Halliburton Energy Services, Inc.

United States of America

Back to Profile

1-100 of 20,275 for Halliburton Energy Services, Inc. and 2 subsidiaries Sort by
Query
Aggregations
IP Type
        Patent 19,362
        Trademark 913
Jurisdiction
        United States 9,623
        World 8,473
        Canada 2,077
        Europe 102
Owner / Subsidiary
[Owner] Halliburton Energy Services, Inc. 20,155
Enventure Global Technology, L.L.C. 113
Wellbore Energy Solutions, LLC 7
Date
New (last 4 weeks) 114
2024 April (MTD) 90
2024 March 52
2024 February 53
2024 January 65
See more
IPC Class
E21B 47/00 - Survey of boreholes or wells 1,412
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling 1,327
E21B 43/26 - Methods for stimulating production by forming crevices or fractures 1,317
E21B 41/00 - Equipment or details not covered by groups 1,314
E21B 33/12 - Packers; Plugs 1,088
See more
NICE Class
01 - Chemical and biological materials for industrial, scientific and agricultural use 298
07 - Machines and machine tools 233
42 - Scientific, technological and industrial services, research and design 131
09 - Scientific and electric apparatus and instruments 123
37 - Construction and mining; installation and repair services 106
See more
Status
Pending 1,183
Registered / In Force 19,092
  1     2     3     ...     100        Next Page

1.

WIRELINE RETRIEVABLE FLAPPER AND SEAT

      
Application Number 17965392
Status Pending
Filing Date 2022-10-13
First Publication Date 2024-04-18
Owner Halliburton Energy Services, Inc. (USA)
Inventor Gonzalez, Merced

Abstract

Provided is a retrievable safety valve insert, a safety valve, a well system, and a method. The retrievable safety valve insert, in one aspect, includes an outer housing including an outer housing central bore extending axially therethrough, the outer housing central bore operable to convey subsurface production fluids there through. The insert, according to this aspect, may further include a lock mandrel having a lock mandrel profile extending radially outward from the outer housing, the lock mandrel profile movable between a radially retracted state and a radially expanded state configured to engage with an end sub profile of an end sub. The insert, according to this aspect, may further include a safety valve insert closure mechanism coupled to the outer housing proximate a downhole end of the outer housing central bore, the safety valve insert closure mechanism movable between an outer housing closed state and an outer housing open state.

IPC Classes  ?

  • E21B 34/10 - Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
  • E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools

2.

SAG DETECTION USING THERMAL CONDUCTIVITY

      
Application Number 17968074
Status Pending
Filing Date 2022-10-18
First Publication Date 2024-04-18
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Jamison, Dale E.
  • Vos, Andrew

Abstract

A sag detection apparatus comprises an oven containing a sample cell supported by a cell support structure, a thermal conductivity sensor including a sensor housing, and a roller with a first end supported by a first bearing and fixedly coupled to a first end of the cell support structure and a second end supported by a second bearing and fixedly coupled to a second end of the cell support structure. Temperature sensor wires electrically connect a temperature sensor and first fixed contact via stationary contacts configured to remain fixed during rotation of the roller and rotating contacts configured to rotate with rotation of the roller. Heat source wires electrically connect a heat source and a second fixed contact via stationary contacts configured to remain fixed during rotation of the roller and rotating contacts configured to rotate with rotation of the roller.

IPC Classes  ?

  • G01N 25/18 - Investigating or analysing materials by the use of thermal means by investigating thermal conductivity
  • E21B 21/01 - Arrangements for handling drilling fluids or cuttings outside the borehole, e.g. mud boxes

3.

MONITORING FLUID/CEMENT TYPE/QUALITY OUTSIDE OF CASING OF A BOREHOLE

      
Application Number 17965307
Status Pending
Filing Date 2022-10-13
First Publication Date 2024-04-18
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Fripp, Michael Linley
  • Yu, Shanshan
  • Evers, Rutger

Abstract

Determining one or more of a fluid composition, a cement state, or a cement quality of a material located downhole a borehole by using a capacitive sensor or an inductive sensor. The sensors can be located on a pipe positioned downhole or within a swell packer. More than one sensor can be used, for example, as a set of sensor systems. The sensors can be of different sizes, utilize different frequencies, or be spaced unevenly to analyze different shaped areas and depths from the sensors. More than one set of sensors can be employed, such as axially or circumferentially spaced along the pipe or swell packer. The relative dielectric permittivity of the various downhole material can be used to determine when pumped cement has displaced the borehole fluid and when the cement has cured. The process can determine if a micro annulus or crack exists in the cement.

IPC Classes  ?

  • E21B 47/005 - Monitoring or checking of cementation quality or level
  • G01N 27/22 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
  • G01N 27/74 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids
  • G01N 33/38 - Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass

4.

Enhanced Mechanical Shaft Seal Protector for Electrical Submersible Pumps

      
Application Number 18371104
Status Pending
Filing Date 2023-09-21
First Publication Date 2024-04-18
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Bencze, András
  • Mansir, Hassan

Abstract

Disclosed is an apparatus when installed with an Electrical Submersible Pump for fluid production protects the motor from the effect of solids on the mechanical shaft seal. The invention provides enhanced features to the apparatus that dynamically filters the solids and prevents them from contacting or accumulating at the vicinity of the mechanical shaft seal.

IPC Classes  ?

  • E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
  • E21B 43/34 - Arrangements for separating materials produced by the well
  • F04D 13/10 - Units comprising pumps and their driving means the pump being electrically driven for submerged use adapted for use in mining bore holes

5.

INTEGRATION OF STORED KINETIC ENERGY IN DOWNHOLE ELECTRICAL INTERVAL CONTROL VALVES

      
Application Number US2022047910
Publication Number 2024/081001
Status In Force
Filing Date 2022-10-26
Publication Date 2024-04-18
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Gunasekaran, Mohan
  • James, Paul

Abstract

Systems and methods of the present disclosure relate to actuator assemblies for downhole tools. An actuator assembly comprises a motor, a spring and a hammer. The spring is adjacent to the hammer, and the hammer operable to compress the spring. The spring is operable to expand. The assembly also includes an anvil adjacent to the hammer. The anvil is operable to move a portion of the downhole tool.

IPC Classes  ?

  • E21B 4/12 - Electrically operated hammers
  • E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools

6.

HIGH-ENTROPY SURFACE COATING FOR PROTECTING METAL DOWNHOLE

      
Application Number US2022046813
Publication Number 2024/081000
Status In Force
Filing Date 2022-10-17
Publication Date 2024-04-18
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Shukla, Shashwat
  • Singh, Arpana

Abstract

A metal can include a metallic substrate and an alloy coating. The alloy coating may have a higher entropy than the entropy of the metallic substrate. The alloy coating may coat an external surface of the metallic substrate. The metal coated by the higher entropy alloy on an external surface of the metallic substrate may serve to increase resistance of the metal to hydrogen-induced cracking in a downhole environment.

IPC Classes  ?

  • C23C 24/10 - Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
  • C23C 24/08 - Coating starting from inorganic powder by application of heat or pressure and heat
  • C23C 26/02 - Coating not provided for in groups applying molten material to the substrate
  • C23C 30/00 - Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
  • E21B 47/01 - Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like

7.

LINER HANGER SYSTEM

      
Application Number US2022077934
Publication Number 2024/081017
Status In Force
Filing Date 2022-10-12
Publication Date 2024-04-18
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Zhong, Xiaoguang Allan
  • Zhao, Yian
  • Newton, Daniel

Abstract

A liner hanger system for use in a subterranean well is disclosed. The liner hanger system comprises a well casing and a liner hanger. The liner hanger comprises a spike extending in an annular ring around an outer perimeter of the liner hanger. The spike comprises an annular groove defined therein. The liner hanger further comprises an annular seal positioned at least partially within the annular groove. The liner hanger is expandable to transition between an initial state where the spike is not in contact with the well casing and an expanded state where the spike is in contact with the well casing. The spike and the annular seal are configured to seal an uphole well portion from a downhole well portion when the liner hanger is in the expanded state.

IPC Classes  ?

8.

Fast Proxy Model For Well Casing Integrity Evaluation

      
Application Number 17968628
Status Pending
Filing Date 2022-10-18
First Publication Date 2024-04-18
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Wang, Xusong
  • Fouda, Ahmed
  • Wu, Xiang
  • Jones, Christopher Michael
  • Zhang, Wei
  • Dai, Junwen

Abstract

A method and non-transitory storage computer-readable medium for performing a neural operator on one or more wellbore measurements. The method may comprise o obtaining one or more measurements, performing a measurement normalization on the one or more measurements to form one or more normalized measurements, forming a material function with the one or more normalized measurements, and forming a neural operator generated physical response with a neural operator and the material function. The method may further comprise forming a beamforming map with the one or more measurements, and forming a neural operator leak source location map with a neural operator and the one or more measurements.

IPC Classes  ?

  • E21B 47/092 - Locating or determining the position of objects in boreholes or wells; Identifying the free or blocked portions of pipes by detecting magnetic anomalies
  • E21B 43/25 - Methods for stimulating production

9.

CONTACT CHAMBER FLUSHING APPARTUS FOR CONCENTRIC ELECTRICAL WET CONNECT

      
Application Number 17967545
Status Pending
Filing Date 2022-10-17
First Publication Date 2024-04-18
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Mahendran, Mathusan
  • Philpott, Bryan Thomas

Abstract

A downhole tool for coupling an electrical connection in the wellbore comprising a locator sub and a receptacle sub. The locator sub can be conveyed into the wellbore with a workstring. The receptacle sub can be coupled to a lower completion with at least one downhole tool. Workstring manipulation can insert the locator sub into the receptacle sub to provide an electrical connection between a resilient connector on the locator sub and ring connector within the receptacle sub. A fluid source fluidically connected to the electrical connection can flush out trapped wellbore fluids via a fluid pathway. The electrical connection can electrically couple to a control system at surface to the at least one downhole tool.

IPC Classes  ?

  • E21B 17/02 - Couplings; Joints
  • E21B 34/06 - Valve arrangements for boreholes or wells in wells
  • E21B 34/08 - Valve arrangements for boreholes or wells in wells responsive to flow or pressure of the fluid obtained

10.

SINGLE SOLENOID VALVE ELECTRO-HYDRAULIC CONTROL SYSTEM THAT ACTUATES CONTROL VALVE

      
Application Number 18530862
Status Pending
Filing Date 2023-12-06
First Publication Date 2024-04-18
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Minassa, Lorenzzo Breda
  • Gissler, Robert William

Abstract

A method comprises charging a first hydraulic line to have greater pressure than a second hydraulic line and energizing a solenoid valve, wherein charging the first hydraulic line and energizing the solenoid valve initiates transition of an interval control valve (ICV) from a first state to a second state. The method comprises discontinuing energizing the solenoid valve and maintaining the greater pressure in the first hydraulic line until the ICV reaches a desired state.

IPC Classes  ?

  • E21B 34/06 - Valve arrangements for boreholes or wells in wells
  • E21B 23/04 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
  • E21B 33/035 - Well heads; Setting-up thereof specially adapted for underwater installations
  • E21B 34/10 - Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
  • E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
  • F16K 31/40 - Operating means; Releasing devices actuated by fluid in which fluid from the conduit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor
  • G05D 16/20 - Control of fluid pressure characterised by the use of electric means

11.

Using Radio Isotopes As A Triggering Element In Downhole Applications

      
Application Number 17964820
Status Pending
Filing Date 2022-10-12
First Publication Date 2024-04-18
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Gunasekaran, Mohan
  • Mahendran, Mathusan

Abstract

Systems and methods of the present disclosure relate to control of a downhole tool via at least one radio isotope. The radio isotope(s) is pumped from the surface to contact an isotopic analyzer of the tool. The isotopic analyzer reads the isotope and directs the tool to perform a specific action(s) in the wellbore based on the type of isotope read by the analyzer.

IPC Classes  ?

  • E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
  • E21B 23/06 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers

12.

HIGH-ENTROPY SURFACE COATING FOR PROTECTING METAL DOWNHOLE

      
Application Number 17966416
Status Pending
Filing Date 2022-10-14
First Publication Date 2024-04-18
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Shukla, Shashwat
  • Singh, Arpana

Abstract

A metal can include a metallic substrate and an alloy coating. The alloy coating may have a higher entropy than the entropy of the metallic substrate. The alloy coating may coat an external surface of the metallic substrate. The metal coated by the higher entropy alloy on an external surface of the metallic substrate may serve to increase resistance of the metal to hydrogen-induced cracking in a downhole environment.

