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
F02C 9/18 - Control of working fluid flow by bleeding, by-passing or acting on variable working fluid interconnections between turbines or compressors or their stages
91.
ELECTRICAL MACHINE WINDING HAVING IMPROVED COLLING
An assembly including a winding and a cooler in contact with conductors of the winding, the cooler including a container forming a heat dissipator and including a phase change material having the ability to absorb a surplus quantity of heat when the conductors of the winding are subject to an increase in their current density and the heat dissipator is composed of at least two hollow parts separate and nestable with one another and intended to house the phase change material.
H02K 9/22 - Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
H02K 9/20 - Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil wherein the cooling medium vaporises within the machine casing
92.
HYBRID PROPULSION SYSTEM FOR VERTICAL TAKE-OFF AND LANDING AIRCRAFT
A hybrid propulsion system for a vertical take-off and landing aircraft comprising at least one combustion engine driving an electricity generator, at least one electrical energy storage assembly associated with each electricity generator and defining, with each electricity generator, an energy branch, a plurality of electric motors actuating a same plurality of rotors providing together the propulsion and/or the lift of the aircraft, and an electrical power and distribution unit supplying power to the plurality of electric motors from the electricity generator and/or from the electrical energy storage assembly according to a pre-established flight phase, the system including at least two energy branches having an asymmetric configuration and each supplying power selectively, by means of the electrical power and distribution unit, all or part of the plurality of electric motors, and in that the electricity generators of the combustion engines have between them a power ratio comprised between
Disclosed is a propulsion system (2) for a helicopter (1) comprising a main engine (9), a main rotor (3), a main gearbox (4) comprising an output mechanically connected to the main rotor (3), a reduction gearbox (13) mechanically coupled between the main engine (9) and a first input of the main gearbox (4), and an assistance device (10). The assistance device (10) comprises a first electric machine mechanically coupled to the reduction gearbox (13) and configured to function as an electric generator in order to take off energy produced by the main engine (9), and a second electric machine mechanically coupled to a second input of the main gearbox (4), the second electric machine being supplied with electricity by the first electric machine and configured to function as an electric motor in order to deliver additional mechanical power to the main gearbox (4).
Methods for controlling an electrical power supply network for an aircraft, include pre-charging at least one capacitor in a normal operating mode when a gas turbine is available, pre-charging the at least one capacitor in a backup operating mode when the gas turbine is not available, and discharging the at least one capacitor at the end of use of the electrical power supply network when the at least one capacitor is charged.
This method for stopping at least one aircraft turbogenerator (1) comprises: - controlling the stopping (E1) of the turbogenerator (1); - passing from the nominal operating speed (Nref) of the power shaft (3, 12) to a first operating speed (N1) lower than the nominal speed (Nref), for a first predetermined duration (t2); - controlling the extinction of the combustion chamber (6) of the gas turbine (2); - maintaining the rotation of the gas turbine at a second speed (N2) for a second predetermined duration (t3), the power shaft (3, 12) being at a second speed (N2) lower than the first operating speed (N1) and, - controlling the stopping of the reversible electric machine (7) in order to no longer drive the power shaft (3, 12), in order to cause a progressive stopping (E9, E10) of the rotation of the gas turbine (2).
A toothed coupling mechanism for an assembly of rotating elements of an aircraft gas turbine engine includes a pair of coupling halves having an axial toothed coupling interface therebetween. Each coupling half has a plurality of splined teeth inter-engaged about an axis for transmitting torque therebetween. A protrusion is located on one of the splined teeth of one of the coupling halves. A splined tooth of the other coupling half comes into contact with the protrusion in a situation of uncoupling of said coupling halves.
F01D 21/04 - Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator, e.g. indicating such position
F01D 5/06 - Blade-carrying members, e.g. rotors - Details thereof, e.g. shafts, shaft connections
F02C 3/107 - Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with two or more rotors connected by power transmission
F02C 7/36 - Power transmission between the different shafts of the gas-turbine plant, or between the gas-turbine plant and the power user
F16D 1/10 - Quick-acting couplings in which the parts are connected by simply bringing them together axially
97.
METHOD AND SYSTEM FOR REGULATING A NON-PROPULSION ELECTRICAL GENERATION TURBOMACHINE
A method for controlling a non-propulsive power generation turbine engine configured to supply power to a plurality of propulsion rotors of an aircraft, each propulsion rotor being connected to a power distribution module through at least one power supply bus, the turbine engine supplying each power supply bus via the power distribution module at a supply rate, the control method comprising a step of determining the power requirement of each power supply bus depending on the power requirement of each propulsion rotor, a step of determining the basic power requirement of each power supply bus, a step of determining the overall power requirement based on all the basic power requirements of the power supply buses and a step of determining an anticipation parameter based on the overall power requirement.
B64D 41/00 - Power installations for auxiliary purposes
B64D 31/00 - Power plant control; Arrangement thereof
F02C 3/10 - Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
A hybrid propulsion unit for an aircraft with multi-rotor rotary wings includes an electrical generator driven by an internal combustion engine, a rectifier configured to convert an AC current sent by the electrical generator into DC current, a DC-AC converter, an electrical network connecting the rectifier to the converter and including a high-voltage DC current bus, electric motors powered by propeller converters coupled to the electric motors, electrical energy storage connected to the electrical network, the electrical storage including at least one primary storage element and at least one secondary storage element.
B60L 53/20 - Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
F02B 61/00 - Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
99.
HYBRID PROPULSION SYSTEM AND METHOD FOR CONTROLLING SUCH A SYSTEM
A hybrid propulsion system for a multi-rotor rotary-wing aircraft, including: an internal combustion engine, an electric machine coupled to the internal combustion engine, a rectifier connected to the electric machine, a converter, an electric network connecting the rectifier to the converter, electric motors connected to the converter, rotary-blade assemblies coupled to the electric motors, wherein the system includes: a detector configured to detect a reduction in a demand for electrical power within the system to below a predetermined value, a bypass circuit configured to bypass the electric machine when the detector detects a reduction in the demand for electrical power.
ref1ref223211) and, - controlling the stopping of the reversible electric machine (7) in order to no longer drive the power shaft (3, 12), in order to cause a progressive stopping (E9, E10) of the rotation of the gas turbine (2).