IPC Classes  ?

  • B32B 15/01 - Layered products essentially comprising metal all layers being exclusively metallic
  • B22F 10/25 - Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
  • B33Y 10/00 - Processes of additive manufacturing
  • B33Y 70/00 - Materials specially adapted for additive manufacturing

13.

MONITORING FLUID/CEMENT TYPE/QUALITY OUTSIDE OF CASING OF A BOREHOLE

      
Application Number US2022046666
Publication Number 2024/080993
Status In Force
Filing Date 2022-10-14
Publication Date 2024-04-18
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Fripp, Michael Linley
  • Yu, Shanshan
  • Evers, Rutger

Abstract

Determining one or more of a fluid composition, a cement state, or a cement quality of a material located downhole a borehole by using a capacitive sensor or an inductive sensor. The sensors can be located on a pipe positioned downhole or within a swell packer. More than one sensor can be used, for example, as a set of sensor systems. The sensors can be of different sizes, utilize different frequencies, or be spaced unevenly to analyze different shaped areas and depths from the sensors. More than one set of sensors can be employed, such as axially or circumferentially spaced along the pipe or swell packer. The relative dielectric permittivity of the various downhole material can be used to determine when pumped cement has displaced the borehole fluid and when the cement has cured. The process can determine if a micro annulus or crack exists in the cement.

IPC Classes  ?

  • G01V 3/30 - Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination or deviation specially adapted for well-logging operating with electromagnetic waves
  • E21B 47/005 - Monitoring or checking of cementation quality or level
  • E21B 33/124 - Units with longitudinally-spaced plugs for isolating the intermediate space
  • G01V 3/38 - Processing data, e.g. for analysis, for interpretation or for correction
  • E21B 47/13 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. of radio frequency range

14.

WIRELINE RETRIEVABLE FLAPPER AND SEAT

      
Application Number US2022046691
Publication Number 2024/080995
Status In Force
Filing Date 2022-10-14
Publication Date 2024-04-18
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor Gonzalez, Merced

Abstract

Provided is a retrievable safety valve insert, a safety valve, a well system, and a method. The retrievable safety valve insert, in one aspect, includes an outer housing including an outer housing central bore extending axially therethrough, the outer housing central bore operable to convey subsurface production fluids there through. The insert, according to this aspect, may further include a lock mandrel having a lock mandrel profile extending radially outward from the outer housing, the lock mandrel profile movable between a radially retracted state and a radially expanded state configured to engage with an end sub profile of an end sub. The insert, according to this aspect, may further include a safety valve insert closure mechanism coupled to the outer housing proximate a downhole end of the outer housing central bore, the safety valve insert closure mechanism movable between an outer housing closed state and an outer housing open state.

IPC Classes  ?

  • E21B 34/10 - Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
  • E21B 34/08 - Valve arrangements for boreholes or wells in wells responsive to flow or pressure of the fluid obtained
  • E21B 34/06 - Valve arrangements for boreholes or wells in wells

15.

USING RADIO ISOTOPES AS A TRIGGERING ELEMENT IN DOWNHOLE APPLICATIONS

      
Application Number US2022048724
Publication Number 2024/081003
Status In Force
Filing Date 2022-11-02
Publication Date 2024-04-18
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Gunasekaran, Mohan
  • Mahendran, Mathusan

Abstract

Systems and methods of the present disclosure relate to control of a downhole tool via at least one radio isotope. The radio isotope(s) is pumped from the surface to contact an isotopic analyzer of the tool. The isotopic analyzer reads the isotope and directs the tool to perform a specific action(s) in the wellbore based on the type of isotope read by the analyzer.

IPC Classes  ?

  • G01V 3/30 - Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination or deviation specially adapted for well-logging operating with electromagnetic waves
  • G01V 3/12 - Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination or deviation operating with electromagnetic waves
  • E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
  • G01V 3/38 - Processing data, e.g. for analysis, for interpretation or for correction
  • E21B 41/00 - Equipment or details not covered by groups
  • E21B 23/06 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers

16.

WASHPIPE FREE FEATURE WITH BALL AND MAGNET

      
Application Number US2022048728
Publication Number 2024/081004
Status In Force
Filing Date 2022-11-02
Publication Date 2024-04-18
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • El Mallawany, Ibrahim
  • Greci, Stephen Michael

Abstract

A washpipe free feature may include a housing defining a chamber having a bypass portion and a securing portion. The housing has first and second bores to put the bypass portion in fluid communication with an annulus of a wellbore and a central bore of a downhole tubular, respectively. Further, the washpipe free feature includes a magnet secured in the bypass portion, a ferromagnetic ball disposed within the bypass portion, and a piston disposed within the chamber. A distal end of the piston blocks the ball from contacting the magnet in a run-in position such that the ball may plug the first bore in response to fluid flow from the tubular toward the annulus. Additionally, the piston is slideable to an open position such that the magnet may hold the ball out of a flow path between the first bore and the second bore in the bypass portion.

IPC Classes  ?

  • E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
  • E21B 23/04 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
  • E21B 34/10 - Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
  • E21B 37/08 - Methods or apparatus for cleaning boreholes or wells cleaning in situ of down-hole filters, screens, or gravel packs

17.

LATCH COLLET INCLUDING UNIQUE COLLET PROP BUTTONS

      
Application Number 18481536
Status Pending
Filing Date 2023-10-05
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a latch collet, a well system, and a method for forming a well system. The latch collet, in one aspect, includes a collet body, the collet body having a plurality of collet fingers. The latch collet, according to this aspect, further includes a collet prop button located on a radial interior of each of the plurality of collet fingers, the collet prop button configured to engage with a profile of a mandrel for running the latch collet downhole, and configured to be propped radially outward by the mandrel to cause torque buttons located on a radial exterior of each of the plurality of fingers to remain engaged with associated alignment profiles in a latch coupling when positioned at an acceptable position downhole.

IPC Classes  ?

  • E21B 17/046 - Couplings; Joints between rod and bit, or between rod and rod with ribs, pins, or jaws, and complementary grooves or the like, e.g. bayonet catches
  • E21B 23/06 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers

18.

LATCH COUPLING INCLUDING UNIQUE AXIAL ALIGNMENT SLOTS

      
Application Number 18481587
Status Pending
Filing Date 2023-10-05
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a latch coupling, a well system, and a method for forming a well system. The latch coupling, in one aspect, includes a housing having an outside diameter (OD) and an inside diameter (ID). The latch coupling, according to this aspect, further includes a plurality of axial alignment slots located along the inside diameter (ID) of the housing, wherein a width (WAS) of each of the plurality of axial alignment slots is within 10% of each other.

IPC Classes  ?

  • E21B 17/046 - Couplings; Joints between rod and bit, or between rod and rod with ribs, pins, or jaws, and complementary grooves or the like, e.g. bayonet catches

19.

DOWNHOLE TOOL INCLUDING A BORE SENSOR

      
Application Number 18481615
Status Pending
Filing Date 2023-10-05
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a downhole tool, a well system, and a method for forming a well system. The downhole tool, in one aspect, includes a latch collet including a collet body, the collet body having a collet body opening extending through a thickness (tcb) thereof and a plurality of collet fingers, as well as a mandrel positioned within the collet body, the mandrel having a mandrel slot therein. The downhole tool, according to this aspect, further includes a bore sensor positioned within the collet body opening and the mandrel slot, the bore sensor configured remain in a radially extended state when the latch collet is in too large size casing and configured to be pushed to a radially compressed state when the latch collet is in the correct size casing and thereby not prevent the collet body and the mandrel from sliding relative to one another.

IPC Classes  ?

  • E21B 23/02 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for locking the tools or the like in landing nipples or in recesses between adjacent sections of tubing
  • E21B 47/00 - Survey of boreholes or wells

20.

DOWNHOLE TOOL INCLUDING A LOCKING DOG

      
Application Number 18481644
Status Pending
Filing Date 2023-10-05
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a downhole tool, a well system, and a method for forming a well system. The downhole tool, in one aspect, includes a latch collet including a collet body, the collet body having a collet body slot on a radial interior surface thereof and a plurality of collet fingers, as well as a mandrel positioned within the collet body, the mandrel having a mandrel opening extending through a thickness (tm) thereof, and a running tool collet located within the mandrel, the running tool collet having a running tool collet slot on a radial exterior surface thereof. The downhole tool, according to this aspect, further includes a locking dog positioned within the mandrel opening.

IPC Classes  ?

  • E21B 23/03 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting the tools into, or removing the tools from, laterally offset landing nipples or pockets

21.

DOWNHOLE TOOL INCLUDING A FLUID LOSS DEVICE

      
Application Number 18481698
Status Pending
Filing Date 2023-10-05
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a downhole tool, a well system, and a method for forming a well system. The downhole tool, in one aspect, includes a whipstock assembly, and a completion assembly. The downhole tool, according to this aspect, further includes a fluid loss device positioned between the whipstock assembly and the completion assembly.

IPC Classes  ?

  • E21B 7/06 - Deflecting the direction of boreholes
  • E21B 23/01 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for anchoring the tools or the like

22.

DOWNHOLE TOOL INCLUDING A PACKER ASSEMBLY, A COMPLETION ASSEMBLY, AND A FIXEDLY COUPLED WHIPSTOCK ASSEMBLY

      
Application Number 18481734
Status Pending
Filing Date 2023-10-05
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Lajesic, Borisa
  • Larsen, Lars Petter
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a downhole tool, and a method for forming a well system. The downhole tool, in one aspect, includes a whipstock assembly, a packer assembly fixedly coupled to the to the whipstock assembly, and an anchor assembly coupled to the packer assembly. The downhole tool, according to this aspect, further includes a completion assembly coupled to the anchor assembly, the whipstock assembly, packer assembly, anchor assembly and the completion assembly configured to be run-in-hole in a single trip.

IPC Classes  ?

  • E21B 7/06 - Deflecting the direction of boreholes
  • E21B 23/06 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers

23.

DOWNHOLE TOOL INCLUDING A PACKER ASSEMBLY, A COMPLETION ASSEMBLY, AND A REMOVABLY COUPLED WHIPSTOCK ASSEMBLY

      
Application Number 18481793
Status Pending
Filing Date 2023-10-05
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Lajesic, Borisa
  • Larsen, Lars Petter
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a downhole tool, and a method for forming a well system. The downhole tool, in one aspect, includes a whipstock assembly, a packer assembly removably coupled to the to the whipstock assembly, and an anchor assembly coupled to the packer assembly. The downhole tool, according to this aspect, further includes a completion assembly coupled to the anchor assembly, the whipstock assembly, packer assembly, anchor assembly and the completion assembly configured to be run-in-hole in a single trip.

IPC Classes  ?

  • E21B 7/06 - Deflecting the direction of boreholes
  • E21B 23/06 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers

24.

SEAL BAG FOR SEAL OF AN ELECTRIC SUBMERSIBLE PUMP

      
Application Number 18513007
Status Pending
Filing Date 2023-11-17
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Beck, David Christopher
  • Dinkins, Walter

Abstract

A seal includes an outer housing and a seal bag internal to the outer housing. The outer housing can be positioned between a pump and an electric motor of an electric submersible pump. The seal bag can include an outer layer and an inner layer. The outer layer can be made from a first material to retain a structure of the outer layer in a swellable state in a wellbore. The inner layer can be made from a second material that is swellable in the wellbore in response to contact with a polar substance to seal a tear in the outer layer.

IPC Classes  ?

  • E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
  • F04B 47/06 - Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps having motor-pump units situated at great depth
  • F04B 53/16 - Casings; Cylinders; Cylinder liners or heads; Fluid connections
  • F04D 13/08 - Units comprising pumps and their driving means the pump being electrically driven for submerged use
  • F04D 13/10 - Units comprising pumps and their driving means the pump being electrically driven for submerged use adapted for use in mining bore holes
  • F04D 29/08 - Sealings

25.

Wedge-Cut Backing Of Acoustic Transducer For Improved Attenuation

      
Application Number 17961823
Status Pending
Filing Date 2022-10-07
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Sun, Jichun
  • Jin, Jing
  • Wu, Xiang
  • Jones, Christopher Michael
  • Koscheev, Gennady

Abstract

Systems and methods of the present disclosure relate to signal attenuation for acoustic logging tools. An acoustic logging tool includes acoustic transducers. Each acoustic transducer includes a body, a piezoelectric element disposed on a first end of the body to receive or transmit at least one signal, and a wedge-cut disposed on an opposite end of the body. The wedge-cut defines a sloped portion operable to attenuate signals.

IPC Classes  ?

26.

PRODUCTION SUB INCLUDING A FLUID FLOW ASSEMBLY HAVING A PAIR OF RADIAL BURST DISCS

      
Application Number 17960998
Status Pending
Filing Date 2022-10-06
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • El Mallawany, Ibrahim
  • Canning, Sean
  • Collins, Joseph Ray

Abstract

The present disclosure, in at least one aspect, provides a production sub, a well system, and a method. The production sub, in one aspect, includes a tubular having a length (l), an inside ID, an OD, and a sidewall thickness (t), a plurality of production ports extending through the sidewall thickness (t) and coupling the inside diameter (ID) and the outside diameter (OD), and a fluid flow assembly positioned in each of the plurality of production ports. Each fluid flow assembly, in one aspect, includes a radially interior burst disc, a radially exterior burst disc, a sealing member positioned in a chamber created between the radially interior burst disc and the radially exterior burst disc, and a sealing member seat located in the chamber proximate the radially exterior burst disc, the sealing member configured to engage with the sealing member seat as fluid is pushing the sealing member radially outward.

IPC Classes  ?

  • E21B 34/06 - Valve arrangements for boreholes or wells in wells
  • E21B 33/10 - Sealing or packing boreholes or wells in the borehole

27.

Autonomous Uncertainty-Aware Engine For Pressure Gradient Identification Using A Discrete Optimization Framework

      
Application Number 17958178
Status Pending
Filing Date 2022-09-30
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Chok, Hamed
  • Dai, Bin
  • Jones, Christopher Michael
  • Toelke, Jonas

Abstract

A method and system for identifying a fluid within a subterranean formation. The method may comprise obtaining one or more pressure measurements at one or more depths with a downhole fluid sampling tool, forming a depth-pressure measurement set form the one or more pressure measurements, creating a solution novelty threshold from at least the depth-pressure measurement set, constraining a solution space with the solution novelty threshold, and finding a solution-space-inscribed simplex within the solution novelty threshold. The method may further comprise generating a simplicial decomposition for a convex hull of the solution-space-inscribed simplex up to the solution novelty threshold, identifying at least one inscribed simplex within the convex hull of the solution-space-inscribed simplex, determining a novel simplex interior with the at least one inscribed simplex, and forming a plurality of solutions with the novel simplex interior.

IPC Classes  ?

28.

TUBING RETRIEVABLE SAFETY VALVE ASSEMBLY WITH SECONDARY FLAPPER AND SEAT

      
Application Number 17938341
Status Pending
Filing Date 2022-10-06
First Publication Date 2024-04-11
Owner Halliburton Energy services, Inc. (USA)
Inventor
  • Gonzalez, Merced
  • Mcfate, Charles David

Abstract

A tubing retrievable safety valve assembly and related methods are disclosed herein. The assembly includes a primary flapper, a secondary flapper, a flow tube, and a protective sleeve. The flow tube is shiftable between a downhole position that holds the primary flapper in an open position and an uphole position that allows the primary flapper to move to a closed position. The protective sleeve, when positioned in an uphole position, holds the secondary flapper valve in an open position. The protective sleeve is shiftable to a downhole position to allow the secondary flapper to move to a closed position, for example, upon failure of the primary flapper.

IPC Classes  ?

  • E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
  • F16K 31/44 - Mechanical actuating means
  • F16K 43/00 - Auxiliary closure means in valves, which in case of repair, e.g. rewashering, of the valve, can take over the function of the normal closure means; Devices for temporary replacement of parts of valves for the same purpose

29.

DRILL STRING ANGULAR OFFSET DETERMINATION

      
Application Number 17938195
Status Pending
Filing Date 2022-10-05
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Strachan, Michael John
  • Schiermeier, Pete Louis

Abstract

Systems and methods to determine angular offset between reference points on a drill string are achieved automatically using an electronic device, such as a handheld device. A first orientation value corresponding to the first highside reference point is obtained using the electronic device. A second a second orientation value corresponding the second highside reference point is obtained. The electronic device then calculates the angular offset between the first and second orientation values.

IPC Classes  ?

  • E21B 47/09 - Locating or determining the position of objects in boreholes or wells; Identifying the free or blocked portions of pipes

30.

DOWNHOLE POWER MANAGEMENT SYSTEM WITH RECHARGEABLE BATTERIES AND GENERATORS

      
Application Number US2022045888
Publication Number 2024/076345
Status In Force
Filing Date 2022-10-06
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor Vehra, Imran Sharif

Abstract

The disclosure provides a downhole power system that includes a combination of different power sources, which includes downhole power generators and rechargeable batteries that can be recharged downhole, a downhole bus and a bus power controller that manages the distribution of power from the different power sources to downhole tools connected to the downhole bus, such as tools of a BHA. The different power sources can be strategically positioned along the downhole bus / BHA. An example of a downhole distributed power system includes: (1) a downhole bus, (2) different power sources connected to and strategically positioned on the downhole bus, and (3) one or more controllers to perform operations that includes managing distribution of power, from the different power sources, to downhole tools connected to the downhole bus, wherein the different power sources include one or more power generators and one or more rechargeable batteries that are chargeable downhole.

IPC Classes  ?

  • H02J 3/00 - Circuit arrangements for ac mains or ac distribution networks
  • H02J 7/14 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
  • E21B 41/00 - Equipment or details not covered by groups

31.

PRODUCTION SUB INCLUDING DEGRADABLE ORIFICE

      
Application Number US2022045999
Publication Number 2024/076347
Status In Force
Filing Date 2022-10-07
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • El Mallawany, Ibrahim
  • Canning, Sean
  • Collins, Joseph Ray

Abstract

The present disclosure, in at least one aspect, provides a production sub, a well system, and a method. The production sub, in one aspect, includes a tubular having a length (l), an inside diameter (ID), an outside diameter (OD), and a sidewall thickness (t), a plurality of production ports extending through the sidewall thickness (t) and coupling the inside diameter (ID) and the outside diameter (OD), and a fluid flow assembly positioned in each of the plurality of production ports. Each fluid flow assembly, in one aspect, includes a radially interior burst disc, as well as a degradable fluid flow orifice positioned radially outside of the radially interior burst disk, the degradable fluid flow orifice configured to degrade over time after the radially interior burst disc has burst to increase a flow volume through the production port.

IPC Classes  ?

  • E21B 34/06 - Valve arrangements for boreholes or wells in wells
  • E21B 34/10 - Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
  • E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
  • E21B 33/14 - Methods or devices for cementing, for plugging holes, crevices, or the like for cementing casings into boreholes

32.

PERFORATING SYSTEM ORIENTATION APPARATUS AND METHOD OF ORIENTING PERFORATING GUNS

      
Application Number US2022047460
Publication Number 2024/076350
Status In Force
Filing Date 2022-10-21
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Cook, Jason Karl
  • Acker, Jeffery Richard

Abstract

A system for landing a perforating gun in a particular orientation may include a landing housing securable within a wellbore and having at least one key slot extending into an inner surface of the landing housing. The system further includes a latch assembly configured to couple to the landing housing in a particular orientation. The latch assembly includes a tubular support structure and at least one key feature configured to extend and retract radially through a sidewall of the tubular support structure. The latch assembly further includes a biasing mechanism configured to bias the at least one key feature into the at least one key slot to couple the latch assembly to the landing housing. Additionally, the system includes a perforating gun system secured to the latch assembly such that the orientation of the latch assembly aims the perforating gun system in the wellbore.

IPC Classes  ?

  • E21B 43/116 - Gun or shaped-charge perforators
  • E21B 43/119 - Perforators; Permeators - Details, e.g. for locating perforating place or direction

33.

WEDGE-CUT BACKING OF ACOUSTIC TRANSDUCER FOR IMPROVED ATTENUATION

      
Application Number US2022047887
Publication Number 2024/076351
Status In Force
Filing Date 2022-10-26
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Sun, Jichun
  • Jin, Jing
  • Wu, Xiang
  • Jones, Christopher Michael
  • Koscheev, Gennady

Abstract

Systems and methods of the present disclosure relate to signal attenuation for acoustic logging tools. An acoustic logging tool includes acoustic transducers. Each acoustic transducer includes a body, a piezoelectric element disposed on a first end of the body to receive or transmit at least one signal, and a wedge-cut disposed on an opposite end of the body. The wedge-cut defines a sloped portion operable to attenuate signals.

IPC Classes  ?

  • G01V 1/44 - Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
  • G01V 1/52 - Structural details
  • E21B 47/14 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
  • B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
  • E21B 10/58 - Chisel-type inserts

34.

SEALING ELEMENT OF ISOLATION DEVICE WITH INNER CORE AND OUTER SHELL

      
Application Number US2022077839
Publication Number 2024/076378
Status In Force
Filing Date 2022-10-10
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Moeller, Daniel, Keith
  • Milne, Adam, J.

Abstract

A treatment operation can be performed in a wellbore. A zonal isolation device, such as a frac plug, can be set within a tubing string in the wellbore to isolate one zone from another zone. The plug can include a slip system and a sealing element located circumferentially around an inner mandrel of the plug. The sealing element can include an outer shell that surrounds an inner core. The outer shell can be made from a material having a high Young's modulus, while the inner core can have a very low Young's modulus. The outer shell can prevent premature deformation and expansion of the sealing element during run in. The outer shell and inner core can wholly or partially disintegrate in a desired a period of time after setting of the plug in the tubing string.

IPC Classes  ?

  • E21B 33/12 - Packers; Plugs
  • E21B 33/129 - Packers; Plugs with mechanical slips for hooking into the casing
  • E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools

35.

A LATCH COLLET INCLUDING UNIQUE COLLET PROP BUTTONS

      
Application Number US2023034619
Publication Number 2024/076722
Status In Force
Filing Date 2023-10-06
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a latch collet, a well system, and a method for forming a well system. The latch collet, in one aspect, includes a collet body, the collet body having a plurality of collet fingers. The latch collet, according to this aspect, further includes a collet prop button located on a radial interior of each of the plurality of collet fingers, the collet prop button configured to engage with a profile of a mandrel for running the latch collet downhole, and configured to be propped radially outward by the mandrel to cause torque buttons located on a radial exterior of each of the plurality of fingers to remain engaged with associated alignment profiles in a latch coupling when positioned at an acceptable position downhole.

IPC Classes  ?

  • E21B 23/02 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for locking the tools or the like in landing nipples or in recesses between adjacent sections of tubing
  • E21B 23/01 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for anchoring the tools or the like
  • E21B 41/00 - Equipment or details not covered by groups

36.

A LATCH COUPLING INCLUDING UNIQUE AXIAL ALIGNMENT SLOTS

      
Application Number US2023034630
Publication Number 2024/076727
Status In Force
Filing Date 2023-10-06
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a latch coupling, a well system, and a method for forming a well system. The latch coupling, in one aspect, includes a housing having an outside diameter (OD) and an inside diameter (ID). The latch coupling, according to this aspect, further includes a plurality of axial alignment slots located along the inside diameter (ID) of the housing, wherein a width (WAS) of each of the plurality of axial alignment slots is within 10% of each other.

IPC Classes  ?

  • E21B 23/02 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for locking the tools or the like in landing nipples or in recesses between adjacent sections of tubing
  • E21B 33/129 - Packers; Plugs with mechanical slips for hooking into the casing
  • E21B 41/00 - Equipment or details not covered by groups
  • E21B 7/06 - Deflecting the direction of boreholes

37.

A DOWNHOLE TOOL INCLUDING A BORE SENSOR

      
Application Number US2023034634
Publication Number 2024/076729
Status In Force
Filing Date 2023-10-06
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

cbcb) thereof and a plurality of collet fingers, as well as a mandrel positioned within the collet body, the mandrel having a mandrel slot therein. The downhole tool, according to this aspect, further includes a bore sensor positioned within the collet body opening and the mandrel slot, the bore sensor configured remain in a radially extended state when the latch collet is in too large size casing and configured to be pushed to a radially compressed state when the latch collet is in the correct size casing and thereby not prevent the collet body and the mandrel from sliding relative to one another.

IPC Classes  ?

  • E21B 47/01 - Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
  • E21B 7/06 - Deflecting the direction of boreholes
  • E21B 41/00 - Equipment or details not covered by groups
  • E21B 34/10 - Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole

38.

A DOWNHOLE TOOL INCLUDING A LOCKING DOG

      
Application Number US2023034642
Publication Number 2024/076734
Status In Force
Filing Date 2023-10-06
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

mm) thereof, and a running tool collet located within the mandrel, the running tool collet having a running tool collet slot on a radial exterior surface thereof. The downhole tool, according to this aspect, further includes a locking dog positioned within the mandrel opening.

IPC Classes  ?

  • E21B 23/02 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for locking the tools or the like in landing nipples or in recesses between adjacent sections of tubing
  • E21B 34/10 - Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
  • E21B 41/00 - Equipment or details not covered by groups
  • E21B 7/06 - Deflecting the direction of boreholes

39.

A DOWNHOLE TOOL INCLUDING A FLUID LOSS DEVICE

      
Application Number US2023034671
Publication Number 2024/076753
Status In Force
Filing Date 2023-10-06
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a downhole tool, a well system, and a method for forming a well system. The downhole tool, in one aspect, includes a whipstock assembly, and a completion assembly. The downhole tool, according to this aspect, further includes a fluid loss device positioned between the whipstock assembly and the completion assembly.

IPC Classes  ?

  • E21B 7/06 - Deflecting the direction of boreholes
  • E21B 29/06 - Cutting windows, e.g. directional window cutters for whipstock operations
  • E21B 41/00 - Equipment or details not covered by groups
  • E21B 23/01 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for anchoring the tools or the like

40.

A TWO-PART DRILLING AND RUNNING TOOL INCLUDING A ONE WAY MECHANISM

      
Application Number US2023034684
Publication Number 2024/076762
Status In Force
Filing Date 2023-10-06
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a two-part drilling and running tool, a well system, and a method for forming a well system. The two-part drilling and running tool, in one aspect, includes a conveyance, a smaller assembly coupled to an end of the conveyance, and a larger bit assembly slidably coupled to the conveyance, the smaller assembly and larger bit assembly configured to slidingly engage one another downhole to form a combined bit assembly. The two-part drilling and running tool, according to this aspect, further includes a one way mechanism coupled between the smaller assembly and the larger bit assembly, the one way mechanism configured to allow the smaller assembly and larger bit assembly to axially slide in one direction relative to one another and prevent the smaller assembly and larger bit assembly from axially sliding in an opposite direction relative to one another.

IPC Classes  ?

  • E21B 41/00 - Equipment or details not covered by groups
  • E21B 7/06 - Deflecting the direction of boreholes
  • E21B 10/64 - Drill bits characterised by the whole or part thereof being insertable into or removable from the borehole without withdrawing the drilling pipe
  • E21B 10/62 - Drill bits characterised by parts, e.g. cutting elements, which are detachable or adjustable

41.

A DOWNHOLE TOOL INCLUDING A PACKER ASSEMBLY, A COMPLETION ASSEMBLY, AND A FIXEDLY COUPLED WHIPSTOCK ASSEMBLY

      
Application Number US2023076204
Publication Number 2024/077219
Status In Force
Filing Date 2023-10-06
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Larsen, Lars, Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a downhole tool, and a method for forming a well system. The downhole tool, in one aspect, includes a whipstock assembly, a packer assembly fixedly coupled to the whipstock assembly, and an anchor assembly coupled to the packer assembly. The downhole tool, according to this aspect, further includes a completion assembly coupled to the anchor assembly, the whipstock assembly, packer assembly, anchor assembly and the completion assembly configured to be run-in-hole in a single trip.

IPC Classes  ?

  • E21B 7/06 - Deflecting the direction of boreholes
  • E21B 23/06 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers
  • E21B 23/01 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for anchoring the tools or the like
  • E21B 41/00 - Equipment or details not covered by groups

42.

LATCH COLLET INCLUDING UNIQUE TORQUE BUTTONS

      
Application Number 18481516
Status Pending
Filing Date 2023-10-05
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a latch collet, a well system, and a method for forming a well system. The latch collet, in one aspect, includes a collet body, the collet body having a plurality of collet fingers. The latch collet, according to this aspect, further includes a torque button located on a radial exterior of each of the plurality of collet fingers, wherein a width (WTB) of each of the torque buttons is within 10% of each other.

IPC Classes  ?

  • E21B 41/00 - Equipment or details not covered by groups

43.

DOWNHOLE TOOL INCLUDING A PACKER ASSEMBLY

      
Application Number 18481666
Status Pending
Filing Date 2023-10-05
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a downhole tool, a well system, and a method for forming a well system. The downhole tool, in one aspect, includes a latch collet including a collet body, the collet body having a plurality of collet fingers, and a mandrel positioned within the collet body. The downhole tool, according to this aspect, further includes a packer assembly positioned axially between the collet body and the mandrel, the packer assembly configured to move from a radially retracted state when the mandrel and collet body are being run-in-hole to a radially extended state when the collet body has engaged with a latching profile and weight is placed down upon the packer assembly.

IPC Classes  ?

  • E21B 33/12 - Packers; Plugs
  • E21B 23/06 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers

44.

TWO-PART DRILLING AND RUNNING TOOL INCLUDING A ONE WAY MECHANISM

      
Application Number 18481718
Status Pending
Filing Date 2023-10-05
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a two-part drilling and running tool, a well system, and a method for forming a well system. The two-part drilling and running tool, in one aspect, includes a conveyance, a smaller assembly coupled to an end of the conveyance, and a larger bit assembly slidably coupled to the conveyance, the smaller assembly and larger bit assembly configured to slidingly engage one another downhole to form a combined bit assembly. The two-part drilling and running tool, according to this aspect, further includes a one way mechanism coupled between the smaller assembly and the larger bit assembly, the one way mechanism configured to allow the smaller assembly and larger bit assembly to axially slide in one direction relative to one another and prevent the smaller assembly and larger bit assembly from axially sliding in an opposite direction relative to one another.

IPC Classes  ?

  • E21B 41/00 - Equipment or details not covered by groups

45.

MIXTURE FOR PRE-CEMENTING OPERATION IN WELLBORE

      
Application Number 18543002
Status Pending
Filing Date 2023-12-18
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Agapiou, Kyriacos
  • Pisklak, Thomas Jason
  • Benkley, James Robert
  • Pineda, Claudia
  • Jones, Paul J.

Abstract

A treatment fluid for performing one or more pre-cementing operations in a wellbore can include a base fluid, a viscosifier, and a crushed glass material. The viscosifier can be dispersed in the base fluid. The crushed glass material can be dispersed in the base fluid for performing one or more cementing operations with respect to the wellbore.

IPC Classes  ?

  • C09K 8/504 - Compositions based on water or polar solvents
  • C09K 8/40 - Spacer compositions, e.g. compositions used to separate well-drilling from cementing masses
  • C09K 8/50 - Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls

46.

SEALING ELEMENT OF ISOLATION DEVICE WITH INNER CORE AND OUTER SHELL

      
Application Number 17938841
Status Pending
Filing Date 2022-10-07
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Moeller, Daniel Keith
  • Milne, Adam J.

Abstract

A treatment operation can be performed in a wellbore. A zonal isolation device, such as a frac plug, can be set within a tubing string in the wellbore to isolate one zone from another zone. The plug can include a slip system and a sealing element located circumferentially around an inner mandrel of the plug. The sealing element can include an outer shell that surrounds an inner core. The outer shell can be made from a material having a high Young's modulus, while the inner core can have a very low Young's modulus. The outer shell can prevent premature deformation and expansion of the sealing element during run in. The outer shell and inner core can wholly or partially disintegrate in a desired a period of time after setting of the plug in the tubing string.

IPC Classes  ?

  • E21B 33/124 - Units with longitudinally-spaced plugs for isolating the intermediate space

47.

Integration of Stored Kinetic Energy in Downhole Electrical Interval Control Valves

      
Application Number 17963893
Status Pending
Filing Date 2022-10-11
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Gunasekaran, Mohan
  • James, Paul

Abstract

Systems and methods of the present disclosure relate to actuator assemblies for downhole tools. An actuator assembly comprises a motor, a spring and a hammer. The spring is adjacent to the hammer, and the hammer operable to compress the spring. The spring is operable to expand. The assembly also includes an anvil adjacent to the hammer. The anvil is operable to move a portion of the downhole tool.

IPC Classes  ?

  • E21B 31/107 - Fishing for or freeing objects in boreholes or wells using impact means for releasing stuck parts, e.g. jars
  • E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools

48.

PRODUCTION SUB INCLUDING DEGRADABLE ORIFICE

      
Application Number 17961019
Status Pending
Filing Date 2022-10-06
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • El Mallawany, Ibrahim
  • Canning, Sean
  • Collins, Joseph Ray

Abstract

The present disclosure, in at least one aspect, provides a production sub, a well system, and a method. The production sub, in one aspect, includes a tubular having a length (l), an inside diameter (ID), an outside diameter (OD), and a sidewall thickness (t), a plurality of production ports extending through the sidewall thickness (t) and coupling the inside diameter (ID) and the outside diameter (OD), and a fluid flow assembly positioned in each of the plurality of production ports. Each fluid flow assembly, in one aspect, includes a radially interior burst disc, as well as a degradable fluid flow orifice positioned radially outside of the radially interior burst disk, the degradable fluid flow orifice configured to degrade over time after the radially interior burst disc has burst to increase a flow volume through the production port.

IPC Classes  ?

  • E21B 34/06 - Valve arrangements for boreholes or wells in wells

49.

VIRTUAL FLOW METERING USING ACOUSTICS

      
Application Number 17961291
Status Pending
Filing Date 2022-10-06
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Drew, Julian Edmund
  • Schaeffer, Benjamin Simon
  • Jaaskelainen, Mikko

Abstract

A computer-implemented method for determining flow information of a well producing fluid from a subsurface formation comprising. The method comprises obtaining at least one first production measurement from the well. The method comprises obtaining, with a sensor, a first measurement generated by the fluid flowing through a device. The method comprises inputting the first measurement and the at least one first production measurement into a virtual flow meter. The method comprises determining, via the virtual flow meter, a multi-phase flow rate of the fluid based on the first measurement and the at least one first production measurement.

IPC Classes  ?

  • G01F 1/66 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters

50.

LINER HANGER SYSTEM

      
Application Number 18045618
Status Pending
Filing Date 2022-10-11
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Zhong, Xiaoguang Allan
  • Zhao, Yian
  • Newton, Daniel

Abstract

A liner hanger system for use in a subterranean well is disclosed. The liner hanger system comprises a well casing and a liner hanger. The liner hanger comprises a spike extending in an annular ring around an outer perimeter of the liner hanger. The spike comprises an annular groove defined therein. The liner hanger further comprises an annular seal positioned at least partially within the annular groove. The liner hanger is expandable to transition between an initial state where the spike is not in contact with the well casing and an expanded state where the spike is in contact with the well casing. The spike and the annular seal are configured to seal an uphole well portion from a downhole well portion when the liner hanger is in the expanded state.

IPC Classes  ?

51.

DOWNHOLE POWER MANAGEMENT SYSTEM WITH RECHARGEABLE BATTERIES AND GENERATORS

      
Application Number 17960227
Status Pending
Filing Date 2022-10-05
First Publication Date 2024-04-11
Owner Halliburton Energy Services, Inc. (USA)
Inventor Vehra, Imran Sharif

Abstract

The disclosure provides a downhole power system that includes a combination of different power sources, which includes downhole power generators and rechargeable batteries that can be recharged downhole, a downhole bus and a bus power controller that manages the distribution of power from the different power sources to downhole tools connected to the downhole bus, such as tools of a BHA. The different power sources can be strategically positioned along the downhole bus/BHA. An example of a downhole distributed power system includes: (1) a downhole bus, (2) different power sources connected to and strategically positioned on the downhole bus, and (3) one or more controllers to perform operations that includes managing distribution of power, from the different power sources, to downhole tools connected to the downhole bus, wherein the different power sources include one or more power generators and one or more rechargeable batteries that are chargeable downhole.

IPC Classes  ?

  • E21B 41/00 - Equipment or details not covered by groups
  • E21B 21/08 - Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
  • E21B 47/06 - Measuring temperature or pressure
  • H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

52.

A DOWNHOLE TOOL INCLUDING A PACKER ASSEMBLY, A COMPLETION ASSEMBLY, AND A REMOVABLY COUPLED WHIPSTOCK ASSEMBLY

      
Application Number US2023076216
Publication Number 2024/077226
Status In Force
Filing Date 2023-10-06
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a downhole tool, and a method for forming a well system. The downhole tool, in one aspect, includes a whipstock assembly, a packer assembly removably coupled to the to the whipstock assembly, and an anchor assembly coupled to the packer assembly. The downhole tool, according to this aspect, further includes a completion assembly coupled to the anchor assembly, the whipstock assembly, packer assembly, anchor assembly and the completion assembly configured to be run-in-hole in a single trip.

IPC Classes  ?

  • E21B 29/06 - Cutting windows, e.g. directional window cutters for whipstock operations
  • E21B 7/06 - Deflecting the direction of boreholes
  • E21B 23/01 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for anchoring the tools or the like

53.

PRODUCTION SUB INCLUDING A FLUID FLOW ASSEMBLY HAVING A PAIR OF RADIAL BURST DISCS

      
Application Number US2022045980
Publication Number 2024/076346
Status In Force
Filing Date 2022-10-07
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • El Mallawany, Ibrahim
  • Canning, Sean
  • Collins, Joseph Ray

Abstract

The present disclosure, in at least one aspect, provides a production sub, a well system, and a method. The production sub, in one aspect, includes a tubular having a length (l), an inside ID, an OD, and a sidewall thickness (t), a plurality of production ports extending through the sidewall thickness (t) and coupling the inside diameter (ID) and the outside diameter (OD), and a fluid flow assembly positioned in each of the plurality of production ports. Each fluid flow assembly, in one aspect, includes a radially interior burst disc, a radially exterior burst disc, a sealing member positioned in a chamber created between the radially interior burst disc and the radially exterior burst disc, and a sealing member seat located in the chamber proximate the radially exterior burst disc, the sealing member configured to engage with the sealing member seat as fluid is pushing the sealing member radially outward.

IPC Classes  ?

  • E21B 34/06 - Valve arrangements for boreholes or wells in wells
  • E21B 34/10 - Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
  • E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
  • E21B 33/14 - Methods or devices for cementing, for plugging holes, crevices, or the like for cementing casings into boreholes

54.

DRILL STRING ANGULAR OFFSET DETERMINATION

      
Application Number US2022077602
Publication Number 2024/076364
Status In Force
Filing Date 2022-10-05
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Strachan, Michael, John
  • Schiermeier, Pete, Louis

Abstract

Systems and methods to determine angular offset between reference points on a drill string are achieved automatically using an electronic device, such as a handheld device. A first orientation value corresponding to the first highside reference point is obtained using the electronic device. A second a second orientation value corresponding the second highside reference point is obtained. The electronic device then calculates the angular offset between the first and second orientation values.

IPC Classes  ?

  • E21B 7/06 - Deflecting the direction of boreholes
  • E21B 44/02 - Automatic control of the tool feed

55.

TUBING RETRIEVABLE SAFETY VALVE ASSEMBLY WITH SECONDARY FLAPPER AND SEAT

      
Application Number US2022077657
Publication Number 2024/076367
Status In Force
Filing Date 2022-10-06
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Gonzalez, Merced
  • Mcfate, Charles David

Abstract

A tubing retrievable safety valve assembly and related methods are disclosed herein. The assembly includes a primary flapper, a secondary flapper, a flow tube, and a protective sleeve. The flow tube is shiftable between a downhole position that holds the primary flapper in an open position and an uphole position that allows the primary flapper to move to a closed position. The protective sleeve, when positioned in an uphole position, holds the secondary flapper valve in an open position. The protective sleeve is shiftable to a downhole position to allow the secondary flapper to move to a closed position, for example, upon failure of the primary flapper.

IPC Classes  ?

  • E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
  • E21B 34/12 - Valve arrangements for boreholes or wells in wells operated by movement of casings or tubings

56.

VIRTUAL FLOW METERING USING ACOUSTICS

      
Application Number US2022077805
Publication Number 2024/076374
Status In Force
Filing Date 2022-10-07
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Drew, Julian, Edmund
  • Schaeffer, Benjamin, Simon
  • Jaaskelainen, Mikko

Abstract

A computer-implemented method for determining flow information of a well producing fluid from a subsurface formation comprising. The method comprises obtaining at least one first production measurement from the well. The method comprises obtaining, with a sensor, a first measurement generated by the fluid flowing through a device. The method comprises inputting the first measurement and the at least one first production measurement into a virtual flow meter. The method comprises determining, via the virtual flow meter, a multi-phase flow rate of the fluid based on the first measurement and the at least one first production measurement.

IPC Classes  ?

  • E21B 47/107 - Locating fluid leaks, intrusions or movements using acoustic means
  • E21B 49/08 - Obtaining fluid samples or testing fluids, in boreholes or wells
  • E21B 47/06 - Measuring temperature or pressure

57.

DOWNHOLE PUMP INTAKE PRESSURE PREDICTION

      
Application Number US2023027253
Publication Number 2024/076406
Status In Force
Filing Date 2023-07-10
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Hu, Yuzhu
  • Corredor, Frank
  • Sjerps, Hans
  • Newport, Casey, Laine
  • Webster, Joshua, Wayne
  • Hill, Jason, Eugene
  • Castro, Clara, Susana, Tandazo

Abstract

Aspects of the subject technology relate to systems, methods, and computer-readable media for identifying a wellbore pressure based on a predicted pump intake loss. A pump intake pressure after an intake for a submersible pump deployed downhole in a wellbore is identified. An intake loss prediction model for identifying a virtual intake loss associated with the intake for the submersible pump as a function of one or more intake loss parameters is accessed. The virtual intake loss is identified by applying the intake loss prediction model based on intake loss prediction input of the one or more intake loss parameters. A pump intake pressure before the intake for the submersible pump is determined based on the virtual intake loss and the identified pump intake pressure after the intake.

IPC Classes  ?

  • E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
  • E21B 47/06 - Measuring temperature or pressure
  • E21B 47/10 - Locating fluid leaks, intrusions or movements
  • G06N 20/00 - Machine learning

58.

A LATCH COLLET INCLUDING UNIQUE TORQUE BUTTONS

      
Application Number US2023034614
Publication Number 2024/076718
Status In Force
Filing Date 2023-10-06
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a latch collet, a well system, and a method for forming a well system. The latch collet, in one aspect, includes a collet body, the collet body having a plurality of collet fingers. The latch collet, according to this aspect, further includes a torque button located on a radial exterior of each of the plurality of collet fingers, wherein a width (WTB) of each of the torque buttons is within 10% of each other.

IPC Classes  ?

  • E21B 23/02 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for locking the tools or the like in landing nipples or in recesses between adjacent sections of tubing
  • E21B 7/06 - Deflecting the direction of boreholes
  • E21B 41/00 - Equipment or details not covered by groups

59.

A DOWNHOLE TOOL INCLUDING A PACKER ASSEMBLY

      
Application Number US2023034661
Publication Number 2024/076745
Status In Force
Filing Date 2023-10-06
Publication Date 2024-04-11
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Larsen, Lars Petter
  • Lajesic, Borisa
  • Falnes, Morten
  • Dyrseth, Vegard

Abstract

Provided is a downhole tool, a well system, and a method for forming a well system. The downhole tool, in one aspect, includes a latch collet including a collet body, the collet body having a plurality of collet fingers, and a mandrel positioned within the collet body. The downhole tool, according to this aspect, further includes a packer assembly positioned axially between the collet body and the mandrel, the packer assembly configured to move from a radially retracted state when the mandrel and collet body are being run-in-hole to a radially extended state when the collet body has engaged with a latching profile and weight is placed down upon the packer assembly.

IPC Classes  ?

  • E21B 33/128 - Packers; Plugs with a member expanded radially by axial pressure
  • E21B 33/129 - Packers; Plugs with mechanical slips for hooking into the casing
  • E21B 23/06 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers
  • E21B 34/10 - Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
  • E21B 41/00 - Equipment or details not covered by groups

60.

Centrifugal pump stage diffuser

      
Application Number 17973997
Grant Number 11953024
Status In Force
Filing Date 2022-10-26
First Publication Date 2024-04-09
Grant Date 2024-04-09
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Sheth, Ketankumar K.
  • Brown, Donn J.
  • Goshorn, Gerald Glen

Abstract

A submersible pump assembly. The submersible pump assembly comprises a motor comprising a first drive shaft; a seal section comprising a second drive shaft that is coupled to the first drive shaft of the motor; and a centrifugal pump assembly comprising a third drive shaft that is coupled to the second drive shaft of the seal section and a plurality of pump stages, wherein each pump stage comprises an impeller coupled to the third drive shaft and a diffuser retained by a housing of the centrifugal pump assembly, wherein the diffuser of each pump stage comprises a first plurality of vanes each having a first axial length and a second plurality of vanes each disposed between a pair of vanes of the first plurality of vanes and each having a second axial length, wherein the second axial length is less than the first axial length.

IPC Classes  ?

  • F04D 29/44 - Fluid-guiding means, e.g. diffusers
  • E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
  • F04D 1/06 - Multi-stage pumps
  • F04D 13/08 - Units comprising pumps and their driving means the pump being electrically driven for submerged use
  • F04D 29/62 - Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps

61.

Display screen or portion thereof with a graphical user interface of an electronic device

      
Application Number 29758001
Grant Number D1021914
Status In Force
Filing Date 2020-11-11
First Publication Date 2024-04-09
Grant Date 2024-04-09
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Mclennan, Andrew Scott
  • Balanza Villegas, Jose Antonio
  • Khan, Jameel Ahmad
  • Herrera, Adan Hernandez

62.

Washpipe free feature with ball and magnet

      
Application Number 17963757
Grant Number 11952873
Status In Force
Filing Date 2022-10-11
First Publication Date 2024-04-09
Grant Date 2024-04-09
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • El Mallawany, Ibrahim
  • Greci, Stephen Michael

Abstract

A washpipe free feature may include a housing defining a chamber having a bypass portion and a securing portion. The housing has first and second bores to put the bypass portion in fluid communication with an annulus of a wellbore and a central bore of a downhole tubular, respectively. Further, the washpipe free feature includes a magnet secured in the bypass portion, a ferromagnetic ball disposed within the bypass portion, and a piston disposed within the chamber. A distal end of the piston blocks the ball from contacting the magnet in a run-in position such that the ball may plug the first bore in response to fluid flow from the tubular toward the annulus. Additionally, the piston is slideable to an open position such that the magnet may hold the ball out of a flow path between the first bore and the second bore in the bypass portion.

IPC Classes  ?

  • E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
  • E21B 33/127 - Packers; Plugs with inflatable sleeve

63.

LINER HANGER EXPANSION TOOL WITH ROTATING BALL VALVE

      
Application Number 17936482
Status Pending
Filing Date 2022-09-29
First Publication Date 2024-04-04
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Maddux, Stephen Ross
  • Newton, Daniel

Abstract

A rotating ball valve may be employed in a liner hanger setting tool. A rotating ball member maintains contact with a valve seat throughout the operation of the rotating ball valve, thereby preventing debris from settling on the valve seat and compromising the integrity of a seal through a fluid flow path defined through the setting tool. The rotating ball valve may be actuated by selectively applying fluid pressure to the flow path, or by mechanical manipulation. Once the fluid flow path is closed, a latch may be activated to maintain the rotating ball valve in the closed configuration and a pressure may be applied against the closed rotating ball member. A downhole movement be induced by the applied pressure to drive an expansion cone through an expandable liner hanger, to secure a liner in the wellbore.

IPC Classes  ?

  • E21B 43/10 - Setting of casings, screens or liners in wells

64.

Shaped Cutter With Peripheral Cutting Teeth And Tapered Open Region

      
Application Number 17956659
Status Pending
Filing Date 2022-09-29
First Publication Date 2024-04-04
Owner Halliburton Energy Services, Inc. (USA)
Inventor Chen, Shilin

Abstract

A shaped cutter has a plurality of peripheral cutting teeth to enhance drilling. The shaped cutter may enhance rock failure modes in addition to shearing, such as by indentation, impacting, scraping and grinding. The peripheral cutting teeth are located along the periphery, where cutting energy and forces may be highest. An open region radially inward of the peripheral cutting teeth may be axially recessed to increase the proportion of cutting load on the peripheral cutting teeth. The cutting table may be tapered to modify a back rake angle. The flared periphery may result in a sharper indentation angle and/or larger radius of contact. The plurality of cutting teeth may also exploit vibrations in the drill string to enhance rock failure.

IPC Classes  ?

  • E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts

65.

Shaped Cutter With Multiple Radial Ridge Sets

      
Application Number 17956671
Status Pending
Filing Date 2022-09-29
First Publication Date 2024-04-04
Owner Halliburton Energy Services, Inc. (USA)
Inventor Chen, Shilin

Abstract

Various shaped cutters are disclosed for use on a drill bit or other wellbore forming tool. In one aspect, the shaped cutter includes a plurality of radial ridge sets. Each radial ridge set includes a plurality of ridges radially extending along the cutting table between a periphery of the cutting table and the cutter axis. The cutter may be positioned on the drill bit with one of the radial ridge sets exposed to the formation so the ridges may generate multiple cracks in the formation while drilling. After the current radial ridge set becomes worn, the cutter may be repositioned on the drill bit to expose another one of the radial ridge sets, such as during a repair, refurbish, or maintenance operation. The plurality of ridges may also exploit vibrations in the drill string to enhance rock failure.

IPC Classes  ?

  • E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
  • E21B 10/573 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts - characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element

66.

TARGET GAS LOADING FOR NEUTRON GENERATOR

      
Application Number 17957026
Status Pending
Filing Date 2022-09-30
First Publication Date 2024-04-04
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Zhou, Zilu
  • Guo, Weijun

Abstract

A method includes operating a neutron generator in a loading mode by ionizing ionizable gas within an ion source of the neutron generator to create a plurality of ions, and accelerating the plurality of ions by providing a first voltage to a target rod that supports the target to create a first ion beam that bombards a target of the neutron generator. The method also includes operating the neutron generator in a generating mode to generate a plurality of neutrons by accelerating the plurality of ions by providing a second voltage to the target rod to create a second ion beam that bombards the target. The second voltage is greater than the first voltage.

IPC Classes  ?

  • H05H 3/06 - Generating neutron beams
  • G01V 5/10 - Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources
  • G21B 1/19 - Targets for producing thermonuclear fusion reactions

67.

WELLBORE EXCLUSION FLUID METHOD AND APPARATUS FOR DOWNHOLE LOGGING

      
Application Number 17957231
Status Pending
Filing Date 2022-09-30
First Publication Date 2024-04-04
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Jones, Christopher Michael
  • Wu, Xiang
  • Sun, Jichun

Abstract

In some embodiments, a downhole logging tool configured for placement in a wellbore comprises a first magnet configured to activate a first volume of ferromagnetic fluid disposed between the downhole logging tool and the wellbore to achieve a first seal between a primary analysis region of the downhole logging tool and a wellbore fluid.

IPC Classes  ?

  • G01V 11/00 - Prospecting or detecting by methods combining techniques covered by two or more of main groups
  • F16J 15/43 - Sealings between relatively-moving surfaces by means of fluid kept in sealing position by magnetic force

68.

Perforating System Orientation Apparatus And Method Of Orienting Perforating Guns

      
Application Number 17959775
Status Pending
Filing Date 2022-10-04
First Publication Date 2024-04-04
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Cook, Jason Karl
  • Acker, Jeffery Richard

Abstract

A system for landing a perforating gun in a particular orientation may include a landing housing securable within a wellbore and having at least one key slot extending into an inner surface of the landing housing. The system further includes a latch assembly configured to couple to the landing housing in a particular orientation. The latch assembly includes a tubular support structure and at least one key feature configured to extend and retract radially through a sidewall of the tubular support structure. The latch assembly further includes a biasing mechanism configured to bias the at least one key feature into the at least one key slot to couple the latch assembly to the landing housing. Additionally, the system includes a perforating gun system secured to the latch assembly such that the orientation of the latch assembly aims the perforating gun system in the wellbore.

IPC Classes  ?

  • E21B 43/119 - Perforators; Permeators - Details, e.g. for locating perforating place or direction
  • E21B 43/117 - Shaped-charge perforators

69.

DOWNHOLE PUMP INTAKE PRESSURE PREDICTION

      
Application Number 17961750
Status Pending
Filing Date 2022-10-07
First Publication Date 2024-04-04
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Hu, Yuzhu
  • Corredor, Frank
  • Sjerps, Hans
  • Newport, Casey Laine
  • Webster, Joshua Wayne
  • Hill, Jason Eugene
  • Castro, Clara Susana Tandazo

Abstract

Aspects of the subject technology relate to systems, methods, and computer-readable media for identifying a wellbore pressure based on a predicted pump intake loss. A pump intake pressure after an intake for a submersible pump deployed downhole in a wellbore is identified. An intake loss prediction model for identifying a virtual intake loss associated with the intake for the submersible pump as a function of one or more intake loss parameters is accessed. The virtual intake loss is identified by applying the intake loss prediction model based on intake loss prediction input of the one or more intake loss parameters. A pump intake pressure before the intake for the submersible pump is determined based on the virtual intake loss and the identified pump intake pressure after the intake.

IPC Classes  ?

  • E21B 47/008 - Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions

70.

PUMP FLUID END WITH SUCTION VALVE CLOSURE ASSIST

      
Application Number 18538373
Status Pending
Filing Date 2023-12-13
First Publication Date 2024-04-04
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Hurst, Justin Lee
  • Stribling, David Mark

Abstract

A pump fluid end having a reciprocating element a discharge valve assembly, a suction valve assembly, and a suction valve stop. The reciprocating element is disposed at least partially within a reciprocating element bore of the pump fluid end. The suction valve assembly is coupled with a front end of the reciprocating element. The suction valve stop is positioned within the reciprocating element bore such that the suction valve stop contacts and applies a closing force to the suction valve assembly when the suction valve assembly is stuck open at the end of a discharge stroke of the reciprocating element.

IPC Classes  ?

  • F04B 7/02 - Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated
  • F04B 53/10 - Valves; Arrangement of valves
  • F04B 53/12 - Valves; Arrangement of valves arranged in or on pistons

71.

TARGET GAS LOADING FOR NEUTRON GENERATOR

      
Application Number US2022045329
Publication Number 2024/072407
Status In Force
Filing Date 2022-09-30
Publication Date 2024-04-04
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Zhou, Zilu
  • Guo, Weijun

Abstract

A method includes operating a neutron generator in a loading mode by ionizing ionizable gas within an ion source of the neutron generator to create a plurality of ions, and accelerating the plurality of ions by providing a first voltage to a target rod that supports the target to create a first ion beam that bombards a target of the neutron generator. The method also includes operating the neutron generator in a generating mode to generate a plurality of neutrons by accelerating the plurality of ions by providing a second voltage to the target rod to create a second ion beam that bombards the target. The second voltage is greater than the first voltage.

IPC Classes  ?

  • G01V 5/08 - Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
  • G01V 9/00 - Prospecting or detecting by methods not provided for in groups
  • E21B 49/00 - Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
  • E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling

72.

INTERSTITIAL SPACING OF PERFORATING SYSTEM

      
Application Number US2022048727
Publication Number 2024/072428
Status In Force
Filing Date 2022-11-02
Publication Date 2024-04-04
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Hoelscher, Christopher C.
  • Robey, Richard Ellis

Abstract

A perforating gun system may include a central support structure and a plurality of charges secured to the central support structure. Each charge of the plurality of charges is configured to perforate a casing and/or sidewall of a wellbore upon detonation. Further, the plurality of charges comprises a first group of charges and a second group of charges, and each charge of the second group of charges is radially offset from each charge of the first group of charges with respect to the central support structure.

IPC Classes  ?

  • E21B 43/116 - Gun or shaped-charge perforators
  • E21B 43/119 - Perforators; Permeators - Details, e.g. for locating perforating place or direction

73.

PUMP-OUT PLUG FOR MULTI-STAGE CEMENTER

      
Application Number US2022052826
Publication Number 2024/072436
Status In Force
Filing Date 2022-12-14
Publication Date 2024-04-04
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Villarreal, Frank, Vinicia Acosta
  • Desai, Priyanshkumar
  • Weber, Timothy, James

Abstract

A downhole tool has a tubular body defining an outer wall. A port is defined in the outer wall and a plug is received in the port. The plug is detachably connected to the outer wall and expellable into an annulus between the tubular body and a wellbore in which the downhole tool is placed upon the application of pressure in an interior of the tubular body

IPC Classes  ?

  • E21B 33/16 - Methods or devices for cementing, for plugging holes, crevices, or the like for cementing casings into boreholes using plugs for isolating cement charge; Plugs therefor
  • E21B 33/14 - Methods or devices for cementing, for plugging holes, crevices, or the like for cementing casings into boreholes
  • E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
  • E21B 34/10 - Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole

74.

MACHINE LEARNING-BASED WELLBORE FLUID FLOW RATE PREDICTION

      
Application Number US2022077293
Publication Number 2024/072454
Status In Force
Filing Date 2022-09-29
Publication Date 2024-04-04
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Jaaskelainen, Mikko
  • Schaeffer, Benjamin Simon
  • Drew, Julian Edmund

Abstract

A method for configuring a learning machine to predict a flow rate of at least one phase of a fluid. The method comprises determining a feature set for the learning machine, the feature set including information derived from a signal generated by a flow of the fluid interacting with a fluidic oscillator in a wellbore. The method comprises configuring the learning machine with the feature set including information derived from the signal.

IPC Classes  ?

  • E21B 47/10 - Locating fluid leaks, intrusions or movements
  • E21B 49/08 - Obtaining fluid samples or testing fluids, in boreholes or wells
  • G06N 20/00 - Machine learning

75.

WELLBORE EXCLUSION FLUID METHOD AND APPARATUS FOR DOWNHOLE LOGGING

      
Application Number US2022077479
Publication Number 2024/072469
Status In Force
Filing Date 2022-10-03
Publication Date 2024-04-04
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Jones, Christopher Michael
  • Wu, Xiang
  • Sun, Jichun

Abstract

In some embodiments, a downhole logging tool configured for placement in a wellbore comprises a first magnet configured to activate a first volume of ferromagnetic fluid disposed between the downhole logging tool and the wellbore to achieve a first seal between a primary analysis region of the downhole logging tool and a wellbore fluid.

IPC Classes  ?

  • G01V 1/40 - Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
  • G01V 3/18 - Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination or deviation specially adapted for well-logging
  • G01V 5/04 - Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
  • E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
  • E21B 37/08 - Methods or apparatus for cleaning boreholes or wells cleaning in situ of down-hole filters, screens, or gravel packs

76.

BOREHOLE CORRECTION FOR RESISTIVITY LWD TOOLS WITH ULTRASONIC LOG WHILE DRILLING CALIPER

      
Application Number US2023021653
Publication Number 2024/072489
Status In Force
Filing Date 2023-05-10
Publication Date 2024-04-04
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Wu, Xiang
  • Fan, Yi Jing
  • Jin, Jing

Abstract

Aspects of the subject technology relate to systems, methods, and computer-readable media for identifying a borehole correction factor for determining a true resistivity by selecting a model to apply in identifying the borehole correction factor and applying the model to an apparent resistivity to identify the borehole correction factor. To perform borehole correction, a multiplicative coefficient is needed to apply to the apparent resistivity. A database of this multiplicative coefficient, called the borehole correction factor, is generated based on the borehole correction model. The technology described herein allows operators to avoid time-consuming variable borehole diameter sweeps and complex borehole diameter inversion current used in resistivity logging software.

IPC Classes  ?

  • G01V 1/40 - Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
  • E21B 47/14 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves

77.

METHOD OF DRILLING A WELLBORE PENETRATING A SUBTERRANEAN FORMATION

      
Application Number US2023025665
Publication Number 2024/072507
Status In Force
Filing Date 2023-06-19
Publication Date 2024-04-04
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Biyani, Mahesh Vijay
  • Kadam, Sunita S.
  • Bose, Sohini
  • Morrison, Alexandra Clare
  • Mukherjee, Sudarshana
  • Zhou, Hui

Abstract

A method of drilling a wellbore penetrating a subterranean formation, the method including: drilling the wellbore to a first location in a non-production zone of the subterranean formation while circulating a first drilling fluid composition having a first bridging agent with a first predetermined particle size; and drilling the wellbore to a second location in a production zone of the subterranean formation while circulating a second drilling fluid composition having a second bridging agent with a second predetermined particle size; wherein the second location is downhole the first location, and the first bridging agent transitions to the second bridging agent as the second bridging agent is added to the drilling fluid at the surface.

IPC Classes  ?

  • E21B 21/08 - Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
  • E21B 47/04 - Measuring depth or liquid level
  • E21B 47/06 - Measuring temperature or pressure
  • E21B 21/06 - Arrangements for treating drilling fluids outside the borehole
  • E21B 43/25 - Methods for stimulating production

78.

ELECTRIC SUBMERSIBLE PUMP (ESP) SHROUD SYSTEM

      
Application Number US2023025717
Publication Number 2024/072509
Status In Force
Filing Date 2023-06-20
Publication Date 2024-04-04
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Brown, Donn J.
  • Sheth, Ketankumar Kantilal
  • Bernier, Andre Joseph

Abstract

An electric submersible pump (ESP) assembly. The ESP assembly comprises an electric motor; a seal section coupled to the electric motor; a fluid intake coupled to an uphole end of the seal section, wherein the fluid intake defines a plurality of inlet ports; a gas separator comprising a plurality of gas phase discharge ports, and at least one liquid phase discharge port, wherein the gas separator is located uphole of the fluid intake; a centrifugal pump comprising a fluid inlet at a downhole end, wherein the at least one liquid phase discharge port of the gas separator is fluidically coupled to the fluid inlet of the centrifugal pump; and an inverted shroud assembly, wherein a downhole end of the inverted shroud assembly is coupled to an outside of the gas separator downhole of the gas phase discharge ports of the gas separator and uphole of the fluid intake.

IPC Classes  ?

  • E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
  • E21B 21/06 - Arrangements for treating drilling fluids outside the borehole
  • F04B 17/03 - Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
  • F04D 29/40 - Casings; Connections for working fluid

79.

ELECTRIC SUBMERSIBLE PUMP (ESP) ASSEMBLY FLUID INTAKE EXTENSION

      
Application Number US2023025736
Publication Number 2024/072510
Status In Force
Filing Date 2023-06-20
Publication Date 2024-04-04
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Brown, Donn J.
  • Sheth, Ketankumar Kantilal
  • Bernier, Andre Joseph

Abstract

An electric submersible pump (ESP) assembly. The ESP assembly comprises an electric motor; a seal section coupled to an uphole end of the electric motor; a fluid intake coupled to an uphole end of the seal section, wherein the fluid intake defines a plurality of inlet ports; a gas separator coupled to an uphole end of the fluid intake, wherein the gas separator has a plurality of gas phase discharge ports; a pump assembly coupled to an uphole end of the gas separator; and an intake extension tubular, wherein an uphole end of the intake extension tubular is coupled to the fluid intake uphole of the inlet ports, and wherein an annulus defined between an inside of the intake extension tubular and an outside of the seal section defines a fluid flow path from a downhole end of the intake extension tubular to the inlet ports of the fluid intake.

IPC Classes  ?

  • E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
  • E21B 21/06 - Arrangements for treating drilling fluids outside the borehole
  • E21B 43/38 - Arrangements for separating materials produced by the well in the well
  • F04D 13/10 - Units comprising pumps and their driving means the pump being electrically driven for submerged use adapted for use in mining bore holes
  • F04D 29/70 - Suction grids; Strainers; Dust separation; Cleaning
  • F04D 29/42 - Casings; Connections for working fluid for radial or helico-centrifugal pumps
  • E21B 17/02 - Couplings; Joints

80.

STAND ALONE COMPRESSION PACKER

      
Application Number US2023029006
Publication Number 2024/072548
Status In Force
Filing Date 2023-07-28
Publication Date 2024-04-04
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Acosta Villarreal, Frank, Vinicia
  • Vazquez Niebla, Saul, Emmanuel
  • Maharam, Ahmad, Rizal

Abstract

A stand-alone packer has a compressible packer element having an upper end and a lower end disposed about a packer body. A setting sleeve is disposed about the packer body above the compressible packer element. A packer stop having a flat annular upper face is positioned on the packer body below the compressible packer element and a sliding sleeve is disposed in the packer body and detachably connected to the setting sleeve.

IPC Classes  ?

  • E21B 33/129 - Packers; Plugs with mechanical slips for hooking into the casing
  • E21B 33/128 - Packers; Plugs with a member expanded radially by axial pressure
  • E21B 23/06 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers

81.

NEOSTAR

      
Serial Number 98484058
Status Pending
Filing Date 2024-04-04
Owner Halliburton Energy Services, Inc. ()
NICE Classes  ? 07 - Machines and machine tools

Goods & Services

Oil and gas well completion equipment being parts of machines, namely, tubing retrievable safety valves

82.

REMOTE FIELD EDDY CURRENT TOOLS

      
Application Number 18531503
Status Pending
Filing Date 2023-12-06
First Publication Date 2024-04-04
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Fouda, Ahmed Elsayed
  • Donderici, Burkay

Abstract

Some implementations include a method for estimating a first pipe thickness of a first pipe within multiple nested conductive pipes, the method comprising: forming a measured log including a set of log measurements at different depths using an electromagnetic pulsed tool disposed in multiple nested conductive pipes in a wellbore; generating a plurality of remote-field eddy current (RFEC) look-up curves based on measurements of normalized signal level responses for the multiple nested conductive pipes at one or more points in a time decay response; and selecting an RFEC look-up curve from the plurality of RFEC look-up curves at a point in the time decay response that indicates the first pipe thickness of the first pipe.

IPC Classes  ?

  • E21B 47/085 - Measuring diameters or related dimensions at the borehole using radiant means, e.g. acoustic, radioactive or electromagnetic
  • G01B 7/06 - Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width, or thickness for measuring thickness
  • G01N 27/90 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents

83.

STAND ALONE COMPRESSION PACKER

      
Application Number 17956482
Status Pending
Filing Date 2022-09-29
First Publication Date 2024-04-04
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Acosta Villarreal, Frank Vinicia
  • Vazquez Niebla, Saul Emmanuel
  • Maharam, Ahmad Rizal

Abstract

A stand-alone packer has a compressible packer element having an upper end and a lower end disposed about a packer body. A setting sleeve is disposed about the packer body above the compressible packer element. A packer stop having a flat annular upper face is positioned on the packer body below the compressible packer element and a sliding sleeve is disposed in the packer body and detachably connected to the setting sleeve.

IPC Classes  ?

84.

Shaped Cutter With Ridges And Multi-Tapered Cutting Face

      
Application Number 17956647
Status Pending
Filing Date 2022-09-29
First Publication Date 2024-04-04
Owner Halliburton Energy Services, Inc. (USA)
Inventor Chen, Shilin

Abstract

A shaped cutter has a plurality of ridges extending in parallel across a cutting face to enhance drilling. The cutting table is also multi-tapered, being convex along a first cross-section perpendicular to the ridges and concave along a second cross-section parallel with the ridges. The shaped cutter may enhance rock failure modes in addition to shearing, such as by indentation, impacting, scraping and grinding. The plurality of ridges may also exploit vibrations in the drill string to enhance rock failure. The cutting table may be positioned on a drill bit to define an internal back rake angle with respect to a slope angle where the cutting table is concave. The cutting table may include a flared periphery, resulting in a sharper indentation angle and/or larger radius of contact with the formation.

IPC Classes  ?

  • E21B 10/567 - Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
  • E21B 10/43 - Rotary drag type drill bits with teeth, blades or like cutting elements, e.g. fork-type bits, fish tail bits characterised by the arrangement of teeth or other cutting elements
  • E21B 10/55 - Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits with preformed cutting elements

85.

Interstitial Spacing Of Perforating System

      
Application Number 17958075
Status Pending
Filing Date 2022-09-30
First Publication Date 2024-04-04
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Hoelscher, Christopher C.
  • Robey, Richard Ellis

Abstract

A perforating gun system may include a central support structure and a plurality of charges secured to the central support structure. Each charge of the plurality of charges is configured to perforate a casing and/or sidewall of a wellbore upon detonation. Further, the plurality of charges comprises a first group of charges and a second group of charges, and each charge of the second group of charges is radially offset from each charge of the first group of charges with respect to the central support structure.

IPC Classes  ?

86.

Activation Of Wellbore Sealants With Ultrasonic Waves After Placement In A Wellbore

      
Application Number 17958113
Status Pending
Filing Date 2022-09-30
First Publication Date 2024-04-04
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Schnell, Ernst Rudolf Man
  • Lewis, Samuel J.
  • Blaschke, Keith Edward

Abstract

A method may comprise introducing an ultrasonic device into a wellbore with a cement slurry therein; generating ultrasonic waves with the ultrasonic device, wherein at least a portion of the ultrasonic waves are transmitted into at least a portion of the cement slurry; creating cavitation within at least the portion of the cement slurry with at least the portion of the ultrasonic waves; and allowing the cement slurry to set to form a hardened mass.

IPC Classes  ?

  • E21B 33/16 - Methods or devices for cementing, for plugging holes, crevices, or the like for cementing casings into boreholes using plugs for isolating cement charge; Plugs therefor

87.

SELECTION AND REMOVAL OF ACOUSTIC BASELINE SIGNAL FOR ENHANCED CEMENT BOND EVALUATION

      
Application Number US2022046470
Publication Number 2024/072423
Status In Force
Filing Date 2022-10-12
Publication Date 2024-04-04
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Ge, Yao
  • Wang, Ruijia
  • Wu, Xiang

Abstract

A method and system for generating an acoustic log. The method may comprise disposing an acoustic logging tool in a wellbore, broadcasting a shaped signal with the acoustic logging tool such that the shaped signal interacts with a boundary of a casing and a material, recording a result signal from the boundary with the acoustic logging tool, and decomposing the result signal into a resonance mode. The method may further comprise applying a bandpass filter to the resonance mode to form a filtered signal, selecting a baseline signal from the filtered signal, removing the baseline signal from the filtered signal, and generating a log from the filtered signal. The system may comprise an acoustic logging tool. The acoustic logging tool may comprise at least one transmitter and at least one receiver. The system may further comprise a conveyance and an information handling system communicatively connected to the acoustic logging tool.

IPC Classes  ?

  • G01V 1/44 - Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
  • E21B 47/14 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves

88.

AUTONOMOUS UNCERTAINTY-AWARE ENGINE FOR PRESSURE GRADIENT IDENTIFICATION USING A DISCRETE OPTIMIZATION FRAMEWORK

      
Application Number US2022047871
Publication Number 2024/072427
Status In Force
Filing Date 2022-10-26
Publication Date 2024-04-04
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Chok, Hamed
  • Dai, Bin
  • Jones, Christopher Michael
  • Toelke, Jonas

Abstract

A method and system for identifying a fluid within a subterranean formation. The method may comprise obtaining one or more pressure measurements at one or more depths with a downhole fluid sampling tool, forming a depth-pressure measurement set form the one or more pressure measurements, creating a solution novelty threshold from at least the depth-pressure measurement set, constraining a solution space with the solution novelty threshold, and finding a solution-space-inscribed simplex within the solution novelty threshold. The method may further comprise generating a simplicial decomposition for a convex hull of the solution-space-inscribed simplex up to the solution novelty threshold, identifying at least one inscribed simplex within the convex hull of the solution-space-inscribed simplex, determining a novel simplex interior with the at least one inscribed simplex, and forming a plurality of solutions with the novel simplex interior.

IPC Classes  ?

  • E21B 47/06 - Measuring temperature or pressure
  • E21B 49/08 - Obtaining fluid samples or testing fluids, in boreholes or wells

89.

LINER HANGER EXPANSION TOOL WITH ROTATING BALL VALVE

      
Application Number US2022077224
Publication Number 2024/072449
Status In Force
Filing Date 2022-09-29
Publication Date 2024-04-04
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Maddux, Stephen Ross
  • Newton, Daniel

Abstract

A rotating ball valve may be employed in a liner hanger setting tool. A rotating ball member maintains contact with a valve seat throughout the operation of the rotating ball valve, thereby preventing debris from settling on the valve seat and compromising the integrity of a seal through a fluid flow path defined through the setting tool. The rotating ball valve may be actuated by selectively applying fluid pressure to the flow path, or by mechanical manipulation. Once the fluid flow path is closed, a latch may be activated to maintain the rotating ball valve in the closed configuration and a pressure may be applied against the closed rotating ball member. A downhole movement be induced by the applied pressure to drive an expansion cone through an expandable liner hanger, to secure a liner in the wellbore.

IPC Classes  ?

  • E21B 23/01 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for anchoring the tools or the like
  • E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
  • E21B 23/04 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
  • E21B 34/10 - Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole

90.

Method to design for permeability of portland based systems

      
Application Number 18092070
Grant Number 11945994
Status In Force
Filing Date 2022-12-30
First Publication Date 2024-04-02
Grant Date 2024-04-02
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Jandhyala, Siva Rama Krishna
  • Lende, Gunnar
  • Lewis, Samuel J.
  • Pisklak, Thomas Jason

Abstract

A method of designing a cement slurry may include: (a) selecting a target permeability and a density requirement; (b) inputting the target permeability into a permeability model and generating a proposed cement composition using the permeability model, wherein the proposed cement composition comprises at least a cement and concentration thereof, and a water and concentration thereof such that a cement slurry formed from the proposed cement composition water meet the density requirement; (c) preparing the cement slurry based on the proposed cement composition; and (d) introducing the cement slurry into a wellbore and allowing the cement slurry to set to form a hardened cement.

IPC Classes  ?

  • C09K 8/467 - Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
  • C04B 28/04 - Portland cements
  • C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
  • C04B 111/00 - Function, property or use of the mortars, concrete or artificial stone

91.

BOREHOLE CORRECTION FOR RESISTIVITY LWD TOOLS WITH ULTRASONIC LOG WHILE DRILLING CALIPER

      
Application Number 17952844
Status Pending
Filing Date 2022-09-26
First Publication Date 2024-03-28
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Wu, Xiang
  • Fan, Yi Jing
  • Jin, Jing

Abstract

Aspects of the subject technology relate to systems, methods, and computer-readable media for identifying a borehole correction factor for determining a true resistivity by selecting a model to apply in identifying the borehole correction factor and applying the model to an apparent resistivity to identify the borehole correction factor. To perform borehole correction, a multiplicative coefficient is needed to apply to the apparent resistivity. A database of this multiplicative coefficient, called the borehole correction factor, is generated based on the borehole correction model. The technology described herein allows operators to avoid time-consuming variable borehole diameter sweeps and complex borehole diameter inversion current used in resistivity logging software.

IPC Classes  ?

  • E21B 44/00 - Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
  • E21B 47/0228 - Determining slope or direction of the borehole, e.g. using geomagnetism using electromagnetic energy or detectors therefor
  • E21B 47/085 - Measuring diameters or related dimensions at the borehole using radiant means, e.g. acoustic, radioactive or electromagnetic
  • E21B 49/00 - Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

92.

Detonating Cord Depth Locating Feature

      
Application Number 18239281
Status Pending
Filing Date 2023-08-29
First Publication Date 2024-03-28
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Roberts, Courtney Ann Thain
  • Cook, Kevin
  • Kane, Cynthia Anne

Abstract

A detonator housing facilitates assembly of detonator components of a perforating gun. In an example, the detonator housing comprises a housing body configured for coupling to a charge tube of a perforating gun. A detonator receptacle is formed on the housing body for receiving a detonator. A detonating cord receptacle is formed on the housing body adjacent the detonator receptacle for receiving an end portion of a detonating cord in an overlapping relationship with the detonator. A detonating cord stop is formed on the detonating cord receptacle to limit an insertion depth of the detonating cord within the detonating cord receptacle.

IPC Classes  ?

93.

LOW POWER CONSUMPTION ELECTRO-HYDRAULIC SYSTEM WITH MULTIPLE SOLENOIDS

      
Application Number 18529801
Status Pending
Filing Date 2023-12-05
First Publication Date 2024-03-28
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Minassa, Lorenzzo Breda
  • Gissler, Robert William

Abstract

An electro-hydraulic control system for actuating a control valve includes a control module. The control module is coupled to the surface via at least one hydraulic line and two electrical power lines. The control module uses one of the hydraulic lines as a “supply” line and the other line as a “return” line if included. Each hydraulic line of the at least one hydraulic lines can be used as an “open” line or a “close” line to open or close the control valve. The control module includes two normally closed (NC) solenoid valves (SOVs) that are coupled to the electrical power lines and can be controlled from the surface to open or close. The opening or closing of the NC SOVs in cooperation with hydraulic pressure on a “supply” line of the hydraulic lines operates (i.e., closes or opens) the control valve.

IPC Classes  ?

  • E21B 34/06 - Valve arrangements for boreholes or wells in wells
  • E21B 23/04 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
  • E21B 33/035 - Well heads; Setting-up thereof specially adapted for underwater installations
  • E21B 34/10 - Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
  • E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
  • F16K 31/40 - Operating means; Releasing devices actuated by fluid in which fluid from the conduit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor
  • G05D 16/20 - Control of fluid pressure characterised by the use of electric means

94.

DETONATING CORD DEPTH LOCATING FEATURE

      
Application Number US2023032050
Publication Number 2024/063947
Status In Force
Filing Date 2023-09-06
Publication Date 2024-03-28
Owner HALLIBURTON ENERGY SERVICES, INC. (USA)
Inventor
  • Roberts, Courtney, Ann, Thain
  • Cook, Kevin
  • Kane, Cynthia, Anne

Abstract

A detonator housing facilitates assembly of detonator components of a perforating gun. In an example, the detonator housing comprises a housing body configured for coupling to a charge tube of a perforating gun. A detonator receptacle is formed on the housing body for receiving a detonator. A detonating cord receptacle is formed on the housing body adjacent the detonator receptacle for receiving an end portion of a detonating cord in an overlapping relationship with the detonator. A detonating cord stop is formed on the detonating cord receptacle to limit an insertion depth of the detonating cord within the detonating cord receptacle.

IPC Classes  ?

  • E21B 43/116 - Gun or shaped-charge perforators
  • E21B 43/119 - Perforators; Permeators - Details, e.g. for locating perforating place or direction

95.

Selection and Removal of Acoustic Baseline Signal For Enhanced Cement Bond Evaluation

      
Application Number 18483044
Status Pending
Filing Date 2023-10-09
First Publication Date 2024-03-28
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Ge, Yao
  • Wang, Ruijia
  • Wu, Xiang

Abstract

A method and system for generating an acoustic log. The method may comprise disposing an acoustic logging tool in a wellbore, broadcasting a shaped signal with the acoustic logging tool such that the shaped signal interacts with a boundary of a casing and a material, recording a result signal from the boundary with the acoustic logging tool, and decomposing the result signal into a resonance mode. The method may further comprise applying a bandpass filter to the resonance mode to form a filtered signal, selecting a baseline signal from the filtered signal, removing the baseline signal from the filtered signal, and generating a log from the filtered signal. The system may comprise an acoustic logging tool. The acoustic logging tool may comprise at least one transmitter and at least one receiver. The system may further comprise a conveyance and an information handling system communicatively connected to the acoustic logging tool.

IPC Classes  ?

96.

Enhanced Carbon Sequestration via Foam Cementing

      
Application Number 18515803
Status Pending
Filing Date 2023-11-21
First Publication Date 2024-03-28
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Lewis, Samuel J.
  • Pearl, Jr., William Cecil

Abstract

A method including entraining carbon dioxide (CO2) in a cement slurry composition and subjecting the cement slurry composition to conditions under which the CO2 achieves and maintains a supercritical state; and allowing the cement slurry composition to harden to form a hardened cement having CO2 sequestered therein.

IPC Classes  ?

  • C09K 8/473 - Density reducing additives, e.g. for obtaining foamed cement compositions
  • C04B 38/10 - Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents
  • F25J 1/00 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures

97.

IN SITU EVALUATION OF FILTER PARAMETERS WITH OPTICOANALYTICAL DEVICES

      
Application Number 18529079
Status Pending
Filing Date 2023-12-05
First Publication Date 2024-03-28
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Maguire-Boyle, Samuel J.
  • Freese, Robert P.

Abstract

A system can include a filter assembly with a filter and a substance in the filter assembly, and at least one optical computing device having an integrated computational element which receives electromagnetic radiation from the substance. A method can include receiving electromagnetic radiation from a substance in a filter assembly, the electromagnetic radiation from the substance being received by at least one optical computing device having an integrated computational element, and the receiving being performed while a filter is positioned in the filter assembly. A detector may receive electromagnetic radiation from the integrated computational element and produce an output correlated to a characteristic of the substance. A mitigation technique may be selected, based on the detector output.

IPC Classes  ?

  • G01N 15/08 - Investigating permeability, pore volume, or surface area of porous materials
  • B01D 35/143 - Filter condition indicators
  • B01D 46/00 - Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
  • B01D 61/10 - Accessories; Auxiliary operations
  • B01D 61/12 - Controlling or regulating
  • B01D 61/20 - Accessories; Auxiliary operations
  • B01D 61/22 - Controlling or regulating
  • B01D 65/02 - Membrane cleaning or sterilisation
  • B01D 65/10 - Testing of membranes or membrane apparatus; Detecting or repairing leaks

98.

ELECTRIC SUBMERSIBLE PUMP (ESP) SHROUD SYSTEM

      
Application Number 17954849
Status Pending
Filing Date 2022-09-28
First Publication Date 2024-03-28
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Brown, Donn J.
  • Sheth, Ketankumar Kantilal
  • Bernier, Andre Joseph

Abstract

An electric submersible pump (ESP) assembly. The ESP assembly comprises an electric motor; a seal section coupled to the electric motor; a fluid intake coupled to an uphole end of the seal section, wherein the fluid intake defines a plurality of inlet ports; a gas separator comprising a plurality of gas phase discharge ports, and at least one liquid phase discharge port, wherein the gas separator is located uphole of the fluid intake; a centrifugal pump comprising a fluid inlet at a downhole end, wherein the at least one liquid phase discharge port of the gas separator is fluidically coupled to the fluid inlet of the centrifugal pump; and an inverted shroud assembly, wherein a downhole end of the inverted shroud assembly is coupled to an outside of the gas separator downhole of the gas phase discharge ports of the gas separator and uphole of the fluid intake.

IPC Classes  ?

  • E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
  • E21B 43/38 - Arrangements for separating materials produced by the well in the well

99.

ELECTRIC SUBMERSIBLE PUMP (ESP) ASSEMBLY FLUID INTAKE EXTENSION

      
Application Number 17954855
Status Pending
Filing Date 2022-09-28
First Publication Date 2024-03-28
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Brown, Donn J.
  • Sheth, Ketankumar Kantilal
  • Bernier, Andre Joseph

Abstract

An electric submersible pump (ESP) assembly. The ESP assembly comprises an electric motor; a seal section coupled to an uphole end of the electric motor; a fluid intake coupled to an uphole end of the seal section, wherein the fluid intake defines a plurality of inlet ports; a gas separator coupled to an uphole end of the fluid intake, wherein the gas separator has a plurality of gas phase discharge ports; a pump assembly coupled to an uphole end of the gas separator; and an intake extension tubular, wherein an uphole end of the intake extension tubular is coupled to the fluid intake uphole of the inlet ports, and wherein an annulus defined between an inside of the intake extension tubular and an outside of the seal section defines a fluid flow path from a downhole end of the intake extension tubular to the inlet ports of the fluid intake.

IPC Classes  ?

  • E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
  • E21B 43/38 - Arrangements for separating materials produced by the well in the well

100.

MACHINE LEARNING-BASED WELLBORE FLUID FLOW RATE PREDICTION

      
Application Number 17955170
Status Pending
Filing Date 2022-09-28
First Publication Date 2024-03-28
Owner Halliburton Energy Services, Inc. (USA)
Inventor
  • Jaaskelainen, Mikko
  • Schaeffer, Benjamin Simon
  • Drew, Julian Edmund

Abstract

A method for configuring a learning machine to predict a flow rate of at least one phase of a fluid. The method comprises determining a feature set for the learning machine, the feature set including information derived from a signal generated by a flow of the fluid interacting with a fluidic oscillator in a wellbore. The method comprises configuring the learning machine with the feature set including information derived from the signal.

IPC Classes  ?

  • G01F 1/32 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
  • E21B 47/10 - Locating fluid leaks, intrusions or movements
  • G01F 1/661 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
  • G01V 8/16 - Detecting, e.g. by using light barriers using one transmitter and one receiver using optical fibres
  1     2     3     ...     100        Next Page